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(Classical) propositional logic

Vprop infinite set of propositional variables

® p,q,... are formulae (Vprop);

@ | is a formula;

e if ¢ and ¢ are formulae, then (¢ — ¥), (o A ¥), (¢ V ¥) and (—yp)

are formulae.
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Semantics of (classical) propositional logic

Truth values: Tand L
Interpretation v : Vp,op — {T, L}

The interpretation can be inductively extended to the set of formulae:
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Satisfiability and Validity

A formula ¢ is

satisfiable iff exists an interpretation v such that v(p) =T, =, ¢ (and

v satisfies )

Ex: =p V g
valid iff for all interpretations v, v(p) =T, ¢
Ex: =p V —p
contradiction iff for all interpretations v, v(p) = L(}~= ¢).
Ex: =p A —p.
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Entailment

[ a set of formulae
An interpretation v satisfies [ iff v satisfies every formula ¢ € T.

[ is satisfiable if exists an interpretation that satisfies [

[ entails ¢, I = ¢, iff all interpretations that satisfy I, satisfy also ¢.

0 = ¢ is equivalent to = ¢
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Deduction Systems

Sets of rules and axioms from which it is possible to obtain a formula ¢

(considering or not an initial set of assumptions I'): :

v

or
[+

If -, © is a theorem

The (proof) deduction systems must be sound and complete:

Fpiff =@

or :
[FEeiff T =@
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Rules
A inference rule is of the form:

P1y---2Pn

(0

©j are assumptions, 1 is the conclusion
A rule without assumptions is called axiom

Deduction (derivation or proof) of ¢ is a tree:

@ each node is labelled with a formula

Session 2

@ the formula of a parent node is a conclusion of a rule, which

assumptions are formulae of the children nodes
e formulae of the leaves are called initial

@ the root formula is the final formula ¢
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Hilbert-style system

Considering only a complete set of connectives {—, —}:

Axioms
o v — (Y — o)
°o (p—= (¥ —10)) = ((p =) = (p—10))
o (7Y — —p) = (¢ — ) = ¥)

Inference rules
@ Modus ponens: from ¢ and ¢ — 1, infer ¢

Lemma (deduction lemma)

IFX U {)} Fpy 0 then T by 1h — 6.

The deduction system H is sound and complete for classical propositional
logic.
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Natural Deduction

@ System invented by G. Gentzen (1935) which rules try to reflect the
usual mathematical proofs.

It has no axioms. Only inference rules.

@ For each connective, exist two types of rules:

e introduction rules
e elimination rules.

@ The ini-
tial formulae can be assumptions introduced for the aplication of a rule:

A sub-deduction starts and when ends, the
correspondent assumptions are cancelled
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Motivation for the Natural Deduction

XVYANZD)—=((XVY) AKXV 2Z)

Proof:
X Y N Z
X VY Y
XV Z Z
(X vV Y)AN(XV 2Z) X VY
XV Z
(X VY)A(XV Z)
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[Y A Z]
Y
[X] Z
X VY X VY
XV Z XV Z
(X Vv 2Z) (X VY)AN XV 2Z)

%

[(X VvV (Y A 2))] (X VY)A
(X VY)AN(XV 2Z)

XVYNZD))—=((XVY)AXVZ)
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Natural Deduction NKj

Introduction Elimination
¢ P NP o NP
A YR Al ” N Eq D N Eo
[l [wV
y © (0 oV g Y .
RV, VIl oV D \YA D) ~ V E,i,j
[]
_ (0 L 12 o e
o—p ! P -
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Examples
Fo— (Y — )
2
]
— 1
Y — ,
o — (Y — )

Fle—=@W—=7)—= (¢ —=¢)—=(¢—7)

o=@ - [ =y (e
Y — (0
T
o —
(o =) = (p—1)
(=W —=7) = (e—=9)—=(p—7)

2
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Natural Deduction, NKj (cont.)

