Coq Exercises

MAPi - PSVC
Porto, 2008

Please solve the following exercises without using automatic tactics such as auto, tauto, omega, etc.

1 Logical Reasoning

1. Prove the following propositional formulas (P, Q : Prop) :
(a) $(P \rightarrow Q) \rightarrow \sim Q \rightarrow \sim P$
(b) $(P \vee Q \rightarrow R) \rightarrow(P \rightarrow R)$
(c) $(P \vee Q) \wedge \sim P \rightarrow Q$
(d) $P \wedge Q \rightarrow R \leftrightarrow P \rightarrow Q \rightarrow R$
(e) $\sim(P \vee Q) \leftrightarrow \sim P \wedge \sim Q$
(f) $\sim \sim(P \vee \sim P)$
2. Prove the following theorem:

$$
\text { Theorem ex } 4: \forall(X: \text { Set })(P: X \rightarrow \text { Prop }), \sim(\forall x, \sim(P x)) \rightarrow(\text { exists } x, P x) .
$$

3. Assuming the Excluded Middle axiom, prove:
(a) Theorem Pierce: $\forall P Q,((P \rightarrow Q) \rightarrow P) \rightarrow P$.
(b) Theorem NNE: $\forall P, \sim \sim P \rightarrow P$.

2 Natural Numbers

Recall the definition of natural numbers as an inductive type (command Print nat).

1. Define a function add:nat \rightarrow nat \rightarrow nat that computes the sum of two natural numbers.
2. Prove commutativity of $a d d$ (Hint: use lemmas to isolate interesting proof obligations).
3. Prove the following fact: for a natural number $n, n * n$ can be computed as the sum of the first n odd numbers (e.g. $3 * 3=1+3+5$). (Hint: define first a function that sums the odd numbers. You should also use definitions/facts/theorems from the library Arith - try also the omega tactic).

3 Reasoning about lists

The following exercises require the library Lists. You can load that library by executing the command Require Import Lists.

1. Consider the following inductive relation:
```
Inductive last ( }A:\mathrm{ Set) ( }x:A):\mathrm{ list A }->\mathrm{ Prop :=
    | last_base:last x (cons x nil)
    l last_step : }\forallly,last x l last x (cons y l)
```

(a) Use inversion to prove that $\forall x, \sim($ last x nil $)$.
(b) (Difficult) Try to avoid using that tactic.
2. Consider the following definition for the Even predicate:

```
Inductive Even : nat \(\rightarrow\) Prop :=
    | Even_base : Even 0
    \(\mid\) Even_step \(: \forall n\), Even \(n \rightarrow\) Even \((S(S n))\).
```

(a) Define, accordingly, the Odd predicate. Prove that, for every number n, Even $n \rightarrow$ Odd (Sn).
(b) Define the function rev that reverses a list.
(c) Prove that, for every list l, rev $($ rev $l)=l$.
(d) Recall the definition for the function app (concatenation of lists). Prove that for every lists l_{1} and l_{2}, rev (appl1 l2) $=\operatorname{app}($ rev l2) $($ rev l1) .
3. Consider the inductive predicate:

Inductive $\operatorname{InL}(A:$ Type $)(a: A):$ list $A \rightarrow$ Prop $:=$
\mid InHead $: \forall(x s:$ list $A)$, InL a (cons a xs)
\mid InTail $: \forall(x: A)(x s:$ list $A)$, InL $a x s \rightarrow$ InL $a($ cons $x x s)$.
Prove the following properties:
(a) $\forall(A:$ Type $)(a: A)(l 1$ l2 : list $A)$, InL a l1 \vee InL a l2 \rightarrow InL a (appl1 l2).
(b) $\forall(A:$ Type $)(a: A)(l 1$ l2 : list $A)$, InL a (app l1 l2 $) \rightarrow$ InL a l1 \vee InL a l2.
4. Define the function elem that checks if an element belongs a list of integers (Hint: import ZArith module in order to use the $Z_{-} e q_{-} d e c$ that tests for integer equality).
5. Prove the correctness of elem, that is, $\forall(a: Z)(l 1$ l2 : list Z $)$, elem $a($ app l1 l2) $=$ orb (elem a l1) (elem a l2) (the function orb is the boolean-or function defined in Library Bool).

