Simply typed λ-calculus

Sabine Broda
Departamento de Ciência de Computadores
Faculdade de Ciências da Universidade do Porto

MAP-i, Porto 2008

Simple Types

Simple Types

- infinite set of type-variables a, b, c, \ldots;

Simple Types

- infinite set of type-variables a, b, c, \ldots;
- each type-variable a is a type (atomic);

Simple Types

- infinite set of type-variables a, b, c, \ldots;
- each type-variable a is a type (atomic);
- if α and β are type, then $(\alpha \rightarrow \beta)$ is a type.

Simple Types

- infinite set of type-variables a, b, c, \ldots;
- each type-variable a is a type (atomic);
- if α and β are type, then $(\alpha \rightarrow \beta)$ is a type.

Convention: \rightarrow associates to the right

Simple Types

- infinite set of type-variables a, b, c, \ldots;
- each type-variable a is a type (atomic);
- if α and β are type, then $(\alpha \rightarrow \beta)$ is a type.

Convention: \rightarrow associates to the right

$$
\begin{gathered}
a \rightarrow b \rightarrow c \rightarrow d \\
\text { stands for } \\
(a \rightarrow(b \rightarrow(c \rightarrow d)))
\end{gathered}
$$

Simple Types

- infinite set of type-variables a, b, c, \ldots;
- each type-variable a is a type (atomic);
- if α and β are type, then $(\alpha \rightarrow \beta)$ is a type.

Convention: \rightarrow associates to the right

$$
\begin{gathered}
a \rightarrow b \rightarrow c \rightarrow d \\
\text { stands for } \\
(a \rightarrow(b \rightarrow(c \rightarrow d)))
\end{gathered}
$$

Examples: $a, a \rightarrow a,((a \rightarrow b) \rightarrow a) \rightarrow a$

Type-assignment

Type-assignment

- an expression $M: \alpha$ is a type-assignment (M is called its subject);

Type-assignment

- an expression $M: \alpha$ is a type-assignment (M is called its subject);
- a type-context is a finite, perhaps empty, set of type-assignments

$$
\Gamma=\left\{x_{1}: \alpha_{1}, \ldots, x_{n}: \alpha_{n}\right\}
$$

such that x_{1}, \ldots, x_{n} are distinct term-variables.

The system $\lambda \rightarrow$-Curry

The system $\lambda \rightarrow$-Curry

We say that the type-assignment $M: \tau$ is derivable from a context Γ, and write

$$
\ulcorner\vdash M: \tau,
$$

iff the formula $\Gamma \vdash M: \tau$ can be produced by the following rules.

The system $\lambda \rightarrow$-Curry

We say that the type-assignment $M: \tau$ is derivable from a context Γ, and write

$$
\ulcorner\vdash M: \tau,
$$

iff the formula $\Gamma \vdash M: \tau$ can be produced by the following rules.
(axiom) $x: \alpha \vdash x: \alpha$

The system $\lambda \rightarrow$-Curry

We say that the type-assignment $M: \tau$ is derivable from a context Γ, and write

$$
Г \vdash M: \tau
$$

iff the formula $\Gamma \vdash M: \tau$ can be produced by the following rules.
(axiom) $x: \alpha \vdash x: \alpha$
$(\mathrm{app}) \frac{\Gamma_{1} \vdash M: \alpha \rightarrow \beta \quad \Gamma_{2} \vdash N: \alpha}{\Gamma_{1} \cup \Gamma_{2} \vdash M N: \beta}$
$\left(\Gamma_{1} \cup \Gamma_{2}\right.$ consistent $)$

The system $\lambda \rightarrow$-Curry

We say that the type-assignment $M: \tau$ is derivable from a context Γ, and write

$$
\Gamma \vdash M: \tau
$$

iff the formula $\Gamma \vdash M: \tau$ can be produced by the following rules.
(axiom) $x: \alpha \vdash x: \alpha$
$(\mathrm{app}) \frac{\Gamma_{1} \vdash M: \alpha \rightarrow \beta \quad \Gamma_{2} \vdash N: \alpha}{\Gamma_{1} \cup \Gamma_{2} \vdash M N: \beta}$
$\left(\Gamma_{1} \cup \Gamma_{2}\right.$ consistent $)$
(abs) $\frac{\Gamma}{\Gamma \backslash\{x: \alpha\}} \stackrel{\vdash}{ } \vdash \lambda: \beta \cdot M: \alpha \rightarrow \beta$

