Coq Exercises MAPi – PSVC Porto, 2008

Please solve the following exercises *without* using automatic tactics such as **auto**, **tauto**, **omega**, etc.

1 Logical Reasoning

- 1. Prove the following propositional formulas $(P, Q : \mathsf{Prop})$:
 - (a) $(P \to Q) \to \sim Q \to \sim P$
 - (b) $(P \lor Q \to R) \to (P \to R)$
 - (c) $(P \lor Q) \land \sim P \to Q$
 - (d) $P \land Q \to R \leftrightarrow P \to Q \to R$
 - (e) $\sim (P \lor Q) \leftrightarrow \sim P \land \sim Q$
 - (f) $\sim \sim (P \lor \sim P)$
- 2. Prove the following theorem:

Theorem ex4 : \forall (X : Set) (P : X \rightarrow Prop), \sim (\forall x, \sim (P x)) \rightarrow (exists x, P x).

- 3. Assuming the Excluded Middle axiom, prove:
 - (a) **Theorem** Pierce : $\forall P \ Q, ((P \to Q) \to P) \to P.$
 - (b) **Theorem** $NNE : \forall P, \sim \sim P \rightarrow P.$

2 Natural Numbers

Recall the definition of natural numbers as an inductive type (command Print nat).

- 1. Define a function $add: nat \rightarrow nat \rightarrow nat$ that computes the sum of two natural numbers.
- 2. Prove commutativity of add (Hint: use lemmas to isolate interesting proof obligations).
- 3. Prove the following fact: for a natural number n, n * n can be computed as the sum of the first n odd numbers (e.g. 3 * 3 = 1 + 3 + 5). (Hint: define first a function that sums the odd numbers. You should also use definitions/facts/theorems from the library Arith try also the omega tactic).

3 Reasoning about lists

The following exercises require the library Lists. You can load that library by executing the command Require Import *Lists*.

1. Consider the following inductive relation:

Inductive *last* (A : Set) $(x : A) : list A \to Prop :=$ | *last_base* : *last* x (*cons* x *nil*) | *last_step* : $\forall l y$, *last* x $l \to last$ x (*cons* y *l*).

- (a) Use inversion to prove that $\forall x, \sim (last \ x \ nil)$.
- (b) (Difficult) Try to avoid using that tactic.
- 2. Consider the following definition for the Even predicate:

Inductive $Even : nat \rightarrow \mathsf{Prop} :=$ | $Even_base : Even 0$ | $Even_step : \forall n, Even n \rightarrow Even (S (S n)).$

- (a) Define, accordingly, the Odd predicate. Prove that, for every number n, Even $n \rightarrow Odd$ (S n).
- (b) Define the function **rev** that reverses a list.
- (c) Prove that, for every list l, rev (rev l) = l.
- (d) Recall the definition for the function app (concatenation of lists). Prove that for every lists l_1 and l_2 , rev (app l1 l2) = app (rev l2) (rev l1).
- 3. Consider the inductive predicate:

 $\begin{array}{l} \textbf{Inductive } \textit{InL } (A: \mathsf{Type}) \; (a:A): \textit{list } A \to \mathsf{Prop} := \\ \mid \textit{InHead}: \forall \; (xs:\textit{list } A), \textit{InL } a \; (\textit{cons } a \; xs) \\ \mid \textit{InTail}: \forall \; (x:A) \; (xs:\textit{list } A), \textit{InL } a \; xs \to \textit{InL } a \; (\textit{cons } x \; xs). \end{array}$

Prove the following properties:

- (a) \forall (A: Type) (a: A) (l1 l2: list A), InL a l1 \lor InL a l2 \rightarrow InL a (app l1 l2).
- (b) $\forall (A: \mathsf{Type}) (a: A) (l1 \ l2: list A), InL \ a (app \ l1 \ l2) \rightarrow InL \ a \ l1 \lor InL \ a \ l2.$
- 4. Define the function elem that checks if an element belongs a list of integers (Hint: import *ZArith* module in order to use the $Z_{eq_{-}dec}$ that tests for integer equality).
- 5. Prove the correctness of elem, that is, $\forall (a:Z) (l1 \ l2 : list Z), elem a (app \ l1 \ l2) = orb (elem a \ l1) (elem a \ l2)$ (the function orb is the boolean-or function defined in Library Bool).