
Simply-typed !-calculus is not enough

• System F – features polymorphism

• !P – features dependent types

• System F"– features higher-order polymorphism

• CC – features dependent types and higher-order polymorphism

Simply-typed !-calculus has not enough expressive power to encode the kind of
logic used in the previous example.

There are several type systems embedding some of the features described in our
example. For example:

There is a general class of typed !-calculi were all these systems can be described

– the Pure Type Systems.

21

Pure Type Systems

• Pure Type Systems (PTS) provide a general description for a large class of
typed !-calculi.

• PTS make it possible to derive lot of meta theoretic properties in a generic
way.

• In PTS we only have one type constructor (!) and one computation rule (").
(Therefore the name “pure”).

• PTS were originally introduced (albeit in a different from) by S. Berardi and
J. Terlouw as a generalization of Barendregt’s !-cube, which itself provides a
fine-grained analysis of the Calculus of Constructions.

22

M is of type A relative to a typing of the free variables of M

and A (which are declared in #)

Chapter 2

Type Systems and Logics

2.1 Pure Type Systems

• Pure Type Systems (PTS) provide a framework to specify typed λ-calculi.

• The typed lambda calculi that belong to the class of PTS have only one type constructor
(Π) and a computation rule (β). (Therefore the name “pure”).

• The framework of PTS provides a general description of a large class of typed λ-calculi and
makes it possible to derive lot of meta theoretic properties in a generic way.

• PTS were originally introduced (albeit in a different from) by S.Berardi and J. Terlouw as
a generalization of Barendregt’s λ-cube, which itself provides a fine-grained analysis of the
Calculus of Constructions.

PTS are formal systems for deriving judgements of the form

Γ ! M : A

were both M and A are in the set of the so called pseudoterms and Γ is a finite sequence of
declarations, statements of the form x : B, where x is a variable and B a pseudoterm.

2.1.1 Syntax

PTS have a single category of expressions, which are called pseudo-terms. The definitions of
pseudo-terms is parameterized by a set V of variables and a set S of sorts (constants that denote
the universes of the type system.

Definition 2.1.1 For some set S, the set T of pseudo-terms over S is defined by the abstract
syntax

T ::= S | V | T T | λV :T .T | ΠV :T . T

where V is a countable set of variables

3

Pure Type Systems

PTS are formal systems for deriving judgments of the form

context
list of variable declarations

pseudo-terms

23

Syntax

PTS have a single category of expressions, which are called pseudo-terms.

The definitions of pseudo-terms is parameterized by a set V of variables and

a set S of sorts (constants that denote the universes of the type system).

Both ! and $ bind variables.
We have the usual notation for free variables and bound variables.

Chapter 2

Type Systems and Logics

2.1 Pure Type Systems

• Pure Type Systems (PTS) provide a framework to specify typed λ-calculi.

• The typed lambda calculi that belong to the class of PTS have only one type constructor
(Π) and a computation rule (β). (Therefore the name “pure”).

• The framework of PTS provides a general description of a large class of typed λ-calculi and
makes it possible to derive lot of meta theoretic properties in a generic way.

• PTS were originally introduced (albeit in a different from) by S.Berardi and J. Terlouw as
a generalization of Barendregt’s λ-cube, which itself provides a fine-grained analysis of the
Calculus of Constructions.

PTS are formal systems for deriving judgements of the form

Γ ! M : A

were both M and A are in the set of the so called pseudoterms and Γ is a finite sequence of
declarations, statements of the form x : B, where x is a variable and B a pseudoterm.

2.1.1 Syntax

PTS have a single category of expressions, which are called pseudo-terms. The definitions of
pseudo-terms is parameterized by a set V of variables and a set S of sorts (constants that denote
the universes of the type system.

Definition 2.1.1 For some set S, the set T of pseudo-terms over S is defined by the abstract
syntax

T ::= S | V | T T | λV :T .T | ΠV :T . T

where V is a countable set of variables

3

The set T of pseudo-terms are defined by the abstract syntax

Definition

24

Definitions

Pseudo-terms inherit much of the standard definitions and notations of !-calculi.

• FV(M) denotes the set of free variables of the pseudo-term M .

• We write A " B instead of ! x : A. B whenever x ! FV(B).

• M [x := N] denotes the substitution of N for all the free occurrences of x in
M .

• We identify pseudo-terms that are equal up to a renaming of bound variables

(#-conversion).

• We assume the standard variable convention, so all bound variables are chosen
to be different from free variables.

25

Definitions

• $-reduction is defined as the compatible closure of the rule

 is the reflexive-transitive closure of

 is the reflexive-symmetric-transitive closure of

• Application associates to the left, abstraction to the right and application
binds more tightly than abstraction.

• We let x, y, z , ... range over V and s, s’, ... range over S

4 CHAPTER 2. TYPE SYSTEMS AND LOGICS

• We write A→B instead of Πx :A.B whenever x "∈ FV(B).

• M [x := N] denote the substitution of N for all the free occurrences of x in M .

• We identify pseudo-terms that are equal up to a renaming of bound variables (α-conversion).

• We assume the standard variable convention, so all bound variables are chosen to be different
from free variables.

• β-reduction is defined as the compatible closure of the rule

(λ x :A.M) N →β M [x := N]

!β is the reflexive-transitive closure of→β .

=β is the reflexive-symmetric-transitive closure of→β .

• Application associates to the left, abstraction to the right and application binds more tightly
than abstraction.

• We let x, y, z, ... range over V and s, s′, ... range over S.

2.1.3 Typing Rules for Pure Type Systems

(axiom) 〈〉 & ∗ : " if (s1, s2) ∈ A

(start) Γ & A : s
Γ, x :A & x : A

if x "∈ dom(Γ)

(weakening) Γ & A : B Γ & C : s
Γ, x :C & A : B

if x "∈ dom(Γ)

(product)
Γ & A : s1 Γ, x :A & B : s2

Γ & (Π x :A.B) : s3

if (s1, s2, s3) ∈ R

(application)
Γ & F : (Π x :A.B) Γ & a : A

Γ & F a : B[x := a]

(abstraction)
Γ, x :A & b : B Γ & (Π x :A.B) : s

Γ & λ x :A.b : (Π x :A.B)

(conversion) Γ & A : B Γ & B′ : s

Γ & A : B′ if B =β B′

4 CHAPTER 2. TYPE SYSTEMS AND LOGICS

• We write A→B instead of Πx :A.B whenever x "∈ FV(B).

• M [x := N] denote the substitution of N for all the free occurrences of x in M .

• We identify pseudo-terms that are equal up to a renaming of bound variables (α-conversion).

• We assume the standard variable convention, so all bound variables are chosen to be different
from free variables.

• β-reduction is defined as the compatible closure of the rule

(λ x :A.M) N →β M [x := N]

!β is the reflexive-transitive closure of→β .

=β is the reflexive-symmetric-transitive closure of→β .

• Application associates to the left, abstraction to the right and application binds more tightly
than abstraction.

• We let x, y, z, ... range over V and s, s′, ... range over S.

2.1.3 Typing Rules for Pure Type Systems

(axiom) 〈〉 & ∗ : " if (s1, s2) ∈ A

(start) Γ & A : s
Γ, x :A & x : A

if x "∈ dom(Γ)

(weakening) Γ & A : B Γ & C : s
Γ, x :C & A : B

if x "∈ dom(Γ)

(product)
Γ & A : s1 Γ, x :A & B : s2

Γ & (Π x :A.B) : s3

if (s1, s2, s3) ∈ R

(application)
Γ & F : (Π x :A.B) Γ & a : A

Γ & F a : B[x := a]

(abstraction)
Γ, x :A & b : B Γ & (Π x :A.B) : s

Γ & λ x :A.b : (Π x :A.B)

(conversion) Γ & A : B Γ & B′ : s

Γ & A : B′ if B =β B′

4 CHAPTER 2. TYPE SYSTEMS AND LOGICS

• We write A→B instead of Πx :A.B whenever x "∈ FV(B).

• M [x := N] denote the substitution of N for all the free occurrences of x in M .

• We identify pseudo-terms that are equal up to a renaming of bound variables (α-conversion).

