
Coq Exercises

{jba,jsp,mjf}(at)di.uminho.pt

MAP/i 2007

1 Logical Reasoning

1. Prove the following theorem:

Theorem ex4 : ∀ (X : Set) (P : X → Prop),∼(∀ x ,∼(P x))→ (exists x , P x).

2. Assuming the Excluded Middle axiom, prove:

(a) Theorem Pierce : ∀ P Q , ((P → Q)→ P)→ P .

(b) Theorem NNE : ∀ P ,∼∼P → P .

2 Reasoning about lists

The following exercises require the library Lists. You can load that library executing the
command Require Import Lists.

1. Consider the following inductive relation:

Inductive last (A : Set) (x : A) : list A→ Prop :=
| last base : last x (cons x nil)
| last step : ∀ l y , last x l → last x (cons y l).

(a) Use inversion to prove that ∀ x ,∼(last x nil).

(b) (Difficult) Try to avoid using that tactic.

2. Consider the following definition for the Even predicate:

Inductive Even : nat → Prop :=
| Even base : Even 0
| Even step : ∀ n, Even n → Even (S (S n)).

(a) Define the Odd predicate (without mention Even).

(b) (Difficult) Prove that, for every number n, Even n → Odd (S n). (Hint: you
should strength the property to (Even n ↔ Odd (S n)) ∧ (Odd n ↔ Even (S n)))

(c) Define the function rev that reverses a list.

1

(d) Prove that, for every list l, rev (rev l) = l .

(e) Recall the definition for the function app (concatenation of lists). Prove that for
every lists l1 and l2, rev (app l1 l2) = app (rev l2) (rev l1).

3. Consider the inductive predicate:

Inductive InL (A : Type) (a : A) : list A→ Prop :=
| InHead : ∀ (xs : list A), InL a (cons a xs)
| InTail : ∀ (x : A) (xs : list A), InL a xs → InL a (cons x xs).

Prove the following properties:

(a) ∀ (A : Type) (a : A) (l1 l2 : list A), InL a l1 ∨ InL a l2 → InL a (app l1 l2).

(b) ∀ (A : Type) (a : A) (l1 l2 : list A), InL a (app l1 l2)→ InL a l1 ∨ InL a l2 .

4. Define the function elem that checks if an element belongs a list of integers (Hint: use
the predefined Z eq dec which tests for integer equality — for that you should import
the ZArith module).

5. Prove that, ∀ (a : Z) (l1 l2 : list Z), elem a (app l1 l2) = orb (elem a l1) (elem a l2)
(the function orb is the boolean-or function defined in Library Bool).

6. Prove the correctness/completeness of elem, i.e. ∀ (x : Z) (l : list Z), InL x l ↔
elem x l = true.

3 Specifications and Extraction

1. Prove decidability of InL, i.e. ∀ (x : Z) (l : list Z), {InL x l }+ {∼InL x l }.

2. Perform extraction of the previous result. Compare the result with elem. Could you
have used the correctness of elem to prove the decidability of InL.

3. Consider the well-known list functions app and rev.

(a) Give a (relational) specification for them;

(b) Prove the corresponding corretness assertions.

4 Function Encoding

1. Define in Coq the following Haskell function:

div :: Int → Int → (Int , Int)
div n d = divAux n n d
where divAux 0 = (0, 0)

divAux (x + 1) n d | n < d = (0, n)
| otherwise = let (q , r) = divAux x (n − d) d

in (q + 1, r)

2. Check its results for several alguments.

2

5 Permutations

Consider the following definition for the permutation relation:

Fixpoint count (z : Z) (l : list Z){struct l } : nat :=
match l with
| nil ⇒ 0
| (z ′ :: l ′)⇒

match Z eq dec z z ′ with
| left ⇒ S (count z l ′)
| right ⇒ count z l ′

end
end.

Definition Perm (l1 l2 : list Z) : Prop :=
∀ z , count z l1 = count z l2 .

1. Prove that Perm is an equivalence relation (i.e. it is reflexive, symmetric and transitive).

2. Prove that, ∀ x y l , Perm (x :: y :: l) (y :: x :: l).

6 Merge Sort

1. Define in Coq the following functions:

merge [] l = l
merge l [] = l
merge (x : xs) (y : ys) | x 6 y = x : merge xs (y : ys)

| otherwise = y : merge (x : xs) ys
split [] = ([], [])
split (x : xs) = let (a, b) = split xs in (x : b, a)
merge sort [] = []
merge sort [x] = [x]
merge sort l = let (a, b) = split l

in merge (merge sort a) (merge sort b)

(HINT: the Function command is a big help here — the merge function was defined in
the lecture slides.)

3

