
Program Semantics, Verification, and Construction

José Carlos Bacelar Almeida

Departamento de Informática 

Universidade do Minho

Program Verification in Coq

MAP-i, Porto 2008 

1

Part II - Program Verification

• A Pratical Approach to the Coq Proof Assistant

• Small Demo and Lab Session

• (Functional) Program Verification in Coq

• Specifications and Implementations

- correctness assertions
- non-primitive-recursive functions in Coq

• Functional Program Correctness

- the direct approach
- accurate types: specification-types and program-extraction

• Case Study: 

- Verification of sorting programs
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Coq as a Certified Program Development Environment

• From the very beginning, the Coq development team put a strong focus on 
the connection to program verification and certification.

• Concerning functional programs, we have already seen that:

- it permits to encode most of the functions we might be interested in 
reason about - the programs;

- its expressive power allows to express properties we want these 
programs to exhibit - their specifications;

- the interactive proof-development environment helps to establish the 
bridge between these two worlds - correctness assurance.

• In the system distribution (standard library and user contributed 
formalisations) there are numerous examples of developments around the 
themes “certified algorithms” and “program verification”.
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Specifications and Implementations
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Function Specifications

• What is a function specification?

- In general, we can identify a function specification as a constrain on its input/
output behaviour.

- In practice, we will identify the specification of a function f:A!B as a binary 
relation R!A"B (or, equivalently, a binary predicate). 

- The relation associates each input to the set of possible outputs.

• Some remarks:

- note that specifications do allow non-determinism (an element of the input can be 
related to multiple elements on the output) - this is an important ingredient, since 
it allows for a rich theory on them (composing, refinement, etc.);

- it also means that doesn’t exist a one-to-one relationship between specifications 
and functions (different functions can implement the same specification);

- even when the specification is functional (every element of the domain type is 
mapped to exactly one element of the codomain), we might have different 
“functional programs” implementing the specification (mathematically, they encode 
the same function).
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Partiality in Specifications

• Consider the empty relation "!A"B (nothing is related with anything). What is its 
meaning? Two interpretations are possible:

- it is an “impossible” specification - it does not give any change to map domain 
values to anything;

- it imposes no constrain on the implementation - thus, any function f:A!B trivially 
implements it.

• The second approach is often preferred (note that the first approach will make any 
non-total relation impossible to realise).

• So, we implicitly take the focus of the specification as the domain of the relation: a 
function f:A!B implements (realises) a specification R!A"B when, for element 
x#dom(R), (x,f(x))#R. (obs.: dom(R) denotes the domain of R, i.e. { a | (a,b)#R }).

• The relation domain act as a pre-condition to the specification.

• In practice, it is usually simpler to detach the pre-condition from the relation 
(consider it a predicate Pre(-) on the domain type). The realisation assertion 
becomes:

- for every element x of the domain type, Pre(x) ⇒ (x,f(x))#R.
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Specification Examples

- Head of a list:

- Last element of a list:

- Division:

- Permutation of a list (example of a non-functional relation):

Definition headPre (A:Type) (l:list A) : Prop := l<>nil.

Inductive headRel (A:Type) (x:A) : list A -> Prop :=
  headIntro : forall l, headRel x (cons x l).

Definition lastPre (A:Type) (l:list A) : Prop := l<>nil.

Inductive lastRel (A:Type) (x:A) : list A -> Prop :=
  lastIntro : forall l y, lastRel x l -> lastRel x (cons y l).

Definition divPre (args:nat*nat) : Prop := (snd args)<>0.

Definition divRel (args:nat*nat) (res:nat*nat) : Prop :=
 let (n,d):=args in let (q,r):=res in q*d+r=n /\ r<d.

Definition PermRel (l1 l2:list Z) : Prop :=
  forall (z:Z), count z l1 = count z l
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Implementations

• When we address the expressive power of Coq, we refer the some limitations when 
defining functions in Coq.

• But then, a question is in order: What is exactly the class of functions that can be 
encoded in Coq?

• The answer is: “functions provable total in higher-order logic”.

• Intuitively, we can encode a function as long as we are able to prove it total in Coq.

• But the previous statement shouldn’t be over emphasised! In practice, even if a 
function is expressible in Coq, it might be rather tricky to define it. 