• We assume the standard variable convention, so all bound variables are chosen to be different
from free variables.

• β-reduction is defined as the compatible closure of the rule

(λ x :A.M) N →β M [x := N]

!β is the reflexive-transitive closure of→β .

=β is the reflexive-symmetric-transitive closure of→β .

• Application associates to the left, abstraction to the right and application binds more tightly
than abstraction.

• We let x, y, z, ... range over V and s, s′, ... range over S.

2.1.3 Typing Rules for Pure Type Systems

(axiom) 〈〉 & ∗ : " if (s1, s2) ∈ A

(start) Γ & A : s
Γ, x :A & x : A

if x "∈ dom(Γ)

(weakening) Γ & A : B Γ & C : s
Γ, x :C & A : B

if x "∈ dom(Γ)

(product)
Γ & A : s1 Γ, x :A & B : s2

Γ & (Π x :A.B) : s3

if (s1, s2, s3) ∈ R

(application)
Γ & F : (Π x :A.B) Γ & a : A

Γ & F a : B[x := a]

(abstraction)
Γ, x :A & b : B Γ & (Π x :A.B) : s

Γ & λ x :A.b : (Π x :A.B)

(conversion) Γ & A : B Γ & B′ : s

Γ & A : B′ if B =β B′

4 CHAPTER 2. TYPE SYSTEMS AND LOGICS

• We write A→B instead of Πx :A.B whenever x "∈ FV(B).

• M [x := N] denote the substitution of N for all the free occurrences of x in M .

• We identify pseudo-terms that are equal up to a renaming of bound variables (α-conversion).

• We assume the standard variable convention, so all bound variables are chosen to be different
from free variables.

• β-reduction is defined as the compatible closure of the rule

(λ x :A.M) N →β M [x := N]

!β is the reflexive-transitive closure of→β .

=β is the reflexive-symmetric-transitive closure of→β .

• Application associates to the left, abstraction to the right and application binds more tightly
than abstraction.

• We let x, y, z, ... range over V and s, s′, ... range over S.

2.1.3 Typing Rules for Pure Type Systems

(axiom) 〈〉 & ∗ : " if (s1, s2) ∈ A

(start) Γ & A : s
Γ, x :A & x : A

if x "∈ dom(Γ)

(weakening) Γ & A : B Γ & C : s
Γ, x :C & A : B

if x "∈ dom(Γ)

(product)
Γ & A : s1 Γ, x :A & B : s2

Γ & (Π x :A.B) : s3

if (s1, s2, s3) ∈ R

(application)
Γ & F : (Π x :A.B) Γ & a : A

Γ & F a : B[x := a]

(abstraction)
Γ, x :A & b : B Γ & (Π x :A.B) : s

Γ & λ x :A.b : (Π x :A.B)

(conversion) Γ & A : B Γ & B′ : s

Γ & A : B′ if B =β B′

4 CHAPTER 2. TYPE SYSTEMS AND LOGICS

• We write A→B instead of Πx :A.B whenever x "∈ FV(B).

• M [x := N] denote the substitution of N for all the free occurrences of x in M .

• We identify pseudo-terms that are equal up to a renaming of bound variables (α-conversion).

• We assume the standard variable convention, so all bound variables are chosen to be different
from free variables.

• β-reduction is defined as the compatible closure of the rule

(λ x :A.M) N →β M [x := N]

!β is the reflexive-transitive closure of→β .

=β is the reflexive-symmetric-transitive closure of→β .

• Application associates to the left, abstraction to the right and application binds more tightly
than abstraction.

• We let x, y, z, ... range over V and s, s′, ... range over S.

2.1.3 Typing Rules for Pure Type Systems

(axiom) 〈〉 & ∗ : " if (s1, s2) ∈ A

(start) Γ & A : s
Γ, x :A & x : A

if x "∈ dom(Γ)

(weakening) Γ & A : B Γ & C : s
Γ, x :C & A : B

if x "∈ dom(Γ)

(product)
Γ & A : s1 Γ, x :A & B : s2

Γ & (Π x :A.B) : s3

if (s1, s2, s3) ∈ R

(application)
Γ & F : (Π x :A.B) Γ & a : A

Γ & F a : B[x := a]

(abstraction)
Γ, x :A & b : B Γ & (Π x :A.B) : s

Γ & λ x :A.b : (Π x :A.B)

(conversion) Γ & A : B Γ & B′ : s

Γ & A : B′ if B =β B′

26

Salient Features of PTS

• PTS describe !-calculi à la Church (!-abstractions carry the domain of
bound variables).

• PTS are minimal (just ! type construction and " reduction rule), which
imposes strict limitations on their applicability.

• PTS model dependent types. Type constructor ! captures in the type
theory the set-theoretic notion of generic or dependent function space.

27

Dependent types

In the type theory one can define for every set A and A-indexed family of

sets a new set called dependent function space.

4 CHAPTER 2. TYPE SYSTEMS AND LOGICS

• We write A→B instead of Πx :A.B whenever x "∈ FV(B).

• M [x := N] denote the substitution of N for all the free occurrences of x in M .

• We identify pseudo-terms that are equal up to a renaming of bound variables (α-conversion).

• We assume the standard variable convention, so all bound variables are chosen to be different
from free variables.

• β-reduction is defined as the compatible closure of the rule

(λ x :A.M) N →β M [x := N]

!β is the reflexive-transitive closure of→β .

=β is the reflexive-symmetric-transitive closure of→β .

• Application associates to the left, abstraction to the right and application binds more tightly
than abstraction.

• We let x, y, z, ... range over V and s, s′, ... range over S.

2.1.3 Salient Features of PTS

• PTS describe λ-calculi à la Church (λ-abstraction carry the domain of bound variables).

• PTS are minimal (just Π type construction and β reduction rule), which imposes strict
limitations on their applicability.

• PTS model dependent types. Type constructor Π captures in the type theory the set-theoretic
notion of generic or dependent function space.

In the type theory one can define for every set A and A-indexed family of sets (Ba)x∈A a
new set Πx∈ABx called dependent function space.

Elements of Πx∈ABx are functions with domain A and such that f(a) ∈ Ba for every a ∈ A.

Π-construction of PTS works in the same way

Π x :A.B(x) is the type of terms f such that, for every a : A, F a : B(a)

4 CHAPTER 2. TYPE SYSTEMS AND LOGICS

• We write A→B instead of Πx :A.B whenever x "∈ FV(B).

• M [x := N] denote the substitution of N for all the free occurrences of x in M .

• We identify pseudo-terms that are equal up to a renaming of bound variables (α-conversion).

• We assume the standard variable convention, so all bound variables are chosen to be different
from free variables.

• β-reduction is defined as the compatible closure of the rule

(λ x :A.M) N →β M [x := N]

!β is the reflexive-transitive closure of→β .

=β is the reflexive-symmetric-transitive closure of→β .

• Application associates to the left, abstraction to the right and application binds more tightly
than abstraction.

• We let x, y, z, ... range over V and s, s′, ... range over S.

2.1.3 Salient Features of PTS

• PTS describe λ-calculi à la Church (λ-abstraction carry the domain of bound variables).

• PTS are minimal (just Π type construction and β reduction rule), which imposes strict
limitations on their applicability.

• PTS model dependent types. Type constructor Π captures in the type theory the set-theoretic
notion of generic or dependent function space.

In the type theory one can define for every set A and A-indexed family of sets (Ba)x∈A a
new set Πx∈ABx called dependent function space.

Elements of Πx∈ABx are functions with domain A and such that f(a) ∈ Ba for every a ∈ A.

Π-construction of PTS works in the same way

Π x :A.B(x) is the type of terms f such that, for every a : A, F a : B(a)
!-construction of PTS works in the same way:

Elements of are functions with domain A and such that

for every .

4 CHAPTER 2. TYPE SYSTEMS AND LOGICS

• We write A→B instead of Πx :A.B whenever x "∈ FV(B).

• M [x := N] denote the substitution of N for all the free occurrences of x in M .

• We identify pseudo-terms that are equal up to a renaming of bound variables (α-conversion).

