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Part II - Program Verification

• Proof assistants based on type theory

• Type Systems and Logics

- Pure Type Systems
- The Lambda Cube
- The Logic Cube

• Extensions of Pure Type Systems

- Sigma Types
- Inductive Types
- The Calculus of Inductive Constructions
- Introduction to the Coq proof assistant

• The Coq proof assistant

• Axiomatic semantics of imperative programs: Hoare Logic

• Tool support for the specification, verification, and certification of programs
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Proof Checking

• Proof checking consists of the automated verification of mathematical theories.

- First one formalizes within a given logic the underlying primitive notions, the 
definitions, the axioms and the proofs;

- and then the definitions are checked for their well-formedness and the proofs 
for their correctness.

In this way mathematics is represented on a computer and also a hight degree of 
reliability is obtained. 

• Once the theory is formalized, its correctness can be verified by the proof-checker 
(which is a small program).

• To help in the formalization process there exists an interactive proof-development 

system.

• Proof-checker and proof-development systems are usually combined in what is 

called a proof-assistant.
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Proof-assistants

- helps to deal with large problems; 

- prevents us from overseeing details; 

- does the bookkeeping of the proofs.

In a proof-assistant, after formalizing the primitive notions of the theory (under 
study), the user develops the proofs interactively by means of (proof) tactics, and 
when a proof is finished a “proof-term” is created. This proof-term closely 
corresponds to a standard mathematical proof (in natural deduction style). 

Machine assisted theorem proving: 

Proof-assistants based on type theory present a general specification language to 
define mathematical notions and formulas. Moreover, it allows to construct 
algorithms and proofs as first class citizens.
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• Mathematics is usually presented in an informal but precise way.

• In Logic !, A become formal objects and proofs can be formalized as a 
derivation tree (following some precisely given set of rules). 

Proof checking mathematical statements

2 CHAPTER 1. INTRODUCTION
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“proof-term” is created. This proof-term closely corresponds to a standard mathematical proof
(in natural deduction style).

Machine assisted theorem proving:

• helps to deal with large problems;

• prevents us from overseeing details;

• does the bookkeeping of the proofs.

Proof-assistants based on type theory present a general specification language to define mathe-
matical notions and formulas. Moreover, it allows o construct algorithms and proofs as first class
citizens.

1.4.1 Proof checking mathematical statements

Mathematics is usually presented in an informal but precise way.

In situation Γ we have A.
Proof. p. QED

In Logic Γ, A become formal objects and proofs can be formalized as a derivation tree (following
some precisely given set of rules).

Γ !L A

Proof. p. QED

1.4.2 Types in logic

The connection of type theory to logic is via the proposition-as-types principle that establishes a
precise relation between intuicionistic logic and computation.

Intuitionistic logic is based on the notion of proof – a proposition is true when we can provide
a constructive proof of it. On this basis:

• a proposition A can be seen as a type (the type of its proofs);

• and a proof of A as an object of type A.

Hence:
A is provable ⇐⇒ A is inhabited

Therefore, the formalization of mathematics in type theory becomes

Γ !T p : A which is equivalent to TypeΓ(p) = A

Proof checking boils down to type checking.
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• The connection of type theory to logic is via the proposition-as-types 
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computation.
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Type-theoretic notions for proof-checking

In the practice of an interactive proof assistant based on type theory, the user types 
in tactics, guiding the proof development system to construct a proof-term. At the 
end, this term is type checked and the type is compared with the original goal.

TIP is usually undecidable for type theories of interest. 

TCP and TSP are decidable for a large class of interesting type theories. 

In connection to proof checking there are some decidability problems: 

Type Checking Problem (TCP)

Type Synthesis Problem (TSP)

Type Inhabitation Problem (TIP)

1.4. PROOF CHECKING 3
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In the practice of an interactive proof assistant based on type theory, the user types in tactics,
guiding the proof development system to construct a proof-term. At the end, this term is type
checked and the type is compared with the original goal.

In connection to proof checking there are some decidability problems:

Type Checking Problem (TCP) Γ !T M : A ?