- we can directly encode primitivive recursive functions (or, more generally, 
functions guarded by destructors);

- Examples of functions that can not be directly encoded:

• Partial functions;

• non-structural recursion patterns (tricks and strategies...)

• manipulate programs to fit primitive-recursion scheme;

• derive a specialised recursion principles;

• Function command (coq version V8.1).
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• Coq doesn’t allow to define partial functions (function that give a run-time 
error on certain inputs) 

• But Coq’s type system allows to enrich the function domain with pre-
conditions that assure that invalid inputs are excluded.

• Take the head (of a list) function as an example. In Haskell it can be 
defined as:

(the compiler exhibits a warning about “non-exhaustive pattern matching”)

• In Coq, a direct attempt would fail:

Partial Functions

head :: [a] -> a
head (x:xs) = x

Definition head (A:Type) (l:list A) : A :=
  match l with
  | cons x xs => x
  end.
Error: Non exhaustive pattern-matching: no clause found for pattern nil
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• To overcome the above difficulty, we need to:

- consider a precondition that excludes all the erroneous argument values;

- pass to the function an additional argument: a proof that the precondition 
holds;

- the match constructor return type is lifted to a function from a proof of 
the precondition to the result type.

- any invalid branch in the match constructor leads to a logical contradiction 
(it violates the precondition).

• Formally, we lift the function from the type 
                        forall (x:A), B to forall (x:A), Pre x -> B

• Since we mix logical and computational arguments in the definition, it is a 
nice candidate to make use of the refine tactic...

(the generated term that will fill the hole is “False_rect A (H (refl_equal nil))”)

Definition head (A:Type) (l:list A) (p:l<>nil) : A.
refine (fun A l p=>
  match l return (l<>nil->A) with
  | nil => fun H => _
  | cons x xs => fun H => x
  end p).
elim H; reflexivity.
Defined.
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• We can argue that the encoded function is different from the original.

• But, it is linked to the original in a very precise sense: if we discharge the 
logical content, we obtain the original function.

• Coq implements this mechanism of filtering the computational content from 
the objects - the so called extraction mechanism.

• Coq supports different target languages: Ocaml, Haskell, Scheme.

Check head.
head : forall (A : Type) (l : list A), l <> nil -> A

Extraction Language Haskell.
Extraction Inline False_rect.
Extraction head.

head :: (List a1) -> a1
head l =
  case l of
    Nil -> Prelude.error "absurd case"
    Cons x xs -> x
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• Coq’s extraction mechanism are based on the distinction between sorts 
Prop and Set.

• ...but it enforces some restriction on the interplay between these sorts:

- a computational object may depend on the existence of proofs of logical 
statements (c.f. partiality);

- but the proof itself cannot influence the control structure of a 
computational object.

• As a illustrative example, consider the following function:

More on Extraction

Definition or_to_bool (A B:Prop) (p:A\/B) : bool :=
  match p with
  | or_introl _ => true
  | or_intror _ => flase
  end.
Error:
Incorrect elimination of "p" in the inductive type "or":
the return type has sort "Set" while it should be "Prop".
Elimination of an inductive object of sort Prop
is not allowed on a predicate in sort Set
because proofs can be eliminated only to build proofs.
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• If we instead define a “strong” version of “or” connective, with sort Set (or 
Type):

• Then, the equivalent of the previous function is:

Inductive sumbool (A B:Prop) : Type := (* notation {A}+{B} *)
| left : A -> sumbool A B
| right : B -> sumbool A B.

Definition sumbool_to_bool (A B:Prop) (p:{A}+{B}) : bool :=
  match p with
  | left _ => true
  | right _ => flase
  end.
sumbool_to_bool is defined.

Extraction sumbool_to_bool.
sumbool_to_bool :: Sumbool -> Bool
sumbool_to_bool p =
  case p of
    Left -> True
    Right -> False
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• The sumbool type can either be seen as:

- the or-connective defined on the Type universe;

- or a boolean with logical justification embeded (note that the extraction of 
this type is isomorphic to Bool).

• The last observation suggests that it can be used to define an “if-then-else” 
construct in Coq.