• We assume the standard variable convention, so all bound variables are chosen to be different
from free variables.

• β-reduction is defined as the compatible closure of the rule

(λ x :A.M) N →β M [x := N]

!β is the reflexive-transitive closure of→β .

=β is the reflexive-symmetric-transitive closure of→β .

• Application associates to the left, abstraction to the right and application binds more tightly
than abstraction.

• We let x, y, z, ... range over V and s, s′, ... range over S.

2.1.3 Salient Features of PTS

• PTS describe λ-calculi à la Church (λ-abstraction carry the domain of bound variables).

• PTS are minimal (just Π type construction and β reduction rule), which imposes strict
limitations on their applicability.

• PTS model dependent types. Type constructor Π captures in the type theory the set-theoretic
notion of generic or dependent function space.

In the type theory one can define for every set A and A-indexed family of sets (Ba)x∈A a
new set Πx∈ABx called dependent function space.

Elements of Πx∈ABx are functions with domain A and such that f(a) ∈ Ba for every a ∈ A.

Π-construction of PTS works in the same way

Π x :A.B(x) is the type of terms f such that, for every a : A, F a : B(a)

4 CHAPTER 2. TYPE SYSTEMS AND LOGICS

• We write A→B instead of Πx :A.B whenever x "∈ FV(B).

• M [x := N] denote the substitution of N for all the free occurrences of x in M .

• We identify pseudo-terms that are equal up to a renaming of bound variables (α-conversion).

• We assume the standard variable convention, so all bound variables are chosen to be different
from free variables.

• β-reduction is defined as the compatible closure of the rule

(λ x :A.M) N →β M [x := N]

!β is the reflexive-transitive closure of→β .

=β is the reflexive-symmetric-transitive closure of→β .

• Application associates to the left, abstraction to the right and application binds more tightly
than abstraction.

• We let x, y, z, ... range over V and s, s′, ... range over S.

2.1.3 Salient Features of PTS

• PTS describe λ-calculi à la Church (λ-abstraction carry the domain of bound variables).

• PTS are minimal (just Π type construction and β reduction rule), which imposes strict
limitations on their applicability.

• PTS model dependent types. Type constructor Π captures in the type theory the set-theoretic
notion of generic or dependent function space.

In the type theory one can define for every set A and A-indexed family of sets (Ba)x∈A a
new set Πx∈ABx called dependent function space.

Elements of Πx∈ABx are functions with domain A and such that f(a) ∈ Ba for every a ∈ A.

Π-construction of PTS works in the same way

Π x :A.B(x) is the type of terms f such that, for every a : A, F a : B(a)

4 CHAPTER 2. TYPE SYSTEMS AND LOGICS

• We write A→B instead of Πx :A.B whenever x "∈ FV(B).

• M [x := N] denote the substitution of N for all the free occurrences of x in M .

• We identify pseudo-terms that are equal up to a renaming of bound variables (α-conversion).

• We assume the standard variable convention, so all bound variables are chosen to be different
from free variables.

• β-reduction is defined as the compatible closure of the rule

(λ x :A.M) N →β M [x := N]

!β is the reflexive-transitive closure of→β .

=β is the reflexive-symmetric-transitive closure of→β .

• Application associates to the left, abstraction to the right and application binds more tightly
than abstraction.

• We let x, y, z, ... range over V and s, s′, ... range over S.

2.1.3 Salient Features of PTS

• PTS describe λ-calculi à la Church (λ-abstraction carry the domain of bound variables).

• PTS are minimal (just Π type construction and β reduction rule), which imposes strict
limitations on their applicability.

• PTS model dependent types. Type constructor Π captures in the type theory the set-theoretic
notion of generic or dependent function space.

In the type theory one can define for every set A and A-indexed family of sets (Ba)x∈A a
new set Πx∈ABx called dependent function space.

Elements of Πx∈ABx are functions with domain A and such that f(a) ∈ Ba for every a ∈ A.

Π-construction of PTS works in the same way

Π x :A.B(x) is the type of terms f such that, for every a : A, F a : B(a)

4 CHAPTER 2. TYPE SYSTEMS AND LOGICS

• We write A→B instead of Πx :A.B whenever x "∈ FV(B).

• M [x := N] denote the substitution of N for all the free occurrences of x in M .

• We identify pseudo-terms that are equal up to a renaming of bound variables (α-conversion).

• We assume the standard variable convention, so all bound variables are chosen to be different
from free variables.

• β-reduction is defined as the compatible closure of the rule

(λ x :A.M) N →β M [x := N]

!β is the reflexive-transitive closure of→β .

=β is the reflexive-symmetric-transitive closure of→β .

• Application associates to the left, abstraction to the right and application binds more tightly
than abstraction.

• We let x, y, z, ... range over V and s, s′, ... range over S.

2.1.3 Salient Features of PTS

• PTS describe λ-calculi à la Church (λ-abstraction carry the domain of bound variables).

• PTS are minimal (just Π type construction and β reduction rule), which imposes strict
limitations on their applicability.

• PTS model dependent types. Type constructor Π captures in the type theory the set-theoretic
notion of generic or dependent function space.

In the type theory one can define for every set A and A-indexed family of sets (Ba)x∈A a
new set Πx∈ABx called dependent function space.

Elements of Πx∈ABx are functions with domain A and such that f(a) ∈ Ba for every a ∈ A.

Π-construction of PTS works in the same way

Π x :A.B(x) is the type of terms f such that, for every a : A, F a : B(a)is the type of terms F such that, for every ,

4 CHAPTER 2. TYPE SYSTEMS AND LOGICS

• We write A→B instead of Πx :A.B whenever x "∈ FV(B).

• M [x := N] denote the substitution of N for all the free occurrences of x in M .

• We identify pseudo-terms that are equal up to a renaming of bound variables (α-conversion).

• We assume the standard variable convention, so all bound variables are chosen to be different
from free variables.

• β-reduction is defined as the compatible closure of the rule

(λ x :A.M) N →β M [x := N]

!β is the reflexive-transitive closure of→β .

=β is the reflexive-symmetric-transitive closure of→β .

• Application associates to the left, abstraction to the right and application binds more tightly
than abstraction.

• We let x, y, z, ... range over V and s, s′, ... range over S.

2.1.3 Salient Features of PTS

• PTS describe λ-calculi à la Church (λ-abstraction carry the domain of bound variables).

• PTS are minimal (just Π type construction and β reduction rule), which imposes strict
limitations on their applicability.

• PTS model dependent types. Type constructor Π captures in the type theory the set-theoretic
notion of generic or dependent function space.

In the type theory one can define for every set A and A-indexed family of sets (Ba)x∈A a
new set Πx∈ABx called dependent function space.

Elements of Πx∈ABx are functions with domain A and such that f(a) ∈ Ba for every a ∈ A.

Π-construction of PTS works in the same way

Π x :A.B(x) is the type of terms f such that, for every a : A, F a : B(a)

4 CHAPTER 2. TYPE SYSTEMS AND LOGICS

• We write A→B instead of Πx :A.B whenever x "∈ FV(B).

• M [x := N] denote the substitution of N for all the free occurrences of x in M .

• We identify pseudo-terms that are equal up to a renaming of bound variables (α-conversion).

• We assume the standard variable convention, so all bound variables are chosen to be different
from free variables.

• β-reduction is defined as the compatible closure of the rule

(λ x :A.M) N →β M [x := N]

!β is the reflexive-transitive closure of→β .

=β is the reflexive-symmetric-transitive closure of→β .

• Application associates to the left, abstraction to the right and application binds more tightly
than abstraction.

• We let x, y, z, ... range over V and s, s′, ... range over S.

2.1.3 Salient Features of PTS

• PTS describe λ-calculi à la Church (λ-abstraction carry the domain of bound variables).

• PTS are minimal (just Π type construction and β reduction rule), which imposes strict
limitations on their applicability.

• PTS model dependent types. Type constructor Π captures in the type theory the set-theoretic
notion of generic or dependent function space.

In the type theory one can define for every set A and A-indexed family of sets (Ba)x∈A a
new set Πx∈ABx called dependent function space.