Type Synthesis Problem (TSP) Γ !T M : ?

Type Inhabitation Problem (TIP) Γ !T ? : A

TIP is usually undecidable for type theories of interest.
TCP and TSP are decidable for a large class of interesting type theories.

1.4.4 The reliability of machine checked proofs

Why would one believe a system that says it has verified a proof ?

The proof checker should be a very small program that can be verified by hand, giving the
highest possible reliability to the proof checker.

de Bruijn criterion

A proof assistant satisfies the de Bruijn criterion if it generates proof-objects (of some
form) that can be checked by an ’easy’ algorithm.

Proof-objects may be large but they are self-evident. This means that a small program can verify
them. The program just follows whether locally the correct steps are being made.

1.4.5 Type-theoretic approach to interactive theorem proving

provability of formula A ⇐⇒ inhabitation of type A

proof checking ⇐⇒ type checking

interactive theorem proving ⇐⇒ interactive construction of a term of a given type

So, decidability of type checking is at the core of the type-theoretic approach to theorem proving.
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The reliability of machine checked proofs 

Proof-objects may be large but they are self-evident. This means that a small 
program can verify them. The program just follows whether locally the correct 
steps are being made.

• Why would one believe a system that says it has verified a proof ? 

• de Bruijn criterion

A proof assistant satisfies the de Bruijn criterion if it generates proof-objects 
(of some form) that can be checked by an ’easy’ algorithm.

The proof checker should be a very small program that can be verified by 
hand, giving the highest possible reliability to the proof checker.

9

Type-theoretic approach to interactive theorem proving

So, decidability of type checking is at the core of the type-theoretic approach to 
theorem proving.

1.4. PROOF CHECKING 3

1.4.3 Type-theoretic notions for proof-checking

In the practice of an interactive proof assistant based on type theory, the user types in tactics,
guiding the proof development system to construct a proof-term. At the end, this term is type
checked and the type is compared with the original goal.

In connection to proof checking there are some decidability problems:

Type Checking Problem (TCP) Γ !T M : A ?

Type Synthesis Problem (TSP) Γ !T M : ?

Type Inhabitation Problem (TIP) Γ !T ? : A

TIP is usually undecidable for type theories of interest.
TCP and TSP are decidable for a large class of interesting type theories.

1.4.4 The reliability of machine checked proofs

Why would one believe a system that says it has verified a proof ?

The proof checker should be a very small program that can be verified by hand, giving the
highest possible reliability to the proof checker.

de Bruijn criterion

A proof assistant satisfies the de Bruijn criterion if it generates proof-objects (of some
form) that can be checked by an ’easy’ algorithm.

Proof-objects may be large but they are self-evident. This means that a small program can verify
them. The program just follows whether locally the correct steps are being made.

1.4.5 Type-theoretic approach to interactive theorem proving

provability of formula A ⇐⇒ inhabitation of type A

proof checking ⇐⇒ type checking

interactive theorem proving ⇐⇒ interactive construction of a term of a given type

provability of formula A ⇐⇒ inhabitation of type A

proof checking ⇐⇒ type checking

interactive theorem proving ⇐⇒ interactive construction of a term

of a given type

So, decidability of type checking is at the core of the type-theoretic approach to theorem proving.
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Examples of proof assistants based on type theory

- Coq , based on the Calculus of Inductive Constructions 

- Lego , based on the Extended Calculus of Constructions 

- Alf and Agda , based on Martin-Löf ’s type theory 

- Nuprl , based on extensional Martin-Löf ’s type theory

The first systems of proof checking (type checking) based on the propositions-as-types 

principle were the systems of the AUTOMATH project.

Modern proof assistants aggregate to the proof checker a proof-development system 
for helping the user to develop the proofs interactively.

We can mention as examples of proof assistants, the systems: 
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Encoding of logic in type theory

- HOL, based on the Church’s simple type theory. This is a classical higher-
order logic.

- Isabelle, based on intuitionistic simple type theory (used as the meta logic). 
Various logics (FOL, HOL, sequent calculi,...) are described.