- Note that an expression like 
                    fun x y => if x<y then 0 then 1
doesn’t make sense: x<y is a Proposition - not a testable predicate (function 
with type X->X->bool);

- Coq accepts the syntax
                           if test then ... else ...
(when test has either the type bool or {A}+{B}, with propositions A and B).

- Its meaning is the pattern-matching
                               match test with
                                 | left H => ...
                                 | right H => ...
                               end.

If - then - else -
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• We can identify {P}+{~P} as the type of decidable predicates:

- The standard library defines many useful predicates, e.g.

• le_lt_dec : forall n m : nat, {n <= m} + {m < n}

• Z_eq_dec : forall x y : Z, {x = y} + {x <> y}

• Z_lt_ge_dec : forall x y : Z, {x < y} + {x >= y}

- The command SearchPattern ({_}+{_}) searches the instances available in the 
library.

• Usage example: a function that checks if an element is in a list.

• Exercise: prove the correctness/completeness of elem, i.e.
                forall (x:Z) (l:list Z), InL x l ↔ elem x l=true.

• Exercise: use the previous result to prove the decidability of InL, i.e.
                forall (x:Z) (l:list Z), {InL x l}+{~InL x l}.

Fixpoint elem (x:Z) (l:list Z) {struct l}: bool :=
  match l with
    nil => false
  | cons a b => if Z_eq_dec x a then true else elem x b
  end.
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• Combining the use of recursors with higher-order types, it is possible to 
encode functions that are not primitive recursive.

• A well-known example is the Ackermann function.

• We illustrate this with the function that merges two sorted lists

• In Coq, it can be defined with an auxiliary function merge’:

Non obvious uses of the primitive recursion scheme

merge :: [a] -> [a] -> a
merge [] l = l
merge (x:xs) [] = x:xs
merge (x:xs) (y:ys) | x <= y = x:(merge xs (y:ys))
                    | otherwise = y:(merge (x:xs) ys)

Fixpoint merge (l1: list Z) {struct l1}: list Z -> list Z :=
  match l1 with
  | nil => fun (l2:list Z) => l2
  | cons x xs => fix merge' (l2:list Z) : list Z := 
                   match l2 with
                   | nil => (cons x xs)
                   | cons y ys => match Z_le_gt_dec x y with
                                  | left _ => cons x (merge xs (cons y ys))
                                  | right _ => cons y (merge' ys)
                                  end
                   end
  end.
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• When the recursion pattern of a function is not structural in the 
arguments, we are no longer able to directly use the derived recursors to 
define it.

• Consider the Euclidean Division algorithm,

• There are several strategies to encode these functions, e.g.:

- consider an additional argument that “bounds” recursion (and then prove 
that, when conveniently initialised, it does not affect the result);

(Exercise: define it in Coq and check its results for some arguments)

- derive (prove) a specialised recursion principle.

Non-structural recursion

div :: Int -> Int -> (Int,Int)
div n d | n < d = (0,n)
        | otherwise = let (q,r)=div (n-d) d
                      in (q+1,r)

div :: Int -> Int -> (Int,Int)
div n d = divAux n n d
where divAux 0 _ _ = (0,0)
      divAux (x+1) n d | n < d = (0,n)
                       | otherwise = let (q,r)=divAux x (n-d) d
                                     in (q+1,r)
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• In recent versions of Coq (after v8.1), a new command Function allows to 
directly encode general recursive functions. 

• The Function command accepts a measure function that specifies how the 
argument “decreases” between recursive function calls.

• It generates proof-obligations that must be checked to guaranty the 
termination.

• Returning to the div example:

Function command

Function div (p:nat*nat) {measure fst} : nat*nat :=
  match p with
  | (_,0) => (0,0)
  | (a,b) => if le_lt_dec b a
             then let (x,y):=div (a-b,b) in (1+x,y)
             else (0,a)
  end.
1 subgoal
  ============================
   forall (p : nat * nat) (a b : nat),
   p = (a, b) ->
   forall n : nat,
   b = S n ->
   forall anonymous : S n <= a,
   le_lt_dec (S n) a = left (a < S n) anonymous ->
   fst (a - S n, S n) < fst (a, S n)
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• The proof obligation is a simple consequence of integer arithmetic facts 
(omega tactic is able to prove it).