Introdution Elimination
]’
L e
Rl =T —
© ——p
| —— =l ——E
——p ¢
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Example
- (—wp — —|gp) — ((—np — gp) — w)
1 2 3
[~ — —¢] [—¢] [~ — o]
P ¥
1
2
_|_|w
w 3
(=Y — ) =9
1
(=Y = =) = (¢ — ») = V)
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Modus Tollens

p vV P

=P Y -
-
1
R K (7]
Y —1)
.
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Excluded middle
— T TE
® V 2@
1
; [—¢]
Fle VoIl e Ve ;
1 [-(p V —9)]
P =p
s 3
(¢ V )
oV
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Soundness and Completeness

The system NKjy is sound and complete for classic propositional logic:
Ko iffl=@. And T FNKo o iff T E

Theorem (Decidability)

There is an algorithm which, given a finite set ' of formulas and a formula
@, decides whether [ =NKo .
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(Classical) First-Order Logic

@ Var ={x,y,...,x0, Y0, infinite set of variables
logic connectives A, V, e —;

quantifiers V (universal) and 3 (existential);
parenthesis ( and );

a set F of functional symbols f, g, h, .. .;

a set P of predicate symbols P, Q, R, ...;

an arity function m: F UR — N
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(Classical) First-Order Logic

Terms

The set 7 of Terms t, s, ...are inductively defined by:

@ a variable is a term

o for every f € F of arity m, for all terms t1, ..., tm, f(t1,...,tm) is
also a term )
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(Classical) First-Order Logic

Formulas

@ if t, ..., ty, are terms and R € P of arity m then R(ty,...,t,) is an
atomic formula.

@ an atomic formula is a formula
@ if ¢ is a formula, =y is a formula;

e if ¢ and ¢ are formulas, then (¢ A ¥), (¢ V %) and (¢ — ) are
formulas

@ if ¢ is a formula and x a variable, then Vx ¢ and dx ¢ are formulas.

v
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First-Order Semantics

Interpretation

An interpretation A is a pair (A, ) where A is a non-empty set (domain)
and .4 a function such that:

@ associates to each constant ¢ an element ¢4 € A

@ associates to each functional symbol f € F of arity m(f) =n, n > 0
a function A from A" to A

@ associates to each predicate symbol R € R of arity m(R) =n, n >0
a relation RA C AP

An assignment is a function from s : Var — A. It can be naturally
extended to set of terms.
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First-Order Semantics

Satisfability

Given an interpretation A = (A, ) and an assignment s, the satisfability
relation A =5 ¢ is inductively defined by:

QA ‘:5 t; = t iff S(tl) = S(tz)

Q@ Al R(t1,...,t,) iff (s(t1),...,s(ty)) € RA
Q@ Al ¢ iff AEs ¢

o A‘:s¢ A ¢iff“4‘:s¢e“4):s'¢

QO Ao VYiff A=spou Ay

O A, d— ¥ iff Aps dor Als ¥

Q@ AREsVx¢iffforall ac A A=,/ ¢ where:

s[a/x](y) = { Z(y) o 1 5

se y =x

Q@ Al 3Ix ¢ iff exists an a € A such that A =g,/4 ¢

Nelma Moreira (DCC-FC) PSVC-08- Lec. 2 Session 2 24 / 59



Example

Let Ly be a first-order language with Fo = {0,1}, 7> = {+, x} e
Ra = {<}
Let N' = (N, V) be an interpretation with N given by:
o 0V =0,1V =1
° +N(n,m):n+m, xN(n,m):nx m
o <N={(n,m)eN?|n<m}
For every assignment s : Var — N:

N s ¥x < (x,+(x,1))

Nelma Moreira (DCC-FC) PSVC-08- Lec. 2 Session 2 25 /59

Satisfability, validity and entailment

A formula ¢ is

satisfiable iff exists an interpretation A and an assignment s, such that
A Es ¢ (Ais a model of ¢)

valid iff for all interpretation A and assignment s, A =5 ¢ (E ¢)

A model of a set of formulas I is a model of all formulas of I', A = T.

@ entails ', [ = ¢, if every model of T is also a model of .
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Natural Deduction, NK: quantifiers rules

Introduction Elimination
[v]
QD[V/X] Vx
Y Vo vl (a) W/i] VE (b)

v plv/x]]

3| et g (b) ki ” v JE (¢)

(a) where v is a new variable
(b) where x is free for t in ¢

(c) where v is a new variable and not in v

Nelma Moreira (DCC-FC) PSVC-08- Lec. 2 Session 2

Example

—Vx—p — dxp

[olu/x]T*

[ﬂﬂxgo]z Ixp
L
—plu/x]
[-Vx—¢]’ Vx—p
L
——dxp ?
Ix ;
—Vx—p — dxp
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Soundness and Completeness

The system NK is sound and complete for classical first-order logic:
FNK o iff = . And T FNK o iff T = ¢

Theorem (Undecidability)

The set of valid formulas of a first-order logic is recursivelly enumerable but
not recursive, i.e., it is undecidable to determine if a formula is a theorem.