Elements of Πx∈ABx are functions with domain A and such that f(a) ∈ Ba for every a ∈ A.

Π-construction of PTS works in the same way

Π x :A.B(x) is the type of terms f such that, for every a : A, F a : B(a)

28

Specifications

The typing system of PTS is parameterized by a triple (S, A, R) where

Every specification S induces a PTS $S.

• S is a set of sorts

• A ⊆ S # S is a set of axioms

• R ⊆ S # S # S is a set of rules

A PTS-specification is a triple (S, A, R) where

Definition

We use (s1,s2) to denote rules of the form (s1,s2,s2).

S is the set of universes of the type system;
A determine the typing relation between universes;
R determine which dependent function types may be found and where they live.

29

Contexts and Judgments

• A judgment is derivable if it can be inferred from the typing rules of the
next slide.

• The set of contexts is given by the abstract syntax

• We let ⊆ denote context inclusion
• The domain of a context is defined by the clause

• We let #, % range over

2.1. PURE TYPE SYSTEMS 5

(axiom) 〈〉 # ∗ : ! if (s1, s2) ∈ A

(start) Γ # A : s
Γ, x :A # x : A

if x &∈ dom(Γ)

(weakening) Γ # A : B Γ # C : s
Γ, x :C # A : B

if x &∈ dom(Γ)

(product)
Γ # A : s1 Γ, x :A # B : s2

Γ # (Π x :A.B) : s3

if (s1, s2, s3) ∈ R

(application)
Γ # F : (Π x :A.B) Γ # a : A

Γ # F a : B[x := a]

(abstraction)
Γ, x :A # b : B Γ # (Π x :A.B) : s

Γ # λ x :A.b : (Π x :A.B)

(conversion) Γ # A : B Γ # B′ : s

Γ # A : B′ if B =β B′

Figure 2.1: Typing rules for PTS

2.1.5 Contexts and Judgments

• The set G of contexts is given by the abstract syntax G ::= 〈〉 | G,V : T

– We let ⊆ denote context inclusion.

– The domain of a context is defined by the clause dom(x1 : A1, ..., xn : An) = {x1, ..., xn}

– We let Γ,∆ range over G.

• A judgment is a triple of the form Γ # A : B where A,B ∈ Γ and Γ ∈ G. Γ, A and B are
the context, the subject and the predicate of the judgment.

• A judgment is derivable if it can be infered from the typing rules of Figure 2.1.

• If Γ # A : B then Γ, A and B are legal.

• If Γ # A : s for s ∈ S we say that A is a type.

Note that:

• contexts amy introcude type variables with assertions of he form A : s with s ∈ S.

• contexts are ordered lists so as to handle possible dependencies, e.g., A : s, a : A intriduces
a type variable and an object variable nd is meaningful, whereas a : A,A : s is not.

2.1. PURE TYPE SYSTEMS 5

(axiom) 〈〉 # ∗ : ! if (s1, s2) ∈ A

(start) Γ # A : s
Γ, x :A # x : A

if x &∈ dom(Γ)

(weakening) Γ # A : B Γ # C : s
Γ, x :C # A : B

if x &∈ dom(Γ)

(product)
Γ # A : s1 Γ, x :A # B : s2

Γ # (Π x :A.B) : s3

if (s1, s2, s3) ∈ R

(application)
Γ # F : (Π x :A.B) Γ # a : A

Γ # F a : B[x := a]

(abstraction)
Γ, x :A # b : B Γ # (Π x :A.B) : s

Γ # λ x :A.b : (Π x :A.B)

(conversion) Γ # A : B Γ # B′ : s

Γ # A : B′ if B =β B′

Figure 2.1: Typing rules for PTS

2.1.5 Contexts and Judgments

• The set G of contexts is given by the abstract syntax G ::= 〈〉 | G,V : T

– We let ⊆ denote context inclusion.

– The domain of a context is defined by the clause dom(x1 :A1, ..., xn :An) = {x1, ..., xn}

– We let Γ,∆ range over G.

• A judgment is a triple of the form Γ # A : B where A,B ∈ Γ and Γ ∈ G. Γ, A and B are
the context, the subject and the predicate of the judgment.

• A judgment is derivable if it can be infered from the typing rules of Figure 2.1.

• If Γ # A : B then Γ, A and B are legal.

• If Γ # A : s for s ∈ S we say that A is a type.

Note that:

• contexts amy introcude type variables with assertions of he form A : s with s ∈ S.

• contexts are ordered lists so as to handle possible dependencies, e.g., A : s, a : A intriduces
a type variable and an object variable nd is meaningful, whereas a : A,A : s is not.

2.1. PURE TYPE SYSTEMS 5

(axiom) 〈〉 # ∗ : ! if (s1, s2) ∈ A

(start) Γ # A : s
Γ, x :A # x : A

if x &∈ dom(Γ)

(weakening) Γ # A : B Γ # C : s
Γ, x :C # A : B

if x &∈ dom(Γ)

(product)
Γ # A : s1 Γ, x :A # B : s2

Γ # (Π x :A.B) : s3

if (s1, s2, s3) ∈ R

(application)
Γ # F : (Π x :A.B) Γ # a : A

Γ # F a : B[x := a]

(abstraction)
Γ, x :A # b : B Γ # (Π x :A.B) : s

Γ # λ x :A.b : (Π x :A.B)

(conversion) Γ # A : B Γ # B′ : s

Γ # A : B′ if B =β B′

Figure 2.1: Typing rules for PTS

2.1.5 Contexts and Judgments

• The set G of contexts is given by the abstract syntax G ::= 〈〉 | G,V : T

– We let ⊆ denote context inclusion.

– The domain of a context is defined by the clause dom(x1 :A1, ..., xn :An) = {x1, ..., xn}

– We let Γ,∆ range over G.

• A judgment is a triple of the form Γ # A : B where A,B ∈ Γ and Γ ∈ G. Γ, A and B are
the context, the subject and the predicate of the judgment.

• A judgment is derivable if it can be infered from the typing rules of Figure 2.1.

• If Γ # A : B then Γ, A and B are legal.

• If Γ # A : s for s ∈ S we say that A is a type.

Note that:

• contexts amy introcude type variables with assertions of he form A : s with s ∈ S.

• contexts are ordered lists so as to handle possible dependencies, e.g., A : s, a : A intriduces
a type variable and an object variable nd is meaningful, whereas a : A,A : s is not.

2.1. PURE TYPE SYSTEMS 5

(axiom) 〈〉 # ∗ : ! if (s1, s2) ∈ A

(start) Γ # A : s
Γ, x :A # x : A

if x &∈ dom(Γ)

(weakening) Γ # A : B Γ # C : s
Γ, x :C # A : B

if x &∈ dom(Γ)

(product)
Γ # A : s1 Γ, x :A # B : s2

Γ # (Π x :A.B) : s3

if (s1, s2, s3) ∈ R

(application)
Γ # F : (Π x :A.B) Γ # a : A

Γ # F a : B[x := a]

(abstraction)
Γ, x :A # b : B Γ # (Π x :A.B) : s

Γ # λ x :A.b : (Π x :A.B)

(conversion) Γ # A : B Γ # B′ : s

Γ # A : B′ if B =β B′

Figure 2.1: Typing rules for PTS

2.1.5 Contexts and Judgments

• The set G of contexts is given by the abstract syntax G ::= 〈〉 | G,V : T

– We let ⊆ denote context inclusion.

– The domain of a context is defined by the clause dom(x1 :A1, ..., xn :An) = {x1, ..., xn}

– We let Γ,∆ range over G.

• A judgment is a triple of the form Γ # A : B where A,B ∈ Γ and Γ ∈ G. Γ, A and B are
the context, the subject and the predicate of the judgment.

• A judgment is derivable if it can be infered from the typing rules of Figure 2.1.

• If Γ # A : B then Γ, A and B are legal.

• If Γ # A : s for s ∈ S we say that A is a type.

Note that:

• contexts amy introcude type variables with assertions of he form A : s with s ∈ S.

• contexts are ordered lists so as to handle possible dependencies, e.g., A : s, a : A intriduces
a type variable and an object variable nd is meaningful, whereas a : A,A : s is not.