Shallow encoding  (Logical Frameworks)

Direct encoding        
• Each logical construction have a counterpart in the type theory.

• Theorem proving consists of the (interactive) construction of a proof-term, 
which can be easily checked independently.

• Examples: Coq, Lego, Agda.

• The type theory is used as a logical framework, a meta system for encoding 
a specific logic one wants to work with.

• The enconding of a logic L is done by choosing an appropriate context !L, in 
which the language of L and the proof rules as declared.

• Usually, the proof-assistants based on this kind of enconding do not produce 
standard proof-objects, just proof-scripts.

• Examples:
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Type Systems and Logics
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Intuitionistic (constructive) logic

• A proof of A ⊃ B is a method that transforms a proof of A into a proof of B.

• A proof of A ∧ B is a pair (p, q) such that p is a proof of A and q is a proof of B.

• A proof of A ∨ B is a pair (b, p) where b is either 0 or 1 and, if b=0 then p is a 
proof of A; if b=1 then p is a proof of B.

• There is no proof of ⊥ , the false proposition.

• Negation ¬A is defined as A ⊃⊥.

• A proof of ∀x ∈ X. P x is a method p that transforms every element a ∈ X into a 
proof of Pa. 

• A proof of ∃x ∈ X. P x is a pair (a, p) such that a ∈ X and p is a proof of Pa.
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Propositions as types

A proposition A is interpreted as the collection of its proofs, represented by [A].

So, according to the intuitionistic interpretation of the logical connectives one has 

where

Chapter 2

Type Systems and Logics

2.1 Intuitionistic (constructive) logic

• A proof of A ⊃ B is a method that transforms a proof of A into a proof of B.

• A proof of A ∧B is a pair (p, q) such that p is a proof of A and q is a proof of B.

• A proof of A ∨B is a pair (b, p) where b is either 0 or 1 and, if b = 0 then p is a proof of A;
if b = 1 then p is a proof of B.

• There is no proof of ⊥, the false proposition.

• Negation ¬A is defined as A ⊃⊥.

• A proof of ∀x ∈ X. Px is a method p that transforms every element a ∈ X and p into a
proof of Pa.

• A proof of ∃x ∈ X. Px is a pair (a, p) such that a ∈ X and p is a proof of pa.

2.2 Propositions as types

A proposition A is interpreted as the collection of its proofs (represented by [A]). So, according
to the intuitionistic interpretation of the logical connectives one has

[A ⊃ B] = [A] → [B]
[A ∧B] = [A]× [B]
[A ∨B] = [A]

⊎
[B]

[⊥] = ∅
[∀x ∈ X. Px] = Π x :X. [Px]
[∃x ∈ X. Px] = Σ x :X. [Px]

where
P → Q = {f | ∀p :P. f(p) : Q}
P ×Q = {(p, q) | p :P and q :Q}
P

⊎
Q = {(0, p) | p :P}

⊎
{(1, q) | q :Q}

Π x :A.Bx =
{
f : (A→

⊎
x:A Bx) | ∀a :A. (fa : Ba)

}

Σ x :A.Bx = {(a, p) | a :A and p : (Ba)}
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Example

• a term X of type Set is a type that represents a domain of the logic;

• a term A : Prop is a type that represents a proposition of the logic;

• a predicate on X is represented by a term P : X ! Prop

• a binary relation over X is represented by a term  R : X ! X ! Prop.

If   ∀x, y ∈ X.  R  x   y ⊃ ¬ R y x   then    ∀x ∈ X.  ¬ R x x .

How can this be formalized ?

Let X be a set and R be a binary relation on X. Now, consider the following lemma: 

t : X satisfies the predicate P  iff  the type (P t) is inhabited 
(i.e., there is a proof-term of type (P t) )

We have two universes Set and Prop

16



Example (cont.)

Let us define

The collection of binary relations over X is represented as X ! X ! Prop.

So, to represent the notion of (polymorphic) binary relation one has to abstract 
over the domains.

Chapter 2

Type Systems and Logics

2.1 Example

Let X be a set and R be a binary relation on X.

