Pure λ -calculus

Sabine Broda Departamento de Ciência de Computadores Faculdade de Ciências da Universidade do Porto

MAP-i, Porto 2008

 conceived (ca. 1930) as part of a general (later shown inconsistent) theory of functions and logic, intended as a foundation for mathematics;

- conceived (ca. 1930) as part of a general (later shown inconsistent) theory of functions and logic, intended as a foundation for mathematics;
- all recursive functions can be represented in the (pure)
 λ-calculus;

- conceived (ca. 1930) as part of a general (later shown inconsistent) theory of functions and logic, intended as a foundation for mathematics;
- all recursive functions can be represented in the (pure) λ -calculus;
- theory modelling functions and their applicative behaviour;

- conceived (ca. 1930) as part of a general (later shown inconsistent) theory of functions and logic, intended as a foundation for mathematics;
- all recursive functions can be represented in the (pure)
 λ-calculus;
- theory modelling functions and their applicative behaviour;
- concept of function seen as a rule, i.e. process of passing an argument to a value (contrary to the notion of seeing a function as a graph);

- conceived (ca. 1930) as part of a general (later shown inconsistent) theory of functions and logic, intended as a foundation for mathematics;
- all recursive functions can be represented in the (pure)
 λ-calculus;
- theory modelling functions and their applicative behaviour;
- concept of function seen as a rule, i.e. process of passing an argument to a value (contrary to the notion of seeing a function as a graph);
- this is important for the study of computability and for theory of computation in general, since it emphasizes the computational aspect associated to the notion of function.

- infinite set of term-variables x, y, z, ...;

- infinite set of term-variables x, y, z, ...;
 - each variable x is a λ -term;

- infinite set of term-variables x, y, z, ...;
 - each variable x is a λ -term;
 - if M and N are λ -terms, then (MN) is a λ -term, (application);

- infinite set of *term-variables* x, y, z, . . . ;
 - each variable x is a λ -term;
 - if M and N are λ -terms, then (MN) is a λ -term, (application);
 - if M is a λ -term and x a variable, then $(\lambda x.M)$ is a λ -term, (abstraction).

- infinite set of term-variables x, y, z, ...;
 - each variable x is a λ -term;
 - if M and N are λ -terms, then (MN) is a λ -term, (application);
 - if M is a λ -term and x a variable, then $(\lambda x.M)$ is a λ -term, (abstraction).

Examples: $(\lambda x.x)$, $(x(\lambda y.(xy)))$,...

• application associates to the left;

MNO stands for ((MN)O)

application associates to the left;

MNO stands for ((MN)O)

• bodies of lambdas extend as far as possible;

 $\lambda x.\lambda y.M$ stands for $\lambda x.(\lambda y.M)$

application associates to the left;

MNO stands for ((MN)O)

bodies of lambdas extend as far as possible;

 $\lambda x.\lambda y.M$ stands for $\lambda x.(\lambda y.M)$

nested lambdas may be collapsed together;

 $\lambda xy.M$ stands for $\lambda x.(\lambda y.M)$

 all occurrences of a variable x that occur in an expression of the form λx.M are bound;

- all occurrences of a variable x that occur in an expression of the form λx.M are bound;
- an occurrence of a variable that is not bound is called free;

- all occurrences of a variable x that occur in an expression of the form λx.M are bound;
- an occurrence of a variable that is not bound is called free;
- FV(M) is the set of variables with free occurrences in M;

- all occurrences of a variable x that occur in an expression of the form λx.M are bound;
- an occurrence of a variable that is not bound is called free;
- FV(M) is the set of variables with free occurrences in M;
- if $FV(M) = \emptyset$ we say that M is closed;

- all occurrences of a variable x that occur in an expression of the form λx.M are bound;
- an occurrence of a variable that is not bound is called free;
- FV(M) is the set of variables with free occurrences in M;
- if $FV(M) = \emptyset$ we say that M is closed;
- we will consider λ -terms equivalent up to bound variable renaming, (α -conversion).