Nelma Moreira (DCC-FC) PSVC-08- Lec. 2 Session 2

Sequents

29 / 59

In each step of a tree derivation it is not easy to know which are the open

assumptions:

If ©» depends on open assumptions 1, ..., V!

w1 N .o N P — P

Sequents

Ply--yPn = ¢17---7¢m

Meaning: o1 A ... AN op— U1 V ... V ¥
Empty antecedent: 1 V ... V ¥

Empty consequent: =(p1 A ... A ©p)

Both empty: L

Nelma Moreira (DCC-FC) PSVC-08- Lec. 2 Session 2
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NKy in sequent form

[ (context) is a set of formulas

Fo= (pr
Introdution Elimination

=TIV T2env g T2edd,g
Vv r;ziwv'l r;zngb ey Pi?v T e
- | e el
_ rﬁwﬁi—d M= ré—'ga_‘E

= - M=

o rr;»::fso - rrz;:;@ﬁ{
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Deductions with sequents

Nodes of the derivation trees are sequents and - = ¢ means [ - ¢
F= o= (=)

90¢:>90( 1)
= by

= p—(v—p)

(=1

Weakening
If [ = ¢ is derivable, then for all " D T, [’ = ¢ is derivable

Nelma Moreira (DCC-FC) PSVC-08- Lec. 2 Session 2 32 /59



NK in sequent form: quantifier rules

r
= elv/x] ()

[ = Vxop

[ = Vxop

e (b)

I = olt/x]

= o[t/x]

[ = dxo 3 (b)

[ = dxo [Lolv/x] = o
S o 3 (c)

(a) where v is a new variable, not in I’
(b) where x is free for t in ¢

(c) where v is a new variable, not in " and not in %
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Gentzen Sequent calculi

Deductive systems introduced by Gentzen (1935) in order to obtain
deduction normal forms.

Allows decidability algorithms without using completeness (semantics).
Modus ponens:

© © — P
(0

given 1), o can be any formula...

Although normalisation can be obtained for NKj, these systems are more
structured and reveal the structure of the deductions:are the base of other
analytic deduction systems as resolution and tableaux.

Two types of introduction rules: in the antecedent (L) and in the
consequent (R).
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Sequent calculus LK

Mo = &0
Fr=A0Ap Moo= A
= AN Cut
Moy = A M= A M= Ay
roro=a Mt r=aong R
e = A Ny = A = ApyY
Froveo=a VL F>Aa,vey YR
r=eA TLY=A N = A0
To—¢ =4 - T = Ap—0 R
= Ap L e =A R
F—p = A" r=A-p |
Nelma Moreira (DCC-FC) PSVC-08- Lec. 2 Session 2
F= ((p—q)—p)—p
p = p,q
=>p,(p—>q)(_>R) pP=p 1)
(p—q)—p) = p (R
= ((p—q)—p)—p
F= (p—(p—q))— (p—q)
p= P9 p,g=4g
p= P (pP—a),p = g (—L) (—L)
p—(p—q),p = q (—R)
(p—(p—q) = (p—q) (—R)
= (p—(p—q))—(p—q)
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NKy versus LK

S

NKo (in sequents) || LKy

Axiom Axiom

Introduction(ol) Introduction in the consequent (oR)
Elimination (oE) Introduction in the antecedent (oL)

Subformula property

In a cut-free deduction of [ = A, all sequents are composed of
subformulas of formulas in [, A only

Then is possible to obtain an algorithm that searches a proof from the root
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Cut elimination

= Ao [Mep = A
M = AN

@ cut formula

(Hauptsatz) The deduction system LKy, without cut rule, is sound and
complete.

There is an algorithm that takes a deduction in LKy, and turns it into a
cut-free deduction of the same sequent.