• The Function command generates a lot of auxiliary results related to the 
defined function. Some of them are powerful tools to reason about it.

- div_ind - a specialised induction principle tailored for the specific 
recursion pattern of the function (we will return to this later...)

- div_equation - equation for rewriting directly the definition.

• Exercise: in the definition of the “div” function, we have included an 
additional base case. Why? Is it really necessary?

intros; simpl.
omega.
Qed.
div_tcc is defined
div_terminate is defined
div_ind is defined
div_rec is defined
div_rect is defined
R_div_correct is defined
R_div_complete is defined
div is defined
div_equation is defined
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• The Function command is also useful to provide “natural encodings” of 
functions that otherwise would need to be expressed in a contrived 
manner.

• Returning to the “merge” function, it could be easily defined as:

• Once again, the proof obligations are consequence of simple arithmetic 
facts (and the definition of “length”).

• As a nice side effect, we obtain an induction principle that will facilitate 
the task of proving theorems about “merge”.

Function merge2 (p:list Z*list Z)
{measure (fun p=>(length (fst p))+(length (snd p)))} : list Z :=
  match p with
  | (nil,l) => l
  | (l,nil) => l
  | (x::xs,y::ys) => if Z_lt_ge_dec x y
                     then x::(merge2 (xs,y::ys))
                     else y::(merge2 (x::xs,ys))
  end.
intros.
simpl; auto with arith.
intros.
simpl; auto with arith.
Qed.
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Functional Correctness
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• Functional correctness establishes the link between a specification and an 
implementation.

• A direct approach to the correctness consists in:

- Specification and implementation are both encoded as distinct Coq 
objects:

• The specification is an appropriate relation (probably, with some 
predicate as precondition);

• The implementation is a function defined in coq (probably with some 
“logical” precondition).

- The correctness assertion consists in a theorem of the form:

given a specification (relation fRel and a precondition fPre),
a function f is said to be correct with respect to the specification if:

                  forall x, fPre x -> fRel x (f x)

Direct approach
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• Returning to our division function, its specification is:

• The correctness is thus given by the following theorem:

div example

Definition divRel (args:nat*nat) (res:nat*nat) : Prop :=
 let (n,d):=args in let (q,r):=res in q*d+r=n /\ r<d.

Definition divPre (args:nat*nat) : Prop := (snd args)<>0.

Theorem div_correct : forall (p:nat*nat),  divPre p -> divRel p (div p).
unfold divPre, divRel.
intro p.
(* we make use of the specialised induction principle to conduct the proof... *)
functional induction (div p); simpl.
intro H; elim H; reflexivity.
(* a first trick: we expand (div (a-b,b)) in order to get rid of the let (q,r)=... *)
replace (div (a-b,b)) with (fst (div (a-b,b)),snd (div (a-b,b))) in IHp0.
simpl in *.
intro H; elim (IHp0 H); intros.
split.
(* again a similar trick: we expand “x” and “y0” in order to use an hypothesis *)
change (b + (fst (x,y0)) * b + (snd (x,y0)) = a).
rewrite <- e1.
omega.
(* and again... *)
change (snd (x,y0)<b); rewrite <- e1; assumption.
symmetry; apply surjective_pairing.
auto.
Qed.
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• Sometimes, we might be interested in a stronger link between the 
specifications and implementations.

• In particular, we might be interested in proving completeness - the 
implementation captures all the information contained in the specification:

                     forall x y, fPre x /\ fRel x y -> y=f x

• In this form, it can be deduced from correctness and functionality of fRel, 
i.e.

           forall x y1 y2, fPre x /\ fRel x y1 /\ fRel x y2 -> y1=y2

• More interesting is the case of predicates implemented by binary 
functions. There exists a clear bi-directional implication. E.g.:

                  forall x l, InL x l <-> elem x l=true

Function Completness
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• Coq’s type system allows to express specification constrains in the type of 
the function - we simply restrict the codomain type to those values 
satisfying the specification.

• This strategy explores the ability of Coq to express sub-types (#-types). 
These are defined as an inductive type:

• Note that sig is a strong form of existential quantification (similar to the 
relation between or and sumbool).