- all occurrences of a variable x that occur in an expression of the form λx.M are bound;
- an occurrence of a variable that is not bound is called free;
- FV(M) is the set of variables with free occurrences in M;
- if $FV(M) = \emptyset$ we say that M is closed;
- we will consider λ -terms equivalent up to bound variable renaming, (α -conversion).

Examples: $\lambda xy.xyz \equiv_{\alpha} \lambda yu.yuz$, but $(\lambda x.x)z \not\equiv_{\alpha} (\lambda x.y)z$

The expression M[N/x] denotes the result of substituting in M each free occurrence of x by N and making any changes of bound variables needed to prevent variables free in N from becoming bound in M[N/x].

The expression M[N/x] denotes the result of substituting in M each free occurrence of x by N and making any changes of bound variables needed to prevent variables free in N from becoming bound in M[N/x].

Example:

$$(\lambda xy.xyz)[(\lambda u.y)/z] \not\equiv \lambda xy.xy(\lambda u.y)$$

The expression M[N/x] denotes the result of substituting in M each free occurrence of x by N and making any changes of bound variables needed to prevent variables free in N from becoming bound in M[N/x].

Example:

$$(\lambda xy.xyz)[(\lambda u.y)/z] \not\equiv \lambda xy.xy(\lambda u.y)$$

but

$$(\lambda xy.xyz)[(\lambda u.y)/z] \equiv \lambda xv.xv(\lambda u.y)$$

• a term of the form $(\lambda x.M)N$ is called a β -redex;

- a term of the form $(\lambda x.M)N$ is called a β -redex;
- its contractum is the term M[N/x];

- a term of the form $(\lambda x.M)N$ is called a β -redex;
- its *contractum* is the term M[N/x];
- we write $M \rightarrow_{1\beta} N$, and say that M reduces in one step of β -reduction to N, iff N can be obtained from M by replacing one β -redex in M by its contractum;

- a term of the form $(\lambda x.M)N$ is called a β -redex;
- its contractum is the term M[N/x];
- we write $M \rightarrow_{1\beta} N$, and say that M reduces in one step of β -reduction to N, iff N can be obtained from M by replacing one β -redex in M by its contractum;
- \rightarrow_{β} is the reflexive and transitive closure of $\rightarrow_{1\beta}$;

- a term of the form $(\lambda x.M)N$ is called a β -redex;
- its *contractum* is the term M[N/x];
- we write $M \rightarrow_{1\beta} N$, and say that M reduces in one step of β -reduction to N, iff N can be obtained from M by replacing one β -redex in M by its contractum;
- \rightarrow_{β} is the reflexive and transitive closure of $\rightarrow_{1\beta}$;
- \equiv_{β} is the reflexive, simetric and transitive closure of $\rightarrow_{1\beta}$.

β -normal forms

β -normal forms

• A term M is said to be in β -normal form (or β -nf) if it contains no β -redex;

- A term M is said to be in β -normal form (or β -nf) if it contains no β -redex;
- we say that M has a β -nf if there is some β -nf N such that $M \to_{\beta} N$.

- A term M is said to be in β -normal form (or β -nf) if it contains no β -redex;
- we say that M has a β -nf if there is some β -nf N such that $M \to_{\beta} N$.

Exercise: Reduce the following terms to their β -normal form.

- $(\lambda x.xx)(\lambda x.xx)$
- $(\lambda xy.x)(\lambda x.x)((\lambda x.xx)(\lambda x.xx))$
- $(\lambda x.xx)(\lambda yz.yz)$.

- A term M is said to be in β -normal form (or β -nf) if it contains no β -redex;
- we say that M has a β -nf if there is some β -nf N such that $M \to_{\beta} N$.

Exercise: Reduce the following terms to their β -normal form.

- $(\lambda x.xx)(\lambda x.xx)$
- $(\lambda xy.x)(\lambda x.x)((\lambda x.xx)(\lambda x.xx))$
- $(\lambda x.xx)(\lambda yz.yz)$.

Conclusions:

• The term $(\lambda x.xx)(\lambda x.xx)$ has no β -nf since $(\lambda x.xx)(\lambda x.xx) \rightarrow_{1\beta} (\lambda x.xx)(\lambda x.xx) \rightarrow_{1\beta} (\lambda x.xx)(\lambda x.xx) \rightarrow_{1\beta} \dots$

- A term M is said to be in β -normal form (or β -nf) if it contains no β -redex;
- we say that M has a β -nf if there is some β -nf N such that $M \to_{\beta} N$.