• If then #, A and B are legal.

• If for s ∈ S , we say that A is a type.

2.1. PURE TYPE SYSTEMS 5

(axiom) 〈〉 # ∗ : ! if (s1, s2) ∈ A

(start) Γ # A : s
Γ, x :A # x : A

if x &∈ dom(Γ)

(weakening) Γ # A : B Γ # C : s
Γ, x :C # A : B

if x &∈ dom(Γ)

(product)
Γ # A : s1 Γ, x :A # B : s2

Γ # (Π x :A.B) : s3

if (s1, s2, s3) ∈ R

(application)
Γ # F : (Π x :A.B) Γ # a : A

Γ # F a : B[x := a]

(abstraction)
Γ, x :A # b : B Γ # (Π x :A.B) : s

Γ # λ x :A.b : (Π x :A.B)

(conversion) Γ # A : B Γ # B′ : s

Γ # A : B′ if B =β B′

Figure 2.1: Typing rules for PTS

2.1.5 Contexts and Judgments

• The set G of contexts is given by the abstract syntax G ::= 〈〉 | G,V : T

– We let ⊆ denote context inclusion.

– The domain of a context is defined by the clause dom(x1 :A1, ..., xn :An) = {x1, ..., xn}

– We let Γ,∆ range over G.

• A judgment is a triple of the form Γ # A : B where A,B ∈ Γ and Γ ∈ G. Γ, A and B are
the context, the subject and the predicate of the judgment.

• A judgment is derivable if it can be infered from the typing rules of Figure 2.1.

• If Γ # A : B then Γ, A and B are legal.

• If Γ # A : s for s ∈ S we say that A is a type.

Note that:

• contexts amy introcude type variables with assertions of he form A : s with s ∈ S.

• contexts are ordered lists so as to handle possible dependencies, e.g., A : s, a : A intriduces
a type variable and an object variable nd is meaningful, whereas a : A,A : s is not.

2.1. PURE TYPE SYSTEMS 5

(axiom) 〈〉 # ∗ : ! if (s1, s2) ∈ A

(start) Γ # A : s
Γ, x :A # x : A

if x &∈ dom(Γ)

(weakening) Γ # A : B Γ # C : s
Γ, x :C # A : B

if x &∈ dom(Γ)

(product)
Γ # A : s1 Γ, x :A # B : s2

Γ # (Π x :A.B) : s3

if (s1, s2, s3) ∈ R

(application)
Γ # F : (Π x :A.B) Γ # a : A

Γ # F a : B[x := a]

(abstraction)
Γ, x :A # b : B Γ # (Π x :A.B) : s

Γ # λ x :A.b : (Π x :A.B)

(conversion) Γ # A : B Γ # B′ : s

Γ # A : B′ if B =β B′

Figure 2.1: Typing rules for PTS

2.1.5 Contexts and Judgments

• The set G of contexts is given by the abstract syntax G ::= 〈〉 | G,V : T

– We let ⊆ denote context inclusion.

– The domain of a context is defined by the clause dom(x1 :A1, ..., xn :An) = {x1, ..., xn}

– We let Γ,∆ range over G.

• A judgment is a triple of the form Γ # A : B where A,B ∈ Γ and Γ ∈ G. Γ, A and B are
the context, the subject and the predicate of the judgment.

• A judgment is derivable if it can be infered from the typing rules of Figure 2.1.

• If Γ # A : B then Γ, A and B are legal.

• If Γ # A : s for s ∈ S we say that A is a type.

Note that:

• contexts amy introcude type variables with assertions of he form A : s with s ∈ S.

• contexts are ordered lists so as to handle possible dependencies, e.g., A : s, a : A intriduces
a type variable and an object variable nd is meaningful, whereas a : A,A : s is not.

• A judgment is a triple of the form where and .

2.1. PURE TYPE SYSTEMS 5

(axiom) 〈〉 # ∗ : ! if (s1, s2) ∈ A

(start) Γ # A : s
Γ, x :A # x : A

if x &∈ dom(Γ)

(weakening) Γ # A : B Γ # C : s
Γ, x :C # A : B

if x &∈ dom(Γ)

(product)
Γ # A : s1 Γ, x :A # B : s2

Γ # (Π x :A.B) : s3

if (s1, s2, s3) ∈ R

(application)
Γ # F : (Π x :A.B) Γ # a : A

Γ # F a : B[x := a]

(abstraction)
Γ, x :A # b : B Γ # (Π x :A.B) : s

Γ # λ x :A.b : (Π x :A.B)

(conversion) Γ # A : B Γ # B′ : s

Γ # A : B′ if B =β B′

Figure 2.1: Typing rules for PTS

2.1.5 Contexts and Judgments

• The set G of contexts is given by the abstract syntax G ::= 〈〉 | G,V : T

– We let ⊆ denote context inclusion.

– The domain of a context is defined by the clause dom(x1 :A1, ..., xn :An) = {x1, ..., xn}

– We let Γ,∆ range over G.

• A judgment is a triple of the form Γ # A : B where A,B ∈ Γ and Γ ∈ G. Γ, A and B are
the context, the subject and the predicate of the judgment.

• A judgment is derivable if it can be infered from the typing rules of Figure 2.1.

• If Γ # A : B then Γ, A and B are legal.

• If Γ # A : s for s ∈ S we say that A is a type.

Note that:

• contexts amy introcude type variables with assertions of he form A : s with s ∈ S.

• contexts are ordered lists so as to handle possible dependencies, e.g., A : s, a : A intriduces
a type variable and an object variable nd is meaningful, whereas a : A,A : s is not.

2.1. PURE TYPE SYSTEMS 5

(axiom) 〈〉 # ∗ : ! if (s1, s2) ∈ A

(start) Γ # A : s
Γ, x :A # x : A

if x &∈ dom(Γ)

(weakening) Γ # A : B Γ # C : s
Γ, x :C # A : B

if x &∈ dom(Γ)

(product)
Γ # A : s1 Γ, x :A # B : s2

Γ # (Π x :A.B) : s3

if (s1, s2, s3) ∈ R

(application)
Γ # F : (Π x :A.B) Γ # a : A

Γ # F a : B[x := a]

(abstraction)
Γ, x :A # b : B Γ # (Π x :A.B) : s

Γ # λ x :A.b : (Π x :A.B)

(conversion) Γ # A : B Γ # B′ : s

Γ # A : B′ if B =β B′

Figure 2.1: Typing rules for PTS

2.1.5 Contexts and Judgments

• The set G of contexts is given by the abstract syntax G ::= 〈〉 | G,V : T

– We let ⊆ denote context inclusion.

– The domain of a context is defined by the clause dom(x1 :A1, ..., xn :An) = {x1, ..., xn}

– We let Γ,∆ range over G.

• A judgment is a triple of the form Γ # A : B where A,B ∈ Γ and Γ ∈ G. Γ, A and B are
the context, the subject and the predicate of the judgment.

• A judgment is derivable if it can be infered from the typing rules of Figure 2.1.

• If Γ # A : B then Γ, A and B are legal.

• If Γ # A : s for s ∈ S we say that A is a type.

Note that:

• contexts amy introcude type variables with assertions of he form A : s with s ∈ S.

• contexts are ordered lists so as to handle possible dependencies, e.g., A : s, a : A intriduces
a type variable and an object variable nd is meaningful, whereas a : A,A : s is not.

2.2. PURE TYPE SYSTEMS 9

(axiom) 〈〉 # ∗ : ! if (s1, s2) ∈ A

(start) Γ # A : s
Γ, x :A # x : A

if x &∈ dom(Γ)

(weakening) Γ # A : B Γ # C : s
Γ, x :C # A : B

if x &∈ dom(Γ)

(product)
Γ # A : s1 Γ, x :A # B : s2

Γ # (Πx :A.B) : s3

if (s1, s2, s3) ∈ R

(application)
Γ # F : (Πx :A.B) Γ # a : A

Γ # F a : B[x := a]

(abstraction)
Γ, x :A # b : B Γ # (Πx :A.B) : s

Γ # λx :A.b : (Πx :A.B)

(conversion) Γ # A : B Γ # B′ : s

Γ # A : B′ if B =β B′

Figure 2.1: Typing rules for PTS

2.2.5 Contexts and Judgments

• The set G of contexts is given by the abstract syntax G ::= 〈〉 | G,V : T

– We let ⊆ denote context inclusion.