• Using it, we can precisely specify a function by its type alone. Consider the 
type
                      forall A (l:list A), l<>nil -> { x:A | last x l }

(the last relation was shown in the last lecture).

• Coq also defines 

Specification with Types

(* Notation: { x:A | P x } *)
Inductive sig (A : Type) (P : A -> Prop) : Type :=
    exist : forall x : A, P x -> sig P
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• Let us build an inhabitant of that type:

• And now, we can extract the computational content of the last theorem...

• This is precisely the “last” function as we would have written in Haskell.

Theorem lastCorrect : forall (A:Type) (l:list A), l<>nil -> { x:A | last x l }.
induction l.
intro H; elim H; reflexivity.
intros.
destruct l.
exists a; auto.
assert ((a0::l)<>nil).
discriminate.
elim (IHl H0).
intros r Hr; exists r; auto.
Qed.

Extraction lastCorrect.

lastCorrect :: (List a1) -> a1
lastCorrect l =
  case l of
    Nil -> Prelude.error "absurd case"
    Cons a l0 ->
      (case l0 of
         Nil -> a
         Cons a0 l1 -> lastCorrect l0)
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• When relying on the Coq’s extraction mechanism, we:

- exploit the expressive power of the type system to express specification 
constrains;

- make no distinction (at least conceptually) between the activities of 
programming and proving. In fact, we build an inhabitant of a type that 
encapsulates both the function and its correctness proof.

• The extraction mechanism allows to recover the function, as it might be 
programmed in a functional language. Its correctness is implicit (relies on the 
soundness of the mechanism itself).

• Some deficiencies of the approach:

- is targeted to “correct program derivation”, rather than “program 
verification”;

- the programmer might lose control over the constructed program (e.g. a 
natural “proof-strategy” does not necessarily leads to an efficient program, 
use of sophisticated tactics, ...);

- sometimes, it compromises reusing (e.g. proving independent properties for 
the same function).

Extraction approach summary
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• Define a strong version of “elem”

                 elemStrong : forall (x:Z) (l:list Z), {InL x l}+{~InL x l}

in such a way that its extraction is “analogous” (or uses) the elem function 
defined earlier.

• For the well known list functions app and rev provide:

- a (relational) specification for them;

- prove the correctness assertions.

Exercises
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Case Study: sorting functions
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• Sorting functions always give rise to interesting case studies:

- their specifications is non trivial;

- there are well-known implementations that achieve the expected behaviour 
through different strategies.

• Different implementations:

- insertion sort

- merge sort

- quick sort

- heap sort

• Specification - what is a sorting program?

- computes a permutation of the input list

- which is sorted.

Sorting programs
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• A simple characterisation of sorted lists consists in requiring that two consecutive 
elements be compatible with the less-or-equal relation.

• In Coq, we are lead to the predicate:

• Aside: there are other reasonable definitions for the Sorted predicate, e.g.

• The resulting induction principle is different. It can be viewed as a “different 
perspective” on the same concept.

• ...it is not uncommon to use multiple characterisations for a single concept (and 
prove them equivalent).

Sorted Predicate

Inductive Sorted : list Z -> Prop :=
  | sorted0 : Sorted nil
  | sorted1 : forall z:Z, Sorted (z :: nil)
  | sorted2 :
      forall (z1 z2:Z) (l:list Z),
        z1 <= z2 ->
        Sorted (z2 :: l) -> Sorted (z1 :: z2 :: l).

Inductive Sorted’ : list Z -> Prop :=
  | sorted0’ : Sorted nil
  | sorted2 :
      forall (z:Z) (l:list Z),
        (forall x, (InL x l) -> z<=x) -> Sorted (z :: l).
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• To capture permutations, instead of an inductive definition we will define the 
relation using an auxiliar function that count the number of occurrences of 
elements:

• A list is a permutation of another when contains exactly the same number of 
occurrences (for each possible element):

• Exercise: prove that Perm is an equivalence relation (i.e. is reflexive, symmetric and 
transitive).

• Exercise: prove the following lemma:
             forall x y l, Perm (x::y::l) (y::x::l)

Permutation

Fixpoint count (z:Z) (l:list Z) {struct l} : nat :=
  match l with
  | nil => 0
  | (z' :: l') =>
      match Z_eq_dec z z' with
      | left _ => S (count z l')
      | right _ => count z l'
      end
  end.