Why this rule?:

allows shorter deductions

isolates the redundancy of the deductions

Is easier to obtain certain theoretical results

there are systems that recover part of its functionality...preserving a
normal form ( Tableaux KE)
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|dea of the proof

Mo =1 = M) =
r=o—p R o=y Y
Cut
M=~

Transformation:

M= e =Y
= Cut TI¢Yp=1xv

Cut
M=~

@ Transform applications of the cut rule in others with simple cut
formulas

@ Cut rules applications in upper nodes of the derivation tree
@ Requires double induction: in the depth of the cut rule applications
and in the complexity of the cut formula.
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LK calculus: quantifier rules

[ = ¢[v/x],A

[ = Vxp A R (2)
ETETSP
EF TV
[olv/x] = A L (a)

[ Ixeo = A

(a) where v is a new variable, not in ', A

(b) where x is free for t in ¢
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Methods of proof

The semantics of classical logic is based on the notion of truth. Each
proposition is absolutely true or false.

Principle of the excluded middle:p vV —p.

But that gives not much information...

There are two irrational numbers b and c, such that b¢ is
rational

Proof by case analysis:

if \@ﬁ is a rational number then we can take b = ¢ = v/2: otherwise
take b = \@\/5 and ¢ = /2.

But which are these values?... The problem is that the proof is not
constructive
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Intuitionism

@ ¢ is true if we can prove it.
@ ¢ is false if we can show that if we have a proof of  we get a
contradiction.

Proofs can be interpreted by sets and functions

Informal constructive semantics of connective (BHK-interpretation)

@ A construction of ¢ A 1 consists of a construction of ¢ and a
construction of ¥ ({(a,b) | a € v, b € ¥})

@ A construction of ¢ V 1 consists of a construction of ¢ or a
construction of ¥ ({(0,a) | a € ¢} U{(1,b) | b € ¢})

@ A construction of ¢ — 1 is a method (function) transforming every
construction of ¢ into a construction of ¢ ({f | Va € ¢, f(a) € ¥})

@ A construction of = is a method transforming every construction of ¢
into a no existent object

@ There is no construction of L (()

v
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Intuitionism

p— ——p(or p— ((p— L) — 1)) is intuitionistically valid:

Given a proof of p, we can obtain a proof of ((p — L) — L1):
Take a proof of (p — ). It is a method to transform proofs of p
into proofs of L. Since we have a proof of p, we can obtain a
proof of L.

——p — p is not intuicionistically valid: the fact of not having a proof of
—p, does not allow to conclude that we have a proof of p...

In the same way, p V —p is not valid!l... in general, is nor possible to
ensure that we have a proof of p or of —p.

Intuicionistic logic is obtained from classic logic by eliminating the rule
——E in the NKp system...
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Structural rules for sequents

Allow the explicit manipulation of assumptions in a proof.

In a sequent T = A, I and A are lists of formulas.

Weakening
r=A r=A
ol =AM r=a,,VR
Contraction
o0, = A [ = App
ol = A CL F= A, CR
Permutation
Noy,l = A = A,p,90,A
Aol =A% T=ap,eA %R
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Intuitionistic Natural Deduction NJ

In intuitionistic logic, in a sequent [ = A, A has at most one formula.

o= phx

= ¢ w e = o - Ley,A= SO/X

Moo= ¢ Moo= ¢ M, A = ¢
fr=¢ A=29 FT=eAY A
P r—o /B r=¢ "B
= ¢ vl =4 vl (= e VY ANy =~ A,¢:>7\/E
= ¢ VY 1 f=pVy ' 72 A = v
NLe=19 r=¢ A=p=vy
M= oo | ras g —EF
r= 1
= LE
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Intuitionistic Natural Deduction NJ

Negation can be defined by ~p = ¢ — |
Fng = p— 0P

p = p p— 1l = p—_L
p,p— L = 1
p = (pP—1)—1L
= p—=((p—1)—1)

ZNgy = —mp — P
de Morgan laws are not valid any more...

= p V —p is not derivable

The last rule should be VI. Then = por = —p are derivable. = pis
not derivable. For = —p, i.e., = p — L, the last rule must be — I, but
no rule has a conclusion p = L.
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Intuitionistic Sequent Calculus, LJ

Ax
=

r=¢"  Lee=¢ - Topb=¢ =1
e = ¢ e = ¢ M, = ¢f = ¢

Fr=¢ Ap=¢
MNA = ¢ Cut

Mo = NLe =49y

Frene =9 "M Torg =9 b rA=senrg "R
r790:>¢ A#P/:>”’b r:>'l,[1 r:>Q0
FrAove o Vi reovy YR T vy VR
F:>go A,Q/):>§0/_)L ra<P:>1/’ R
A=) = ¢f = p—1
r=¢ M= J‘ﬁR
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Intuitionistic Sequent Calculus, LJ
P
—p = P (_‘R)

