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Simple Types

- infinite set of type-variables a, b, c , . . . ;

• each type-variable a is a type (atomic);

• if α and β are type, then (α→ β) is a type.

Convention: → associates to the right

a→ b → c → d
stands for

(a→ (b → (c → d)))

Examples: a, a→ a, ((a→ b)→ a)→ a
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Type-assignment

• an expression M : α is a type-assignment (M is called its
subject);

• a type-context is a finite, perhaps empty, set of
type-assignments

Γ = {x1 : α1, . . . , xn : αn},

such that x1, . . . , xn are distinct term-variables.
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The system λ→-Curry

We say that the type-assignment M : τ is derivable from a context
Γ, and write

Γ − M : τ,

iff the formula Γ − M : τ can be produced by the following rules.

(axiom)
x : α − x : α

(app)
Γ1 − M : α→ β Γ2 − N : α

Γ1 ∪ Γ2 − MN : β
(Γ1 ∪ Γ2 consistent)

(abs)
Γ − M : β

Γ \ {x : α} − λx .M : α→ β

A deduction ∆ of Γ − M : τ is a tree of formulae, those at the
tops of branches being axioms and those below being deduced
from those immediately above them by a rule ((app) or (abs)) and
with bottom formula Γ − M : τ .
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Related problems:

• Type-checking: Given Γ, M and τ , is it true that Γ − M : τ?

• Typability: Given M, are there Γ and τ such that Γ − M : τ?
(M is said to be typable)

• Inhabitation: Given Γ and τ , is there M such that Γ − M : τ?
(If Γ = ∅, we say that τ is inhabited; also M is called an
inhabitant of τ)

All these problems are decidable!
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Exercises

1. Show that − λx .x : a→ a.

2. Show that − λx .x : (a→ b)→ a→ b.

3. Find Γ and α such that Γ − (λxy .xy)z : α.

4. Find α such that − λx .xx : α.

5. Find M such that − M : a→ b → a.

6. Find M such that − M : ((a→ b)→ a)→ a.



Subject-reduction/expansion

Subject-reduction: If M →β N and Γ − M : σ, then ΓN − M : σ.

Subject-expansion? Take M = (λxyz .xz(yz))(λxy .x), N = λxy .y
and σ = a→ b → b. Show that M →β N, − N : σ and 6− M : σ.

Conclusion?

And for M = (λxy .y)(λx .xx)?
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Principal pairs/types

Principal pairs: (Γ, σ) is a principal pair for M iff
- Γ − M : σ;
- if Γ′ − M : σ′, then there is a substitution S such that S(Γ) = Γ′

and S(σ) = σ′.

Principal type theorem: There is an algorithm pp, such that for
every term M, pp computes a principal pair for M if some exists,
and fails otherwise.
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• Confluence (Church-Rosser);

• strong normalization;

• existence of unique normal forms;

• subject-reduction;

• principal types;
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The system λ→-Church

- term-variables annotated with types: xα, xβ, . . . yα, . . . ;

• each annotated variable xα is a λ-term of type α;

• if M and N are λ-terms, respectively of type α→ β and α,
then (MN) is a λ-term of type β, (application);

• if M is a λ-term of type β and xα an annotated variable, then
(λxα.M) is a λ-term of type α→ β, (abstraction).

Church vs. Curry Differences and similarities...
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