– The domain of a context is defined by the clause dom(x1 :A1, ..., xn :An) = {x1, ..., xn}

– We let Γ,∆ range over G.

• A judgment is a triple of the form Γ # A : B where A,B ∈ T and Γ ∈ G. Γ, A and B are
the context, the subject and the predicate of the judgment.

• A judgment is derivable if it can be infered from the typing rules of Figure 2.1.

• If Γ # A : B then Γ, A and B are legal.

• If Γ # A : s for s ∈ S we say that A is a type.

Note that:

• contexts may introduce type variables with assertions of the form A : s with s ∈ S.

• contexts are ordered lists so as to handle possible dependencies, e.g., A : s, a : A intriduces
a type variable and an object variable nd is meaningful, whereas a : A,A : s is not.

30

Typing rules for PTS
2.2. PURE TYPE SYSTEMS 9

(axiom) 〈〉 # s1 : s2 if (s1, s2) ∈ A

(start) Γ # A : s
Γ, x :A # x : A

if x %∈ dom(Γ)

(weakening) Γ # A : B Γ # C : s
Γ, x :C # A : B

if x %∈ dom(Γ)

(product)
Γ # A : s1 Γ, x :A # B : s2

Γ # (Πx :A.B) : s3

if (s1, s2, s3) ∈ R

(application)
Γ # F : (Πx :A.B) Γ # a : A

Γ # F a : B[x := a]

(abstraction)
Γ, x :A # b : B Γ # (Πx :A.B) : s

Γ # λx :A.b : (Πx :A.B)

(conversion) Γ # A : B Γ # B′ : s

Γ # A : B′ if B =β B′

Figure 2.1: Typing rules for PTS

2.2.5 Contexts and Judgments

• The set G of contexts is given by the abstract syntax G ::= 〈〉 | G,V : T

– We let ⊆ denote context inclusion.

– The domain of a context is defined by the clause dom(x1 :A1, ..., xn :An) = {x1, ..., xn}

– We let Γ,∆ range over G.

• A judgment is a triple of the form Γ # A : B where A,B ∈ T and Γ ∈ G. Γ, A and B are
the context, the subject and the predicate of the judgment.

• A judgment is derivable if it can be infered from the typing rules of Figure 2.1.

• If Γ # A : B then Γ, A and B are legal.

• If Γ # A : s for s ∈ S we say that A is a type.

Note that:

• contexts may introduce type variables with assertions of the form A : s with s ∈ S.

• contexts are ordered lists so as to handle possible dependencies, e.g., A : s, a : A intriduces
a type variable and an object variable nd is meaningful, whereas a : A,A : s is not.

31

It embeds the relation A into the type system.

Typing rules for PTS
10 CHAPTER 2. TYPE SYSTEMS AND LOGICS

2.2.6 Typing rules for PTS

(axiom) 〈〉 # s1 : s2 if (s1, s2) ∈ A

embeds the relation A into the type system.

(start) Γ # A : s
Γ, x :A # x : A

if x %∈ dom(Γ)

(weakening) Γ # A : B Γ # C : s
Γ, x :C # A : B

if x %∈ dom(Γ)

allow the introduction of variables in a context.

(product)
Γ # A : s1 Γ, x :A # B : s2

Γ # (Πx :A.B) : s3

if (s1, s2, s3) ∈ R

allows for dependent function types to be formed, provided they match the rule in R.

(application)
Γ # F : (Πx :A.B) Γ # a : A

Γ # F a : B[x := a]

allows to form applications. Note substitution [x := a] in the type of the application, in order to
accommodate type dependencies.

(abstraction)
Γ, x :A # b : B Γ # (Πx :A.B) : s

Γ # λx :A.b : (Πx :A.B)

allows to build λ-abstractions. Note that the side condition requires that the dependent function
type is well formed.

(conversion) Γ # A : B Γ # B′ : s

Γ # A : B′ if B =β B′

ensures that convertible types (i.e. types that are β-equal) have the same inhabitants. This rule
is crucial for higher-order type theories, because types are λ-terms and can be reduced, and for
dependent type theories because they may occur in types.

2.2.7 Examples of PTS

Some examples of non-dependent type systems (i.e. an expression M : A with A : ∗ cannot appear
as a subexpression of B : ∗).

λ→, the simply typed λ-calculus.

S = ∗, !
A = (∗ : !)
R = (∗, ∗)

32

It allows the introduction of variables in a context.

Typing rules for PTS

6 CHAPTER 2. TYPE SYSTEMS AND LOGICS

2.1.6 Typing rules for PTS

(axiom) 〈〉 # ∗ : ! if (s1, s2) ∈ A

embeds the relation A into the type system.

(start) Γ # A : s
Γ, x :A # x : A

if x &∈ dom(Γ)

(weakening) Γ # A : B Γ # C : s
Γ, x :C # A : B

if x &∈ dom(Γ)

allow the introduction of variables in a context.

(product)
Γ # A : s1 Γ, x :A # B : s2

Γ # (Π x :A.B) : s3

if (s1, s2, s3) ∈ R

allows for dependent function types to be formed, provided they match the rule in R.

(application)
Γ # F : (Π x :A.B) Γ # a : A

Γ # F a : B[x := a]
allows to build λ-abstractions Note that the side condition requires that the dependent function
type is well formed.

(abstraction)
Γ, x :A # b : B Γ # (Π x :A.B) : s

Γ # λ x :A.b : (Π x :A.B)

allows to form applications. Note substitution [x := a] in the type of the application, in order to
accommodate type dependencies.

(conversion) Γ # A : B Γ # B′ : s

Γ # A : B′ if B =β B′

ensures that convertible types (i.e. types that are beta-equal) have the same inhabitants. This
rule is crucial for higher-order type theories, because types are λ-terms and can be reduced, and
for dependent type theories because they may occur in types.

2.2 Lambda Cube

λω !! λC

λ2

""!!!!!!!!!!
!! λP2

""!!!!!!!!!!

λω

##

!! λPω

##

λ→ !!

""!!!!!!!!!

##

λP

""!!!!!!!!!

##

33

It allows for dependent function types to be formed, provided they match
the rule in R.

Typing rules for PTS

6 CHAPTER 2. TYPE SYSTEMS AND LOGICS

2.1.6 Typing rules for PTS

(axiom) 〈〉 # ∗ : ! if (s1, s2) ∈ A

embeds the relation A into the type system.

(start) Γ # A : s
Γ, x :A # x : A

if x &∈ dom(Γ)

(weakening) Γ # A : B Γ # C : s
Γ, x :C # A : B

if x &∈ dom(Γ)

allow the introduction of variables in a context.

(product)
Γ # A : s1 Γ, x :A # B : s2

Γ # (Π x :A.B) : s3

if (s1, s2, s3) ∈ R

allows for dependent function types to be formed, provided they match the rule in R.

(application)
Γ # F : (Π x :A.B) Γ # a : A

Γ # F a : B[x := a]
allows to build λ-abstractions Note that the side condition requires that the dependent function
type is well formed.

(abstraction)
Γ, x :A # b : B Γ # (Π x :A.B) : s

Γ # λ x :A.b : (Π x :A.B)

allows to form applications. Note substitution [x := a] in the type of the application, in order to
accommodate type dependencies.

(conversion) Γ # A : B Γ # B′ : s

Γ # A : B′ if B =β B′

ensures that convertible types (i.e. types that are beta-equal) have the same inhabitants. This
rule is crucial for higher-order type theories, because types are λ-terms and can be reduced, and
for dependent type theories because they may occur in types.

2.2 Lambda Cube

λω !! λC

λ2

""!!!!!!!!!!
!! λP2

""!!!!!!!!!!

λω

##

!! λPω

##

λ→ !!

""!!!!!!!!!

##

λP

""!!!!!!!!!

##

34

It allows to form applications.