Exercise: Reduce the following terms to their β -normal form.

- $(\lambda x.xx)(\lambda x.xx)$
- $(\lambda xy.x)(\lambda x.x)((\lambda x.xx)(\lambda x.xx))$
- (λx.xx)(λyz.yz).

Conclusions:

- The term $(\lambda x.xx)(\lambda x.xx)$ has no β -nf since $(\lambda x.xx)(\lambda x.xx) \rightarrow_{1\beta} (\lambda x.xx)(\lambda x.xx) \rightarrow_{1\beta} (\lambda x.xx)(\lambda x.xx) \rightarrow_{1\beta} \dots$
- the term $(\lambda xy.x)(\lambda x.x)((\lambda x.xx)(\lambda x.xx))$ has normal form $\lambda x.x$, but not every reduction sequence leads to this normal form.

Theorem: (Church-Rosser) If $M \to_{\beta} N_1$ and $M \to_{\beta} N_2$, then there is a term P such that $N_1 \to_{\beta} P$ and $N_2 \to_{\beta} P$.

Theorem: (Church-Rosser) If $M \to_{\beta} N_1$ and $M \to_{\beta} N_2$, then there is a term P such that $N_1 \to_{\beta} P$ and $N_2 \to_{\beta} P$.

Corollary: Every term M has at most one β -nf.

Theorem: (Church-Rosser) If $M \to_{\beta} N_1$ and $M \to_{\beta} N_2$, then there is a term P such that $N_1 \to_{\beta} P$ and $N_2 \to_{\beta} P$.

Corollary: Every term M has at most one β -nf.

Normal order reduction: Deterministic strategy which chooses the leftmost, outermost redex, until there are no more redexes.

Theorem: (Church-Rosser) If $M \to_{\beta} N_1$ and $M \to_{\beta} N_2$, then there is a term P such that $N_1 \to_{\beta} P$ and $N_2 \to_{\beta} P$.

Corollary: Every term M has at most one β -nf.

Normal order reduction: Deterministic strategy which chooses the leftmost, outermost redex, until there are no more redexes.

Theorem: A term M has a β -nf N iff the normal order reduction of M is finite and ends at N (this is an undecidable problem!).

Theorem: (Church-Rosser) If $M \to_{\beta} N_1$ and $M \to_{\beta} N_2$, then there is a term P such that $N_1 \to_{\beta} P$ and $N_2 \to_{\beta} P$.

Corollary: Every term M has at most one β -nf.

Normal order reduction: Deterministic strategy which chooses the leftmost, outermost redex, until there are no more redexes.

Theorem: A term M has a β -nf N iff the normal order reduction of M is finite and ends at N (this is an undecidable problem!).

Structure of β **-nfs:** Every β -normal form M is of the form $\lambda x_1 \ldots x_n.yN_1 \ldots N_m$ with $n,m \geq 0$ and such that N_1,\ldots,N_m are terms in β -normal form.

 $\eta\text{-reduction}$

• a term of the form $\lambda x.Mx$, such that $x \notin FV(M)$, is called an η -redex;

- a term of the form $\lambda x.Mx$, such that $x \notin FV(M)$, is called an η -redex;
- its *contractum* is the term *M*;

- a term of the form $\lambda x.Mx$, such that $x \notin FV(M)$, is called an η -redex;
- its *contractum* is the term *M*;
- $\rightarrow_{1\eta}$, \rightarrow_{η} and \equiv_{η} ;

- a term of the form $\lambda x.Mx$, such that $x \notin FV(M)$, is called an η -redex;
- its *contractum* is the term *M*;
- $\rightarrow_{1\eta}$, \rightarrow_{η} and \equiv_{η} ;
- all η -reductions are finite;

- a term of the form $\lambda x.Mx$, such that $x \notin FV(M)$, is called an η -redex;
- its *contractum* is the term *M*;
- $\rightarrow_{1\eta}$, \rightarrow_{η} and \equiv_{η} ;
- all η -reductions are finite;
- Church-Rosser;

