A-calculus and simple types

Sabine Broda
Departamento de Ciéncia de Computadores
Faculdade de Ciéncias da Universidade do Porto

MAP-i, Braga 2007

M-calculus

M-calculus

e conceived (ca. 1930) as part of a general (later shown
inconsistent) theory of functions and logic, intended as a
foundation for mathematics;

M-calculus

e conceived (ca. 1930) as part of a general (later shown
inconsistent) theory of functions and logic, intended as a
foundation for mathematics;

e all recursive functions can be represented in the (pure)
A-calculus;

M-calculus

e conceived (ca. 1930) as part of a general (later shown
inconsistent) theory of functions and logic, intended as a
foundation for mathematics;

e all recursive functions can be represented in the (pure)
A-calculus;

e theory modelling functions and their applicative behaviour;

M-calculus

e conceived (ca. 1930) as part of a general (later shown
inconsistent) theory of functions and logic, intended as a
foundation for mathematics;

e all recursive functions can be represented in the (pure)
A-calculus;

e theory modelling functions and their applicative behaviour;

e concept of function seen as a rule, i.e. process of passing an
argument to a value (contrary to the notion of seeing a
function as a graph);

M-calculus

e conceived (ca. 1930) as part of a general (later shown
inconsistent) theory of functions and logic, intended as a
foundation for mathematics;

e all recursive functions can be represented in the (pure)
A-calculus;

e theory modelling functions and their applicative behaviour;

e concept of function seen as a rule, i.e. process of passing an
argument to a value (contrary to the notion of seeing a
function as a graph);

e this is important for the study of computability and for theory

of computation in general, since it emphasizes the
computational aspect associated to the notion of function.

A-terms

A-terms

- infinite set of term-variables x, y, z, .. .;

A-terms

- infinite set of term-variables x, y, z, .. .;

e each variable x is a A-term;

A-terms

- infinite set of term-variables x, y, z, .. .;
e each variable x is a A-term;
e if M and N are A-terms, then (MN) is a A-term, (application);

A-terms

- infinite set of term-variables x, y, z, .. .;
e each variable x is a A-term;
e if M and N are A-terms, then (MN) is a A-term, (application);

e if M is a A-term and x a variable, then (Ax.M) is a A-term,
(abstraction).

A-terms

- infinite set of term-variables x, y, z, .. .;
e each variable x is a A-term;
e if M and N are A-terms, then (MN) is a A-term, (application);

e if M is a A-term and x a variable, then (Ax.M) is a A-term,
(abstraction).

Examples: (Ax.x), (x(Ay.(xy)))....

Conventions

Conventions

e application associates to the left;

MNO stands for ((MN)O)

Conventions

e application associates to the left;
MNO stands for ((MN)O)
e bodies of lambdas extend as far as possible;

Ax.Ay.M stands for Ax.(Ay.M)

Conventions

e application associates to the left;
MNO stands for ((MN)O)
e bodies of lambdas extend as far as possible;
Ax.Ay.M stands for Ax.(Ay.M)
e nested lambdas may be collapsed together;

Axy.M stands for Ax.(Ay.M)

Bound occurrences of variables - a-conversion

Bound occurrences of variables - a-conversion

e all occurrences of a variable x that occur in an expression of
the form Ax.M are bound,

Bound occurrences of variables - a-conversion

e all occurrences of a variable x that occur in an expression of
the form Ax.M are bound,
e an occurrence of a variable that is not bound is called free;

Bound occurrences of variables - a-conversion

e all occurrences of a variable x that occur in an expression of
the form Ax.M are bound,

e an occurrence of a variable that is not bound is called free;

e FV(M) is the set of variables with free occurrences in M;

Bound occurrences of variables - a-conversion

all occurrences of a variable x that occur in an expression of
the form Ax.M are bound,

e an occurrence of a variable that is not bound is called free;

FV(M) is the set of variables with free occurrences in M;
if FV(M) = () we say that M is closed;

Bound occurrences of variables - a-conversion

e all occurrences of a variable x that occur in an expression of
the form Ax.M are bound,

e an occurrence of a variable that is not bound is called free;
e FV(M) is the set of variables with free occurrences in M;
e if FV(M) = () we say that M is closed;

e we will consider A-terms equivalent up to bound variable
renaming, («-conversion).

Bound occurrences of variables - a-conversion

e all occurrences of a variable x that occur in an expression of
the form Ax.M are bound,

e an occurrence of a variable that is not bound is called free;
e FV(M) is the set of variables with free occurrences in M;
e if FV(M) = () we say that M is closed;

e we will consider A-terms equivalent up to bound variable
renaming, («-conversion).

Examples: \xy.xyz =, Ayu.yuz, but (Ax.x)z Z, (Ax.y)z

Substitution

Substitution

The expression M[N/x] denotes the result of substituting in M
each free occurrence of x by N and making any changes of bound
variables needed to prevent variables free in N from becoming
bound in M[N/x].