Note substitution [x := a] in the type of the application, in order to
accommodate type dependencies.

Typing rules for PTS

6 CHAPTER 2. TYPE SYSTEMS AND LOGICS

2.1.6 Typing rules for PTS

(axiom) 〈〉 # ∗ : ! if (s1, s2) ∈ A

embeds the relation A into the type system.

(start) Γ # A : s
Γ, x :A # x : A

if x &∈ dom(Γ)

(weakening) Γ # A : B Γ # C : s
Γ, x :C # A : B

if x &∈ dom(Γ)

allow the introduction of variables in a context.

(product)
Γ # A : s1 Γ, x :A # B : s2

Γ # (Π x :A.B) : s3

if (s1, s2, s3) ∈ R

allows for dependent function types to be formed, provided they match the rule in R.

(application)
Γ # F : (Π x :A.B) Γ # a : A

Γ # F a : B[x := a]
allows to build λ-abstractions Note that the side condition requires that the dependent function
type is well formed.

(abstraction)
Γ, x :A # b : B Γ # (Π x :A.B) : s

Γ # λ x :A.b : (Π x :A.B)

allows to form applications. Note substitution [x := a] in the type of the application, in order to
accommodate type dependencies.

(conversion) Γ # A : B Γ # B′ : s

Γ # A : B′ if B =β B′

ensures that convertible types (i.e. types that are beta-equal) have the same inhabitants. This
rule is crucial for higher-order type theories, because types are λ-terms and can be reduced, and
for dependent type theories because they may occur in types.

2.2 Lambda Cube

λω !! λC

λ2

""!!!!!!!!!!
!! λP2

""!!!!!!!!!!

λω

##

!! λPω

##

λ→ !!

""!!!!!!!!!

##

λP

""!!!!!!!!!

##

35

2.1. PURE TYPE SYSTEMS 5

(axiom) 〈〉 # ∗ : ! if (s1, s2) ∈ A

(start) Γ # A : s
Γ, x :A # x : A

if x &∈ dom(Γ)

(weakening) Γ # A : B Γ # C : s
Γ, x :C # A : B

if x &∈ dom(Γ)

(product)
Γ # A : s1 Γ, x :A # B : s2

Γ # (Π x :A.B) : s3

if (s1, s2, s3) ∈ R

(application)
Γ # F : (Π x :A.B) Γ # a : A

Γ # F a : B[x := a]

(abstraction)
Γ, x :A # b : B Γ # (Π x :A.B) : s

Γ # λ x :A.b : (Π x :A.B)

(conversion) Γ # A : B Γ # B′ : s

Γ # A : B′ if B =β B′

Figure 2.1: Typing rules for PTS

2.1.5 Contexts and Judgments

• The set G of contexts is given by the abstract syntax G ::= 〈〉 | G,V : T

– We let ⊆ denote context inclusion.

– The domain of a context is defined by the clause dom(x1 :A1, ..., xn :An) = {x1, ..., xn}

– We let Γ,∆ range over G.

• A judgment is a triple of the form Γ # A : B where A,B ∈ Γ and Γ ∈ G. Γ, A and B are
the context, the subject and the predicate of the judgment.

• A judgment is derivable if it can be infered from the typing rules of Figure 2.1.

• If Γ # A : B then Γ, A and B are legal.

• If Γ # A : s for s ∈ S we say that A is a type.

Note that:

• contexts may introduce type variables with assertions of the form A : s with s ∈ S.

• contexts are ordered lists so as to handle possible dependencies, e.g., A : s, a : A intriduces
a type variable and an object variable nd is meaningful, whereas a : A,A : s is not.

It allows to build !-abstractions.

Note that the side condition requires that the dependent function type is
well formed.

Typing rules for PTS

36

6 CHAPTER 2. TYPE SYSTEMS AND LOGICS

2.1.6 Typing rules for PTS

(axiom) 〈〉 # ∗ : ! if (s1, s2) ∈ A

embeds the relation A into the type system.

(start) Γ # A : s
Γ, x :A # x : A

if x &∈ dom(Γ)

(weakening) Γ # A : B Γ # C : s
Γ, x :C # A : B

if x &∈ dom(Γ)

allow the introduction of variables in a context.

(product)
Γ # A : s1 Γ, x :A # B : s2

Γ # (Π x :A.B) : s3

if (s1, s2, s3) ∈ R

allows for dependent function types to be formed, provided they match the rule in R.

(application)
Γ # F : (Π x :A.B) Γ # a : A

Γ # F a : B[x := a]
allows to build λ-abstractions Note that the side condition requires that the dependent function
type is well formed.

(abstraction)
Γ, x :A # b : B Γ # (Π x :A.B) : s

Γ # λ x :A.b : (Π x :A.B)

allows to form applications. Note substitution [x := a] in the type of the application, in order to
accommodate type dependencies.

(conversion) Γ # A : B Γ # B′ : s

Γ # A : B′ if B =β B′

ensures that convertible types (i.e. types that are beta-equal) have the same inhabitants. This
rule is crucial for higher-order type theories, because types are λ-terms and can be reduced, and
for dependent type theories because they may occur in types.

2.2 Lambda Cube

λω !! λC

λ2

""!!!!!!!!!!
!! λP2

""!!!!!!!!!!

λω

##

!! λPω

##

λ→ !!

""!!!!!!!!!

##

λP

""!!!!!!!!!

##

It ensures that convertible types (i.e. types that are "-equal) have the same
inhabitants.

This rule is crucial for higher-order type theories, because types are !-terms
and can be reduced, and for dependent type theories, because terms may
occur in types.

Typing rules for PTS

37

Examples of PTS

2.1. PURE TYPE SYSTEMS 7

λ→
S = ∗, !
A = (∗ : !)
R = (∗, ∗)

λ2, is the PTS counterpart of the Girard’s System F.

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗)

λ2
S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗)

λω, is the PTS counterpart of the Girard’s System Fω.

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗), (!,!)

λω

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗), (!,!)

In logical terms, these non-dependent systems correspond to propositional logics.

2.1.8 More examples of non-dependent PTS

λU−, the Girard’s System U−.

S = ∗, !, #
A = (∗ : !), (! : #)
R = (∗, ∗), (!, ∗), (!,!), (#,!)

λU−
S = ∗, !, #
A = (∗ : !), (! : #)
R = (∗, ∗), (!, ∗), (!,!), (#,!)

λU ,the System U .

S = ∗, !, #
A = (∗ : !), (! : #)
R = (∗, ∗), (!, ∗), (!,!), (#, ∗), (#,!)

λU

S = ∗, !, #
A = (∗ : !), (! : #)
R = (∗, ∗), (!, ∗), (!,!), (#, ∗), (#,!)

2.1. PURE TYPE SYSTEMS 7

λ→
S = ∗, !
A = (∗ : !)
R = (∗, ∗)

λ2, is the PTS counterpart of the Girard’s System F.

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗)

λ2
S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗)

λω, is the PTS counterpart of the Girard’s System Fω.

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗), (!,!)

λω

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗), (!,!)

In logical terms, these non-dependent systems correspond to propositional logics.

2.1.8 More examples of non-dependent PTS

λU−, the Girard’s System U−.

S = ∗, !, #
A = (∗ : !), (! : #)
R = (∗, ∗), (!, ∗), (!,!), (#,!)

λU−
S = ∗, !, #
A = (∗ : !), (! : #)
R = (∗, ∗), (!, ∗), (!,!), (#,!)

λU ,the System U .

S = ∗, !, #
A = (∗ : !), (! : #)
R = (∗, ∗), (!, ∗), (!,!), (#, ∗), (#,!)

λU

S = ∗, !, #
A = (∗ : !), (! : #)
R = (∗, ∗), (!, ∗), (!,!), (#, ∗), (#,!)

2.1. PURE TYPE SYSTEMS 7

λ→
S = ∗, !
A = (∗ : !)
R = (∗, ∗)

λ2, is the PTS counterpart of the Girard’s System F.

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗)

λ2
S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗)

λω, is the PTS counterpart of the Girard’s System Fω.

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗), (!,!)

λω

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗), (!,!)

In logical terms, these non-dependent systems correspond to propositional logics.

2.1.8 More examples of non-dependent PTS

λU−, the Girard’s System U−.

S = ∗, !, #
A = (∗ : !), (! : #)
R = (∗, ∗), (!, ∗), (!,!), (#,!)

λU−
S = ∗, !, #
A = (∗ : !), (! : #)
R = (∗, ∗), (!, ∗), (!,!), (#,!)

λU ,the System U .

S = ∗, !, #
A = (∗ : !), (! : #)
R = (∗, ∗), (!, ∗), (!,!), (#, ∗), (#,!)

λU

S = ∗, !, #
A = (∗ : !), (! : #)
R = (∗, ∗), (!, ∗), (!,!), (#, ∗), (#,!)

Non-dependent type systems (i.e. an expression M : A with A : ! cannot appear
as a subexpression of B : !)

!2 is the PTS counterpart of Girard’s System F.

!%, the simply typed !-calculus.

!" is the PTS counterpart of Girard’s System F$.

In logical terms, these non-dependent systems correspond to propositional logics.

38

More examples of non-dependent PTS

!U&, !U and !! are inconsistent in the sense that there exists a pseudo-term M
such that the judgment A : ! " M : A is derivable.

!U&, Girard’s System U&

!U , System U

The System !!

8 CHAPTER 2. TYPE SYSTEMS AND LOGICS

The System λ∗
S = ∗
A = (∗ : ∗)
R = (∗, ∗)

λ∗
S = ∗
A = (∗ : ∗)
R = (∗, ∗)

λU−, λU and λ∗ are inconsistent in the sense that exists a pseudo-term M such that the
judgment A : ∗ " M : A is derivable.

2.1.9 Examples of dependent PTS

Some examples of dependent type systems (i.e. these systems allow to type expressions B : ∗
which contain as subexpression M : A : ∗).

λP , is the PTS counterpart of the Logical Frameworks due to Harper et al.

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (∗,!)

λP

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (∗,!)

λP2, is the PTS counterpart of the Longo and Moggi’s system also named λP2.

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗), (∗,!)

λP2
S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗), (∗,!)

λC (also known as λPω) is the PTS counterpart of the Coquand and Huet’s Calculus os
Constructions.

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗), (∗,!), (!,!)

λC

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗), (∗,!), (!,!)

In logical terms, these dependent systems correspond to predicate logics.

2.1. PURE TYPE SYSTEMS 7

λ→
S = ∗, !
A = (∗ : !)
R = (∗, ∗)

λ2, is the PTS counterpart of the Girard’s System F.

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗)

λ2
S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗)

λω, is the PTS counterpart of the Girard’s System Fω.

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗), (!,!)

λω

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗), (!,!)

In logical terms, these non-dependent systems correspond to propositional logics.

2.1.8 More examples of non-dependent PTS

λU−, the Girard’s System U−.

S = ∗, !, #
A = (∗ : !), (! : #)
R = (∗, ∗), (!, ∗), (!,!), (#,!)

λU−
S = ∗, !, #
A = (∗ : !), (! : #)
R = (∗, ∗), (!, ∗), (!,!), (#,!)

λU ,the System U .

S = ∗, !, #
A = (∗ : !), (! : #)
R = (∗, ∗), (!, ∗), (!,!), (#, ∗), (#,!)

λU

S = ∗, !, #
A = (∗ : !), (! : #)
R = (∗, ∗), (!, ∗), (!,!), (#, ∗), (#,!)

2.1. PURE TYPE SYSTEMS 7

λ→
S = ∗, !
A = (∗ : !)
R = (∗, ∗)

λ2, is the PTS counterpart of the Girard’s System F.

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗)

λ2
S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗)

λω, is the PTS counterpart of the Girard’s System Fω.

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗), (!,!)

λω

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗), (!,!)

In logical terms, these non-dependent systems correspond to propositional logics.

2.1.8 More examples of non-dependent PTS

λU−, the Girard’s System U−.

S = ∗, !, #
A = (∗ : !), (! : #)
R = (∗, ∗), (!, ∗), (!,!), (#,!)

λU−
S = ∗, !, #
A = (∗ : !), (! : #)
R = (∗, ∗), (!, ∗), (!,!), (#,!)

λU ,the System U .

S = ∗, !, #
A = (∗ : !), (! : #)
R = (∗, ∗), (!, ∗), (!,!), (#, ∗), (#,!)

λU

S = ∗, !, #
A = (∗ : !), (! : #)
R = (∗, ∗), (!, ∗), (!,!), (#, ∗), (#,!)

39

Examples of dependent PTS

In logical terms, these dependent systems correspond to predicate logics.

It is possible to type expressions B : ! which contain as subexpression M : A : !.

!P is the PTS counterpart of the Logical Frameworks due to Harper et al.

!P2 is the PTS counterpart of Longo and Moggi’s system also named !P2.

!C (also known as !P") is the PTS counterpart of Coquand and Huet’s Calculus
of Constructions.

8 CHAPTER 2. TYPE SYSTEMS AND LOGICS

The System λ∗
S = ∗
A = (∗ : ∗)
R = (∗, ∗)

λ∗
S = ∗
A = (∗ : ∗)
R = (∗, ∗)

λU−, λU and λ∗ are inconsistent in the sense that exists a pseudo-term M such that the
judgment A : ∗ " M : A is derivable.

2.1.9 Examples of dependent PTS

Some examples of dependent type systems (i.e. these systems allow to type expressions B : ∗
which contain as subexpression M : A : ∗).

λP , is the PTS counterpart of the Logical Frameworks due to Harper et al.

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (∗,!)

λP

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (∗,!)

λP2, is the PTS counterpart of the Longo and Moggi’s system also named λP2.

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗), (∗,!)

λP2
S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗), (∗,!)

λC (also known as λPω) is the PTS counterpart of the Coquand and Huet’s Calculus os
Constructions.

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗), (∗,!), (!,!)

λC

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗), (∗,!), (!,!)

In logical terms, these dependent systems correspond to predicate logics.

8 CHAPTER 2. TYPE SYSTEMS AND LOGICS

The System λ∗
S = ∗
A = (∗ : ∗)
R = (∗, ∗)

λ∗
S = ∗
A = (∗ : ∗)
R = (∗, ∗)

λU−, λU and λ∗ are inconsistent in the sense that exists a pseudo-term M such that the
judgment A : ∗ " M : A is derivable.

2.1.9 Examples of dependent PTS

Some examples of dependent type systems (i.e. these systems allow to type expressions B : ∗
which contain as subexpression M : A : ∗).

λP , is the PTS counterpart of the Logical Frameworks due to Harper et al.

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (∗,!)

λP

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (∗,!)

λP2, is the PTS counterpart of the Longo and Moggi’s system also named λP2.

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗), (∗,!)

λP2
S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗), (∗,!)

λC (also known as λPω) is the PTS counterpart of the Coquand and Huet’s Calculus os
Constructions.

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗), (∗,!), (!,!)

λC

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗), (∗,!), (!,!)

In logical terms, these dependent systems correspond to predicate logics.

8 CHAPTER 2. TYPE SYSTEMS AND LOGICS

The System λ∗
S = ∗
A = (∗ : ∗)
R = (∗, ∗)

λ∗
S = ∗
A = (∗ : ∗)
R = (∗, ∗)

λU−, λU and λ∗ are inconsistent in the sense that exists a pseudo-term M such that the
judgment A : ∗ " M : A is derivable.

2.1.9 Examples of dependent PTS

Some examples of dependent type systems (i.e. these systems allow to type expressions B : ∗
which contain as subexpression M : A : ∗).

λP , is the PTS counterpart of the Logical Frameworks due to Harper et al.

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (∗,!)

λP

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (∗,!)

λP2, is the PTS counterpart of the Longo and Moggi’s system also named λP2.

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗), (∗,!)

λP2
S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗), (∗,!)

λC (also known as λPω) is the PTS counterpart of the Coquand and Huet’s Calculus os
Constructions.

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗), (∗,!), (!,!)

λC

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗), (∗,!), (!,!)

In logical terms, these dependent systems correspond to predicate logics.

40