- a term of the form $\lambda x.Mx$, such that $x \notin FV(M)$, is called an η -redex;
- its *contractum* is the term *M*;
- $\rightarrow_{1\eta}$, \rightarrow_{η} and \equiv_{η} ;
- all η-reductions are finite;
- Church-Rosser;
- every term has exactly one η -nf;

- a term of the form $\lambda x.Mx$, such that $x \notin FV(M)$, is called an η -redex;
- its contractum is the term M;
- $\rightarrow_{1\eta}$, \rightarrow_{η} and \equiv_{η} ;
- all η-reductions are finite;
- Church-Rosser:
- every term has exactly one η -nf;
- the η -family of a term M is the (finite) set of all terms N such that $M \to_{\eta} N$.

• a $\beta\eta$ -redex is any β - or η -redex;

- a $\beta\eta$ -redex is any β or η -redex;
- $\rightarrow_{1\beta\eta}$, $\rightarrow_{\beta\eta}$ and $\equiv_{\beta\eta}$;

- a $\beta\eta$ -redex is any β or η -redex;
- $\rightarrow_{1\beta\eta}$, $\rightarrow_{\beta\eta}$ and $\equiv_{\beta\eta}$;
- Church-Rosser;

- a $\beta\eta$ -redex is any β or η -redex;
- $\rightarrow_{1\beta\eta}$, $\rightarrow_{\beta\eta}$ and $\equiv_{\beta\eta}$;
- Church-Rosser;
- every term has at most one $\beta\eta$ -nf;

- a $\beta\eta$ -redex is any β or η -redex;
- $\rightarrow_{1\beta\eta}$, $\rightarrow_{\beta\eta}$ and $\equiv_{\beta\eta}$;
- Church-Rosser;
- every term has at most one $\beta\eta$ -nf;
- if M is a β -nf, then all members of its η -family are β -nfs and exactly one of them is a $\beta\eta$ -nf.

$\lambda\text{-definability}$

Notation:
$$F^nX = \underbrace{F(F(\dots(FX)\dots))}_n$$

• Church numerals: $c_n = \lambda f x. f^n x$, for $n \ge 0$;

Notation:
$$F^nX = \underbrace{F(F(\dots(FX)\dots))}_n$$

- Church numerals: $c_n = \lambda f x. f^n x$, for $n \ge 0$;
- $A_+ = \lambda mnfx.mf(nfx)$;

Notation:
$$F^nX = \underbrace{F(F(\dots(FX)\dots))}_n$$

- Church numerals: $c_n = \lambda f x. f^n x$, for $n \ge 0$;
- $A_+ = \lambda mnfx.mf(nfx)$;

(show that
$$A_+c_nc_m\equiv c_{n+m}$$
)

Notation:
$$F^nX = \underbrace{F(F(\dots(FX)\dots))}_n$$

- Church numerals: $c_n = \lambda f x. f^n x$, for $n \ge 0$;
- $A_+ = \lambda mnfx.mf(nfx)$;

(show that
$$A_+c_nc_m\equiv c_{n+m}$$
)

• $A_* = \lambda mnfx.m(nf)x$;

Notation:
$$F^nX = \underbrace{F(F(\dots(FX)\dots))}_n$$

- Church numerals: $c_n = \lambda f x. f^n x$, for $n \ge 0$;
- $A_+ = \lambda mnfx.mf(nfx)$;

(show that
$$A_+c_nc_m\equiv c_{n+m}$$
)

• $A_* = \lambda mnfx.m(nf)x$;

(show that
$$A_*c_nc_m \equiv c_{n*m}$$
)

Notation:
$$F^nX = \underbrace{F(F(\dots(FX)\dots))}_n$$

- Church numerals: $c_n = \lambda f x. f^n x$, for $n \ge 0$;
- $A_+ = \lambda mnfx.mf(nfx);$

(show that
$$A_+c_nc_m\equiv c_{n+m}$$
)

• $A_* = \lambda mnfx.m(nf)x$;

(show that
$$A_*c_nc_m \equiv c_{n*m}$$
)