If ∀x, y ∈ X.Rxy ⊃ ¬Rxy then ∀x ∈ X.¬Rxx.

How can this be formalized ?

We have two universes Set and Prop

• a term X of type Set is a type that represents a domain of the logic;

• a term A : Prop is a type that represents a proposition of the logic;

• a predicate on X is represented by a term P : X→Prop

t : X satisfies the predicate P iff the type Pt is inhabited (i.e., there is a proof-term
of type Pt

So, the collection of predicates over X is represented as X→Prop.

• The collection of binary relations over X is represented as X→X→Prop.

So, to represent the notion of (polymorphic) binary relation one has to abstract over the do-
mains.

Let us define Rel := λX : Set.X→X→Prop

Definitions are formal constructions in type theory with a computational rule associated, called
δ-reduction by which definitions are unfolded.

D → δ M if D := M

Anti-symmetry and irreflexivity can also be define as follows

AntiSym := λX : Set.λR : (RelX).∀x, y : X.Rxy ⊃ (Rxy ⊃⊥)
Irrefl := λX : Set.λR : (RelX).∀x : X.Rxx ⊃⊥
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5Note that ¬A is defined as A ⊃⊥ where ⊥ is the empty type (the false proposition).
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Example (cont.)

Here we have a dependent type, i.e., a type of functions f where the range-set 
depends on the input value.

By ! and "-reductions we find that for X : Set and Q : X ! X ! Prop 6 CHAPTER 2. TYPE SYSTEMS AND LOGICS

Note that ¬A is defined as A ⊃⊥ where ⊥ is the empty type (the false proposition).
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⋃

x:a

Bx | ∀x : A.fx : Bx}

(abstraction)
Γ, x :A % b : B

Γ % λx :A.b : (Πx :A.B)

(application)
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2.1.1 Simply-typed λ-calculus is not enough

Simply-typed λ-calculus has not enogh expressive power to encode the kind of logic used in the
previous example.

There are several type systems embedding some of the features described in our example. For
example:

• System F – features polymorphism via the universal abstraction of types
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Intuitively
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2.3 Example

Let X be a set and R be a binary relation on X.

If ∀x, y ∈ X.Rxy ⊃ ¬Ryx then ∀x ∈ X.¬Rxx.

How can this be formalized ?

We have two universes Set and Prop

• a term X of type Set is a type that represents a domain of the logic;

• a term A : Prop is a type that represents a proposition of the logic;

• a predicate on X is represented by a term P : X→Prop

t : X satisfies the predicate P iff the type Pt is inhabited (i.e., there is a proof-term
of type Pt

So, the collection of predicates over X is represented as X→Prop.

• The collection of binary relations over X is represented as X→X→Prop.

So, to represent the notion of (polymorphic) binary relation one has to abstract over the do-
mains.

Let us define Rel := λX :Set. X→X→Prop

Definitions are formal constructions in type theory with a computational rule associated, called
δ-reduction by which definitions are unfolded.

D → δ M if D := M

Anti-symmetry and irreflexivity can also be define as follows

AntiSym := λX :Set.λR : (RelX).∀x, y :X. Rxy ⊃ (Ryx ⊃⊥)
Irrefl := λX :Set.λR : (RelX).∀x :X. Rxx ⊃⊥

Note that ¬A is defined as A ⊃⊥ where ⊥ is the empty type (the false proposition).

By δ and β-reductions we find that for X : Set and Q : X→X→Prop

(Rel X) =δβ X→X→Prop

(AntiSym XQ) =δβ ∀x, y :X. Qxy ⊃ (Qyx ⊃⊥)
(Irrefl XQ) =δβ ∀x :X. Qxx ⊃⊥

Here we have a dependent type, i.e., a type of functions f where the range-set depends on the
input value.

The type of this kind of functions is f : Πx :A.B, the product of a family {Bx}x:A of types.
Intuitively

Πx :A.Bx =
{

f : (A→
⋃

x:A

Bx) | ∀a :A. (fa : Ba)
}
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the following term is of this type

To prove that anti-symmetry implies irreflexivity for binary relations we have to 
find a proof-term of type
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