Substitution

The expression M[N/x] denotes the result of substituting in M
each free occurrence of x by N and making any changes of bound

variables needed to prevent variables free in N from becoming
bound in M[N/x].

Example:
(Axy.xyz)[(Au.y)/z] # Axy.xy(Au.y)

Substitution

The expression M[N/x] denotes the result of substituting in M
each free occurrence of x by N and making any changes of bound

variables needed to prevent variables free in N from becoming
bound in M[N/x].

Example:

(Axy.xyz)[(Au.y)/z] # Axy.xy(Au.y)
but

(Axy.xyz)[(Au.y)/z] = Axv.xv(Au.y)

(-reduction

(-reduction

e a term of the form (Ax.M)N is called a [-redex;

(-reduction

e a term of the form (Ax.M)N is called a [-redex;

e its contractum is the term M[N/x];

(-reduction

e a term of the form (Ax.M)N is called a [-redex;
e its contractum is the term M[N/x];

e we write M —13 N, and say that M reduces in one step of
(B-reduction to N, iff N can be obtained from M by replacing
one (-redex in M by its contractum;

(-reduction

a term of the form (Ax.M)N is called a (3-redex;
its contractum is the term M[N/x];

we write M —13 N, and say that M reduces in one step of
(B-reduction to N, iff N can be obtained from M by replacing
one (-redex in M by its contractum;

— g is the reflexive and transitive closure of —g;

(-reduction

a term of the form (Ax.M)N is called a (3-redex;
its contractum is the term M[N/x];

we write M —13 N, and say that M reduces in one step of
(B-reduction to N, iff N can be obtained from M by replacing
one (-redex in M by its contractum;

— g is the reflexive and transitive closure of —g;

=3 is the reflexive, simetric and transitive closure of —14.

(-normal forms

(-normal forms

e A term M is said to be in B-normal form (or (-nf) if it
contains no (3-redex;

(-normal forms

e A term M is said to be in B-normal form (or (-nf) if it
contains no (3-redex;

e we say that M has a (-nfif there is some (3-nf N such that
M —g N.

(-normal forms

e A term M is said to be in B-normal form (or (-nf) if it
contains no (3-redex;

e we say that M has a (-nfif there is some (3-nf N such that
M —g N.

Exercise: Reduce the following terms to their G-normal form.
o (Ax.xx)(Ax.xx)

o (Axy.x)(Ax.x)((Ax.xx)(Ax.xx))
o (Ax.xx)(Ayz.yz).

(-normal forms

e A term M is said to be in B-normal form (or (-nf) if it
contains no (3-redex;

e we say that M has a (-nfif there is some (3-nf N such that
M —g N.

Exercise: Reduce the following terms to their G-normal form.
o (Ax.xx)(Ax.xx)

o (Axy.x)(Ax.x)((Ax.xx)(Ax.xx))
o (Ax.xx)(Ayz.yz).

Conclusions:
e The term (Ax.xx)(Ax.xx) has no -nf since
(Axxx)(Ax.xx) —18 (Ax.xx)(Ax.xx)

—18 (Ax.xx)(Ax.xx)
13 - - -

(-normal forms

e A term M is said to be in B-normal form (or (-nf) if it
contains no (3-redex;

e we say that M has a (-nfif there is some (3-nf N such that
M —g N.

Exercise: Reduce the following terms to their G-normal form.
o (Ax.xx)(Ax.xx)

o (Axy.x)(Ax.x)((Ax.xx)(Ax.xx))
o (Ax.xx)(Ayz.yz).

Conclusions:

e The term (Ax.xx)(Ax.xx) has no -nf since
(Axxx)(Ax.xx) —18 (Ax.xx)(Ax.xx)
—18 (Ax.xx)(Ax.xx)
13 - - -
e the term (Axy.x)(Ax.x)((Ax.xx)(Ax.xx)) has normal form

Ax.x, but not every reduction sequence leads to this normal
form.

Confluence

Confluence

Theorem: (Church-Rosser) If M —3 Ny and M —g No, then
there is a term P such that Ny —g P and N, —3 P.

Confluence

Theorem: (Church-Rosser) If M —3 Ny and M —g No, then
there is a term P such that Ny —g P and N, —3 P.

Corollary: Every term M has at most one [3-nf.

Confluence

Theorem: (Church-Rosser) If M —3 Ny and M —g No, then
there is a term P such that Ny —g P and N, —3 P.

Corollary: Every term M has at most one [3-nf.

Normal order reduction: Deterministic strategy which chooses
the leftmost, outermost redex, until there are no more redexes.

Confluence

Theorem: (Church-Rosser) If M —3 Ny and M —g No, then
there is a term P such that Ny —g P and N, —3 P.

Corollary: Every term M has at most one [3-nf.

Normal order reduction: Deterministic strategy which chooses
the leftmost, outermost redex, until there are no more redexes.

Theorem: A term M has a g-nf N iff the normal order reduction
of M is finite and ends at N (this is an undecidable problem!).

Confluence

Theorem: (Church-Rosser) If M —3 Ny and M —g No, then
there is a term P such that Ny —g P and N, —3 P.