• $A_{exp} = \lambda mnfx.nmfx$;

Notation:
$$F^nX = \underbrace{F(F(\dots(FX)\dots))}_n$$

- Church numerals: $c_n = \lambda f x. f^n x$, for $n \ge 0$;
- $A_+ = \lambda mnfx.mf(nfx)$;

(show that
$$A_+c_nc_m \equiv c_{n+m}$$
)

• $A_* = \lambda mnfx.m(nf)x$;

(show that
$$A_*c_nc_m \equiv c_{n*m}$$
)

• $A_{exp} = \lambda mnfx.nmfx$;

(show that
$$A_{exp}c_nc_m \equiv c_{n^m}$$
)

Booleans

Booleans

• true = $\lambda xy.x$;

Booleans

- true = $\lambda xy.x$;
- false = $\lambda xy.y$;

Booleans

- true = $\lambda xy.x$;
- false = $\lambda xy.y$;
- if = $\lambda bxy.bxy$;

Booleans

- true = $\lambda xy.x$;
- false = $\lambda xy.y$;
- if = $\lambda bxy.bxy$;

(show that if true $M N \equiv M$ and if false $M N \equiv N$)

Booleans

- true = $\lambda xy.x$;
- false = $\lambda xy.y$;
- if = $\lambda bxy.bxy$;

(show that if true $M N \equiv M$ and if false $M N \equiv N$)

Ordered pairs

Booleans

- true = $\lambda xy.x$;
- false = $\lambda xy.y$;
- if = $\lambda bxy.bxy$;

(show that if true $M N \equiv M$ and if false $M N \equiv N$)

Ordered pairs

• pair = $\lambda xyf.fxy$;

Booleans

- true = $\lambda xy.x$;
- false = $\lambda xy.y$;
- if = $\lambda bxy.bxy$;

(show that if true $M N \equiv M$ and if false $M N \equiv N$)

Ordered pairs

- pair = $\lambda xyf.fxy$;
- fst = $\lambda p.p$ true;

Booleans

- true = $\lambda xy.x$;
- false = $\lambda xy.y$;
- if = $\lambda bxy.bxy$;

(show that if true M $N \equiv M$ and if false M $N \equiv N$)

Ordered pairs

- pair = $\lambda xyf.fxy$;
- fst = $\lambda p.p$ true;
- snd = $\lambda p.p$ false;

• snd = $\lambda p.p$ false;

Booleans

```
true = λxy.x;
false = λxy.y;
if = λbxy.bxy;
(show that if true M N = M and if false M N = N)

Ordered pairs

pair = λxyf.fxy;
fst = λp.p true;
```

(show that fst(pair MN) $\equiv M$ and ...)

• iszero = $\lambda n.n(\lambda x.false)$ true;

- iszero = $\lambda n.n(\lambda x.false)$ true;
- $suc = \lambda nfx.f(nfx);$

- iszero = $\lambda n.n(\lambda x.false)$ true;
- $suc = \lambda nfx.f(nfx)$;
- $prefn = \lambda f p.pair(f(fst p))(fst p);$

- iszero = $\lambda n.n(\lambda x.false)$ true;
- $suc = \lambda nfx.f(nfx)$;
- $prefn = \lambda fp.pair(f(fst p))(fst p);$
- pre = $\lambda nfx.snd(n(prefn f)(pair xx))$;

iszero = λn.n(λx.false)true;
suc = λnfx.f(nfx);
prefn = λfp.pair(f(fst p))(fst p);
pre = λnfx.snd(n(prefn f)(pair xx));
sub = λmn.n pre m;

• iszero = $\lambda n.n(\lambda x.false)$ true; • suc = $\lambda nfx.f(nfx)$; • prefn = $\lambda fp.pair(f(fst p))(fst p)$; • pre = $\lambda nfx.snd(n(prefn f)(pair xx))$; • sub = $\lambda mn.npre m$;

Lists

- iszero = $\lambda n.n(\lambda x.false)$ true;
- $suc = \lambda nfx.f(nfx)$;
- $prefn = \lambda fp.pair(f(fst p))(fst p);$
- pre = $\lambda nfx.snd(n(prefn f)(pair xx))$;
- sub = $\lambda mn.n$ pre m;

