Coq Exercises

\{jba,jsp,mjf\}(at)di.uminho.pt
MAP/i 2007

1 Logical Reasoning

1. Prove the following theorem:

$$
\text { Theorem ext }: \forall(X: \text { Set })(P: X \rightarrow \text { Prop }), \sim(\forall x, \sim(P x)) \rightarrow(\text { exists } x, P x) .
$$

2. Assuming the Excluded Middle axiom, prove:
(a) Theorem Pierce : $\forall P$ $Q,((P \rightarrow Q) \rightarrow P) \rightarrow P$.
(b) Theorem NNE: $\forall P, \sim \sim P \rightarrow P$.

2 Reasoning about lists

The following exercises require the library Lists. You can load that library executing the command Require Import Lists.

1. Consider the following inductive relation:

$$
\begin{aligned}
& \text { Inductive last }(A: \text { Set })(x: A): \text { list } A \rightarrow \text { Prop }:= \\
& \mid \text { last_base }: \text { last } x(\text { cons } x \text { nil }) \\
& \mid \text { last_step }: \forall l y, \text { last } x l \rightarrow \text { last } x(\text { cons y } l) .
\end{aligned}
$$

(a) Use inversion to prove that $\forall x, \sim($ last x nil $)$.
(b) (Difficult) Try to avoid using that tactic.
2. Consider the following definition for the Even predicate:

```
Inductive Even : nat \(\rightarrow\) Prop :=
    | Even_base : Even 0
    \(\mid\) Even_step \(: \forall n\), Even \(n \rightarrow\) Even \((S(S n))\).
```

(a) Define the Odd predicate (without mention Even).
(b) (Difficult) Prove that, for every number n, Even $n \rightarrow$ Odd (S n). (Hint: you should strength the property to (Even $n \leftrightarrow O d d(S n)) \wedge($ Odd $n \leftrightarrow$ Even $(S n)))$
(c) Define the function rev that reverses a list.
(d) Prove that, for every list l, rev (rev $l)=l$.
(e) Recall the definition for the function app (concatenation of lists). Prove that for every lists l_{1} and l_{2}, rev (appl1 l2) $=\operatorname{app}($ rev l2) $($ rev l1).
3. Consider the inductive predicate:

```
Inductive InL ( A: Type) ( a:A ) list A }->\mathrm{ Prop :=
    | InHead: }\forall\mathrm{ (xs:list A), InL a (cons a xs)
    | InTail: }\forall(x:A)(xs:list A), InL a xs ->InL a (cons x xs).
```

Prove the following properties:
(a) $\forall(A:$ Type $)(a: A)(l 1$ l2 : list $A)$, InL a l1 $\vee \operatorname{InL}$ a l2 \rightarrow InL a (app l1 l2).
(b) $\forall(A:$ Type $)(a: A)(l 1$ l2 : list $A)$, InL a (app l1 l2) \rightarrow InL a l1 \vee InL a l2.
4. Define the function elem that checks if an element belongs a list of integers (Hint: use the predefined Z_eq_dec which tests for integer equality - for that you should import the ZArith module).
5. Prove that, $\forall(a: Z)($ l1 l2 : list $Z)$, elem $a(\operatorname{app} l 1$ l2 $)=$ orb $($ elem a l1) $($ elem a l2 $)$ (the function orb is the boolean-or function defined in Library Bool).
6. Prove the correctness/completeness of elem, i.e. $\forall(x: Z)(l:$ list $Z)$, InL $x l \leftrightarrow$ elem $x l=$ true.

3 Specifications and Extraction

1. Prove decidability of $\operatorname{In} L$, i.e. $\forall(x: Z)(l: l i s t ~ Z),\{\operatorname{In} L x l\}+\{\sim I n L x l\}$.
2. Perform extraction of the previous result. Compare the result with elem. Could you have used the correctness of elem to prove the decidability of InL.
3. Consider the well-known list functions app and rev.
(a) Give a (relational) specification for them;
(b) Prove the corresponding corretness assertions.

4 Function Encoding

1. Define in Coq the following Haskell function:
```
div \(::\) Int \(\rightarrow\) Int \(\rightarrow\) ( Int, Int \()\)
div \(n d=\) divAux \(n n d\)
where divAux \(0_{--}=(0,0)\)
    divAux \((x+1) n d \mid n<d=(0, n)\)
        \(\mid\) otherwise \(=\) let \((q, r)=\operatorname{divAux} x(n-d) d\)
        in \((q+1, r)\)
```

2. Check its results for several alguments.

5 Permutations

Consider the following definition for the permutation relation:
Fixpoint count $(z: Z)(l:$ list $Z)\{$ struct $l\}:$ nat $:=$
match l with
\mid nil $\Rightarrow 0$
| $\left(z^{\prime}:: l^{\prime}\right) \Rightarrow$
match $Z_{\text {_eq_dec }} z z^{\prime}$ with \mid left $\quad \Rightarrow S$ (count $\left.z l^{\prime}\right)$ \mid right ${ }_{-} \Rightarrow$ count $z l^{\prime}$
end
end.
Definition Perm (l1 l2 : list Z) : Prop := $\forall z$, count $z l 1=$ count $z l 2$.

1. Prove that Perm is an equivalence relation (i.e. it is reflexive, symmetric and transitive).
2. Prove that, $\forall x$ y l, Perm $(x:: y:: l)(y:: x:: l)$.

6 Merge Sort

1. Define in Coq the following functions:
```
merge [] \(l=l\)
merge \(l[]=l\)
merge \((x: x s)(y: y s) \mid x \leqslant y=x:\) merge \(x s(y: y s)\)
    \(\mid\) otherwise \(=y: \operatorname{merge}(x: x s)\) ys
split [] \(=([],[])\)
split \((x: x s)=\) let \((a, b)=\) split \(x s\) in \((x: b, a)\)
merge_sort [] \(=[]\)
merge_sort \([x]=[x]\)
merge_sort \(l=\) let \((a, b)=\operatorname{split} l\)
    in merge (merge_sort a) (merge_sort b)
```

(HINT: the Function command is a big help here - the merge function was defined in the lecture slides.)

