
Coq Exercises

MAPi – PSVC

Porto, 2008

Please solve the following exercises without using automatic tactics such as auto, tauto,
omega, etc.

1 Logical Reasoning

1. Prove the following propositional formulas (P , Q : Prop):

(a) (P → Q)→ ∼Q → ∼P

(b) (P ∨Q → R)→ (P → R)

(c) (P ∨Q) ∧ ∼P → Q

(d) P ∧Q → R ↔ P → Q → R

(e) ∼(P ∨Q)↔ ∼P ∧ ∼Q

(f) ∼∼(P ∨ ∼P)

2. Prove the following theorem:

Theorem ex4 : ∀ (X : Set) (P : X → Prop),∼(∀ x ,∼(P x ))→ (exists x , P x ).

3. Assuming the Excluded Middle axiom, prove:

(a) Theorem Pierce : ∀ P Q , ((P → Q)→ P)→ P .

(b) Theorem NNE : ∀ P ,∼∼P → P .

2 Natural Numbers

Recall the definition of natural numbers as an inductive type (command Print nat).

1. Define a function add : nat → nat → nat that computes the sum of two natural numbers.

2. Prove commutativity of add (Hint: use lemmas to isolate interesting proof obligations).

3. Prove the following fact: for a natural number n, n ∗ n can be computed as the sum of the
first n odd numbers (e.g. 3 ∗ 3 = 1 + 3 + 5). (Hint: define first a function that sums the odd
numbers. You should also use definitions/facts/theorems from the library Arith — try also
the omega tactic).

1



3 Reasoning about lists

The following exercises require the library Lists. You can load that library by executing the
command Require Import Lists.

1. Consider the following inductive relation:

Inductive last (A : Set) (x : A) : list A→ Prop :=
| last base : last x (cons x nil)
| last step : ∀ l y , last x l → last x (cons y l).

(a) Use inversion to prove that ∀ x ,∼(last x nil).

(b) (Difficult) Try to avoid using that tactic.

2. Consider the following definition for the Even predicate:

Inductive Even : nat → Prop :=
| Even base : Even 0
| Even step : ∀ n, Even n → Even (S (S n)).

(a) Define, accordingly, the Odd predicate. Prove that, for every number n, Even n →
Odd (S n).

(b) Define the function rev that reverses a list.

(c) Prove that, for every list l, rev (rev l) = l .

(d) Recall the definition for the function app (concatenation of lists). Prove that for every
lists l1 and l2, rev (app l1 l2 ) = app (rev l2 ) (rev l1 ).

3. Consider the inductive predicate:

Inductive InL (A : Type) (a : A) : list A→ Prop :=
| InHead : ∀ (xs : list A), InL a (cons a xs)
| InTail : ∀ (x : A) (xs : list A), InL a xs → InL a (cons x xs).

Prove the following properties:

(a) ∀ (A : Type) (a : A) (l1 l2 : list A), InL a l1 ∨ InL a l2 → InL a (app l1 l2 ).

(b) ∀ (A : Type) (a : A) (l1 l2 : list A), InL a (app l1 l2 )→ InL a l1 ∨ InL a l2 .

4. Define the function elem that checks if an element belongs a list of integers (Hint: import
ZArith module in order to use the Z eq dec that tests for integer equality).

5. Prove the correctness of elem, that is, ∀ (a : Z ) (l1 l2 : list Z ), elem a (app l1 l2 ) =
orb (elem a l1 ) (elem a l2 ) (the function orb is the boolean-or function defined in Library
Bool).

2