Lists

• $nil = \lambda z.z$;

- iszero = $\lambda n.n(\lambda x.false)$ true;
- $suc = \lambda nfx.f(nfx);$
- $prefn = \lambda f p.pair(f(fst p))(fst p);$
- pre = $\lambda nfx.snd(n(prefn f)(pair xx))$;
- sub = $\lambda mn.n$ pre m;

Lists

- $nil = \lambda z.z$;
- cons = λxy .pair false (pair xy);

• iszero = $\lambda n.n(\lambda x.false)$ true; • suc = $\lambda nfx.f(nfx)$; • prefn = $\lambda fp.pair(f(fst p))(fst p)$; • pre = $\lambda nfx.snd(n(prefn f)(pair xx))$; • sub = $\lambda mn.npre m$;

Lists

• nil = $\lambda z.z$; • cons = $\lambda xy.$ pairfalse(pair xy); • null = fst;

• iszero = $\lambda n.n(\lambda x.false)$ true; • suc = $\lambda nfx.f(nfx)$; • prefn = $\lambda fp.pair(f(fst p))(fst p)$; • pre = $\lambda nfx.snd(n(prefn f)(pair xx))$; • sub = $\lambda mn.npre m$;

Lists

• $nil = \lambda z.z$; • $cons = \lambda xy.pairfalse(pair xy)$; • null = fst; • $hd = \lambda z.fst(snd z)$;

```
• iszero = \lambda n.n(\lambda x.false)true;

• suc = \lambda nfx.f(nfx);

• prefn = \lambda fp.pair(f(fst p))(fst p);

• pre = \lambda nfx.snd(n(prefn f)(pair xx));

• sub = \lambda mn.npre m;
```

Lists

```
• nil = \lambda z.z;

• cons = \lambda xy.pairfalse(pairxy);

• null = fst;

• hd = \lambda z.fst(sndz);

• tl = \lambda z.snd(sndz).
```

Recursive Functions

• **Y** is a fixed point operator iff $\mathbf{Y}F \equiv F(\mathbf{Y}F)$ for all terms F;

Recursive Functions

- **Y** is a fixed point operator iff $\mathbf{Y}F \equiv F(\mathbf{Y}F)$ for all terms F;
- show that $\mathbf{Y} = \lambda f.(\lambda x. f(xx))(\lambda x. f(xx))$ is a fixed point operator (there are many others!);

Recursive Functions

- **Y** is a fixed point operator iff $\mathbf{Y}F \equiv F(\mathbf{Y}F)$ for all terms F;
- show that $\mathbf{Y} = \lambda f.(\lambda x.f(xx))(\lambda x.f(xx))$ is a fixed point operator (there are many others!);
- show that $Mx_1 ... x_n \equiv PM$ is satisfied by defining $M = \mathbf{Y}(\lambda gx_1 ... x_n. Pg)$, whenever \mathbf{Y} is a fixed point operator;

Recursive Functions

- **Y** is a fixed point operator iff $\mathbf{Y}F \equiv F(\mathbf{Y}F)$ for all terms F;
- show that $\mathbf{Y} = \lambda f.(\lambda x.f(xx))(\lambda x.f(xx))$ is a fixed point operator (there are many others!);
- show that $Mx_1 ... x_n \equiv PM$ is satisfied by defining $M = \mathbf{Y}(\lambda gx_1 ... x_n. Pg)$, whenever \mathbf{Y} is a fixed point operator;
- define the functions fact and tail.

M is a λI-term iff for every subterm of the form λx.N of M, x occurs at least once free in N;

- M is a λI-term iff for every subterm of the form λx.N of M, x occurs at least once free in N;
- M is a BCK-term iff for every subterm of the form λx.N of M, x occurs at most once free in N;

- M is a λI-term iff for every subterm of the form λx.N of M, x occurs at least once free in N;
- M is a BCK-term iff for every subterm of the form λx.N of M, x occurs at most once free in N;
- M is a BCI-term iff for every subterm of the form λx.N of M,
 x occurs exactly once free in N.