The system $\lambda \rightarrow$-Curry

We say that the type-assignment $M: \tau$ is derivable from a context Γ, and write

$$
\Gamma \vdash M: \tau
$$

iff the formula $\Gamma \vdash M: \tau$ can be produced by the following rules.

$$
\begin{aligned}
& (\text { axiom }) \frac{x: \alpha \vdash x: \alpha}{} \\
& (\operatorname{app}) \frac{\Gamma_{1} \vdash M: \alpha \rightarrow \beta}{\Gamma_{1} \cup \Gamma_{2} \vdash M N: \beta} \quad\left(\Gamma_{1} \cup \Gamma_{2} \text { consistent }\right) \\
& (\text { abs }) \frac{\Gamma: \alpha}{\Gamma \backslash\{x: \alpha\} \vdash \lambda: \beta}
\end{aligned}
$$

A deduction Δ of $\Gamma \vdash M: \tau$ is a tree of formulae, those at the tops of branches being axioms and those below being deduced from those immediately above them by a rule ((app) or (abs)) and with bottom formula $\Gamma \vdash M: \tau$.

Related problems:

Related problems:

- Type-checking: Given Γ, M and τ, is it true that $\Gamma \vdash M: \tau$?

Related problems:

- Type-checking: Given Γ, M and τ, is it true that $\Gamma \vdash M: \tau$?
- Typability: Given M, are there Γ and τ such that $\Gamma \vdash M: \tau$? (M is said to be typable)

Related problems:

- Type-checking: Given Γ, M and τ, is it true that $\Gamma \vdash M: \tau$?
- Typability: Given M, are there Γ and τ such that $\Gamma \vdash M: \tau$? (M is said to be typable)
- Inhabitation: Given Γ and τ, is there M such that $\Gamma \vdash M: \tau$? (If $\Gamma=\emptyset$, we say that τ is inhabited; also M is called an inhabitant of τ)

Related problems:

- Type-checking: Given Γ, M and τ, is it true that $\Gamma \vdash M: \tau$?
- Typability: Given M, are there Γ and τ such that $\Gamma \vdash M: \tau$? (M is said to be typable)
- Inhabitation: Given Γ and τ, is there M such that $\Gamma \vdash M: \tau$? (If $\Gamma=\emptyset$, we say that τ is inhabited; also M is called an inhabitant of τ)
All these problems are decidable!

Exercises

1. Show that $\vdash \lambda x \cdot x: a \rightarrow a$.
2. Show that $\vdash \lambda x \cdot x:(a \rightarrow b) \rightarrow a \rightarrow b$.
3. Find Γ and α such that $\Gamma \vdash(\lambda x y \cdot x y) z: \alpha$.
4. Find α such that $\vdash \lambda x . x x: \alpha$.
5. Find M such that $\vdash M: a \rightarrow b \rightarrow a$.
6. Find M such that $\vdash M:((a \rightarrow b) \rightarrow a) \rightarrow a$.

Subject-reduction/expansion

Subject-reduction/expansion

Subject-reduction: If $M \rightarrow_{\beta} N$ and $\Gamma \vdash M: \sigma$, then $\Gamma_{N} \vdash M: \sigma$.

Subject-reduction/expansion

Subject-reduction: If $M \rightarrow_{\beta} N$ and $\Gamma \vdash M: \sigma$, then $\Gamma_{N} \vdash M: \sigma$.

Subject-expansion? Take $M=(\lambda x y z \cdot x z(y z))(\lambda x y \cdot x), N=\lambda x y \cdot y$ and $\sigma=a \rightarrow b \rightarrow b$. Show that $M \rightarrow_{\beta} N, \vdash N: \sigma$ and $\nvdash M: \sigma$.

Subject-reduction/expansion

Subject-reduction: If $M \rightarrow_{\beta} N$ and $\Gamma \vdash M: \sigma$, then $\Gamma_{N} \vdash M: \sigma$.