Proposition

[ g @ ifF T pyy

Nelma Moreira (DCC-FC) PSVC-08- Lec. 2 Session 2 48 / 59



|dea of the proof

(=)

In the mapping N from proofs of LJy to proofs in NJy, a natural

deduction NJy version of the cut rule is used:

I A !
= @ y P = SOSubS
LA = ¢

Which is a derivable extension:

D= ¢
'Z¢ Eseme
VA = ¢
Nelma Moreira (DCC-FC) PSVC-08- Lec. 2
|dea of the proof
(/N L1)
_ T
e = ¢
e A= ¢
is mapped to:
<p/\1/1:>cp/\¢(AX)/\E N(ﬂ-)
PAY = Ly = ¢
Subs
Cp A =
(— L)
s 7’
Fr=¢ A=y
MAp—) = ¢
Is mapped to :
N(r)
ooy = ooy (A) 7= ® _E N(=")
Co—yY =9 Ay = ¢
MAp— = ¢
etc...
Nelma Moreira (DCC-FC) PSVC-08- Lec. 2
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|dea of the proof

@ Cut-free deductions are transformed with the Subs rule

@ For the right rules the cut rule is used...

...So this transformation do not preserve normal forms...

...But natural deductions can be normalized by elimination of consecutive
applications of an introduction rule and an elimination rule for the same
connective (this is also called a cut).

Applying these process the effect of the Subs rule can be eliminated...
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Normalization in NJy (without sequents...)

[p] V) [v]®)

p— (1) p—s1p(2) : e _ [o]()
(0=2) A (0—=0) Simplifies to: Py

p—p

[e]® [o—el™

p—) 7,b—>gp—><p(2) [@](3)

(90—>90)—>¢—>90—>90 . P . gp—)gp(3)
e —: Simplifies to: 0@
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Normalization rules for (— le A 1)

[4]")
n Y
)2 © Y
R 2NN n
@ ©
Y
Y )3
:> -
(PN ©
@

In the next session, compare with normalization in the A-calculus...

Nelma Moreira (DCC-FC) PSVC-08- Lec. 2 Session 2 53 /59

Semantics of intuitionistic logic

The deduction systems NJy and LJy are sound for classic truth valued
semantics but they are not complete...

[Gbdel] There is no finite truth table semantics for
intuitionistic logic that is sound and complete

Boolean algebras can be modified for intuitionistic logic (Heyting
algebras), by introducing the notion of partiality.

The same can be done with notion of possible worlds.
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Kripke semantics

A Kripke frame F
is a structure (X, <, =) where:

e (X, <) is a partial order

@ |=is a binary relation in X X Vpy,, such that for all x,y € X, if
x = pand x <y then y = p.

Semantics

| \

If x = p, pis forced at x.

= extends to the set of formulae:

xEp AN Yiff x =@ and x =9

xEe Vyiff x Eporx =1
xEp—yiff Vy, x <y, y Eptheny =
XE-piffVy, x<y y o

x L, Vx

v
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Kripke semantics

xET = ¢iff (Ve €T, x =) then x = .
A formula ¢ is forced in F if every x € X forces ¢

@ is intuitionistically valid if it is forced in every frame F

Theorem (Monotonicity)
If x =@ and x <y theny = ¢

Proposition

xEe— Liffx E -y

Proposition

x |E - iffVy, x <y, Ju, y < u such that u = ¢
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Examples

@ © — ( is intuitionistically valid
xEe—eiffVy, x <y, yEptheny o

@ ¢ — —— is intuitionistically valid
xEp—piff Vy, x <y, y Epthen y = —==p. And y = g if
Vu, y < u,dv, u<vand v = p. The result follows by transitivity of
< and monotonicity.

@ ——p — ( is not intuitionistically valid
xE-mp — @ iff Vy, x <y, y E--pthen y = . le, Vu, y <u,
dv, u < v, v = ¢ implies that y = ¢. For instance, take
({0,00}, (0 < 00), =) with 00 = p.

@ p V —pis not intuitionistically valid (use the same frame as above).
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Kripke semantics

Theorem (Soundness)

IfI' = ¢ is derivable in NJy then I =- ¢ is intuitionistically valid.

Theorem (Completeness)

If ' = o is intuitionistically valid, then Fny [ = .
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