Definition Perm (l1 l2:list Z) : Prop :=
  forall z, count z l1 = count z l2.
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• A simple strategy to sort a list consist in iterate an “insert” function that inserts an 
element in a sorted list.

• In haskell:

• Both functions have a direct encoding in Coq. 

(similarly for isort...)

insertion sort

isort :: [Int] -> [Int]
isort [] = []
isort (x:xs) = insert x (isort xs)

insert :: Int -> [Int] -> [Int]
insert x [] = [x]
insert x (y:ys) | x<=y = x:y:ys
                | otherwise = y:(insert x ys)

Fixpoint insert (x:Z) (l:list Z) {struct l} : list Z :=
  match l with
    nil => cons x (@nil Z)
  | cons h t =>
        match Z_lt_ge_dec x h with
          left _ => cons x (cons h t)
        | right _ => cons h (insert x t)
        end
  end.
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• The theorem we want to prove is:

• We will certainly need auxiliary lemmas... Let us make a prospective proof attempt:

• It is now clear what are the needed lemmas:

- insert_Sorted - relating Sorted and insert;

- insert_Perm - relating Perm, cons and insert.

correctness proof

Theorem isort_correct : forall (l l':list Z),
  l'=isort l -> Perm l l' /\ Sorted l'.
induction l; intros.
unfold Perm; rewrite H; split; auto.
simpl in H.
rewrite H.
1 subgoal
  a : Z
  l : list Z
  IHl : forall l' : list Z, l' = isort l -> Perm l l' /\ Sorted l'
  l' : list Z
  H : l' = insert a (isort l)
  ============================
   Perm (a :: l) (insert a (isort l)) /\ Sorted (insert a (isort l))

Theorem isort_correct : forall (l l':list Z),
  l'=isort l -> Perm l l' /\ Sorted l'.
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Auxiliary Lemmas

Lemma insert_Sorted : forall x l, Sorted l -> Sorted (insert x l).
Proof.
intros x l H; elim H; simpl; auto with zarith.
intro z; elim (Z_lt_ge_dec x z); intros.
auto with zarith.
auto with zarith.
intros z1 z2 l0 H0 H1.
elim (Z_lt_ge_dec x z2); elim (Z_lt_ge_dec x z1); auto with zarith.
Qed.

Lemma insert_Perm : forall x l, Perm (x::l) (insert x l).
Proof.
unfold Perm; induction l.
simpl; auto with zarith.
simpl insert; elim (Z_lt_ge_dec x a); auto with zarith. 
intros; rewrite count_cons_cons.
pattern (x::l); simpl count; elim (Z_eq_dec z a); intros.
rewrite IHl; reflexivity.
apply IHl.
Qed.
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• Now we can conclude the proof of correctness...

Correctness Theorem

Theorem isort_correct : forall (l l':list Z),
  l'=isort l -> Perm l l' /\ Sorted l'.
induction l; intros.
unfold Perm; rewrite H; split; auto.
simpl in H.
rewrite H.
elim (IHl (isort l)); intros; split.
apply Perm_trans with (a::isort l).
unfold Perm; intro z; simpl; elim (Z_eq_dec z a); intros; auto with zarith.
apply insert_Perm.
apply insert_Sorted; auto.
Qed.
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• We have proved the correctness of “insertion sort”. What about other sorting 
algorithms like “merge sort” or “quick sort”.

• From the point of view of Coq, they are certainly more challenging (and interesting)

• their structure no longer follow a direct “inductive” argument;

• we will need some auxiliary results...

• The first challenge is to encode the functions. E.g. for the merge sort, we need to 
encode in Coq the following programs:

(here, the Function command is a big help!!!)

• Nice projects :-)

Other sorting algorithms...

merge [] l = l
merge l [] = l
merge (x:xs) (y:ys) | x<=y = x:merge xs (y:ys)
                    | otherwise = y:merge (x:xs) ys

split [] = ([],[])
split (x:xs) = let (a,b)=split xs in (x:b,a)

merge_sort [] = []
merge_sort [x] = [x]
merge_sort l = let (a,b) = split l
               in merge (merge_sort a) (merge_sort b)
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