Subject-expansion? Take $M=(\lambda x y z \cdot x z(y z))(\lambda x y \cdot x), N=\lambda x y \cdot y$ and $\sigma=a \rightarrow b \rightarrow b$. Show that $M \rightarrow_{\beta} N, \vdash N: \sigma$ and $\vdash M: \sigma$.

Conclusion?

Subject-reduction/expansion

Subject-reduction: If $M \rightarrow_{\beta} N$ and $\Gamma \vdash M: \sigma$, then $\Gamma_{N} \vdash M: \sigma$.

Subject-expansion? Take $M=(\lambda x y z \cdot x z(y z))(\lambda x y \cdot x), N=\lambda x y \cdot y$ and $\sigma=a \rightarrow b \rightarrow b$. Show that $M \rightarrow_{\beta} N, \vdash N: \sigma$ and $\vdash M: \sigma$.

Conclusion?
And for $M=(\lambda x y \cdot y)(\lambda x \cdot x x)$?

Principal pairs/types

Principal pairs/types

Principal pairs: (Γ, σ) is a principal pair for M iff

- Гヶ $M: \sigma$;
- if $\Gamma^{\prime} \vdash M: \sigma^{\prime}$, then there is a substitution S such that $S(\Gamma)=\Gamma^{\prime}$ and $S(\sigma)=\sigma^{\prime}$.

Principal pairs/types

Principal pairs: (Γ, σ) is a principal pair for M iff

- Гヶ $M: \sigma$;
- if $\Gamma^{\prime} \vdash M: \sigma^{\prime}$, then there is a substitution S such that $S(\Gamma)=\Gamma^{\prime}$ and $S(\sigma)=\sigma^{\prime}$.

Principal type theorem: There is an algorithm $p p$, such that for every term $M, p p$ computes a principal pair for M if some exists, and fails otherwise.

Properties

Properties

- Confluence (Church-Rosser);

Properties

- Confluence (Church-Rosser);
- strong normalization;

Properties

- Confluence (Church-Rosser);
- strong normalization;
- existence of unique normal forms;

Properties

- Confluence (Church-Rosser);
- strong normalization;
- existence of unique normal forms;
- subject-reduction;

Properties

- Confluence (Church-Rosser);
- strong normalization;
- existence of unique normal forms;
- subject-reduction;
- principal types;

The system $\lambda \rightarrow$-Church

- term-variables annotated with types: $x^{\alpha}, x^{\beta}, \ldots y^{\alpha}, \ldots$;

The system $\lambda \rightarrow$-Church

- term-variables annotated with types: $x^{\alpha}, x^{\beta}, \ldots y^{\alpha}, \ldots$;
- each annotated variable x^{α} is a λ-term of type α;

The system $\lambda \rightarrow$-Church

- term-variables annotated with types: $x^{\alpha}, x^{\beta}, \ldots y^{\alpha}, \ldots$;
- each annotated variable x^{α} is a λ-term of type α;
- if M and N are λ-terms, respectively of type $\alpha \rightarrow \beta$ and α, then (MN) is a λ-term of type β, (application);

The system $\lambda \rightarrow$-Church

- term-variables annotated with types: $x^{\alpha}, x^{\beta}, \ldots y^{\alpha}, \ldots$;
- each annotated variable x^{α} is a λ-term of type α;
- if M and N are λ-terms, respectively of type $\alpha \rightarrow \beta$ and α, then (MN) is a λ-term of type β, (application);
- if M is a λ-term of type β and x^{α} an annotated variable, then $\left(\lambda x^{\alpha} \cdot M\right)$ is a λ-term of type $\alpha \rightarrow \beta$, (abstraction).

The system $\lambda \rightarrow$-Church

- term-variables annotated with types: $x^{\alpha}, x^{\beta}, \ldots y^{\alpha}, \ldots$;
- each annotated variable x^{α} is a λ-term of type α;
- if M and N are λ-terms, respectively of type $\alpha \rightarrow \beta$ and α, then (MN) is a λ-term of type β, (application);
- if M is a λ-term of type β and x^{α} an annotated variable, then $\left(\lambda x^{\alpha} \cdot M\right)$ is a λ-term of type $\alpha \rightarrow \beta$, (abstraction).

Church vs. Curry Differences and similarities...