Corollary: Every term M has at most one [3-nf.

Normal order reduction: Deterministic strategy which chooses
the leftmost, outermost redex, until there are no more redexes.

Theorem: A term M has a g-nf N iff the normal order reduction
of M is finite and ends at N (this is an undecidable problem!).

Structure of -nfs: Every 8-normal form M is of the form
Ax1 ... Xp YNy ..o Ny

with n, m > 0 and such that Ny,..., N, are terms in B-normal

form.

n-reduction

n-reduction

e a term of the form Ax.Mx, such that x ¢ FV(M), is called an
n-redex;

n-reduction

e a term of the form Ax.Mx, such that x ¢ FV(M), is called an
n-redex;

e its contractum is the term M;

n-reduction

e a term of the form Ax.Mx, such that x ¢ FV(M), is called an
n-redex;

e its contractum is the term M;

* —1y,, —pand =,;

n-reduction

a term of the form Ax.Mx, such that x € FV(M), is called an
n-redex;

its contractum is the term M;

* —1y,, —pand =,;

all np-reductions are finite;

n-reduction

a term of the form Ax.Mx, such that x € FV(M), is called an
n-redex;

e its contractum is the term M,
* —1y,, —pand =,;
e all n-reductions are finite;

e Church-Rosser;

n-reduction

a term of the form Ax.Mx, such that x € FV(M), is called an
n-redex;

e its contractum is the term M,
* —1y,, —pand =,;

e all n-reductions are finite;

e Church-Rosser;

e every term has exactly one n-nf;

n-reduction

a term of the form Ax.Mx, such that x € FV(M), is called an
n-redex;

its contractum is the term M;
—1y, —n and =,;

all np-reductions are finite;
Church-Rosser;

every term has exactly one 7-nf;

the n-family of a term M is the (finite) set of all terms N such
that M —,, N.

(n-reduction

(n-reduction

e a On-redex is any (- or n-redex;

(n-reduction

e a On-redex is any (- or n-redex;

* —1gn, —py and =gy

(n-reduction

e a On-redex is any (- or n-redex;
* —1gn, —py and =gy
e Church-Rosser;

(n-reduction

a fOn-redex is any - or n-redex;
* —1gn, —py and =gy
Church-Rosser;

e every term has at most one (3n-nf;

(n-reduction

a fOn-redex is any - or n-redex;

* —1gn, —pp and =gy,

e Church-Rosser;

e every term has at most one (3n-nf;

e if M is a (-nf, then all members of its n-family are 5-nfs and
exactly one of them is a Bn-nf.

\-definability

\-definability

Notation: F"X = F(F(...(FX)...))
——

e Church numerals: ¢, = \fx.f"x, for n > 0;

\-definability

Notation: F"X = F(F(...(FX)...))
——

e Church numerals: ¢, = \fx.f"x, for n > 0;

o AL = Amnfx.mf (nfx);

\-definability

Notation: F"X = F(F(...(FX)...))
——

e Church numerals: ¢, = \fx.f"x, for n > 0;

o AL = Amnfx.mf (nfx);

(show that Aichcm = Chim)

\-definability

Notation: F"X = F(F(...(FX)...))
——

e Church numerals: ¢, = \fx.f"x, for n > 0;

o AL = Amnfx.mf (nfx);
(show that Aichcm = Chim)

e A, = Amnfx.m(nf)x;

\-definability

Notation: F"X = F(F(...(FX)...))
——

e Church numerals: ¢, = \fx.f"x, for n > 0;

o AL = Amnfx.mf (nfx);
(show that Aichcm = Chim)
e A, = Amnfx.m(nf)x;

(show that A.chcm = Chim)

\-definability

Notation: F"X = F(F(...(FX)...))
——

Church numerals: ¢, = \fx.f"x, for n > 0;

Ay = Amnfx.mf (nfx);

(show that Aichcm = Chim)

A« = Amnfx.m(nf)x;

(show that A.chcm = Chim)

Aexp = Amnfx.nmfx;

\-definability

Notation: F"X = F(F(...(FX)...))
——

Church numerals: ¢, = \fx.f"x, for n > 0;

Ay = Amnfx.mf (nfx);

(show that Aichcm = Chim)

A« = Amnfx.m(nf)x;

(show that A.chcm = Chim)

Aexp = Amnfx.nmfx;

(show that AexpCnCm = cpm)

A-definability (cont.)

A-definability (cont.)

Booleans

A-definability (cont.)

Booleans

e true = Axy.x;

A-definability (cont.)

Booleans
e true = Axy.x;

e false = Axy.y;

A-definability (cont.)

Booleans
e true = Axy.x;
e false = Axy.y;
o if = A\bxy.bxy;

A-definability (cont.)

Booleans
e true = Axy.x;
e false = Axy.y;
o if = A\bxy.bxy;
(show that if true M N =M and if false MN = N)

A-definability (cont.)

Booleans
e true = Axy.x;
e false = Axy.y;
o if = A\bxy.bxy;
(show that if true M N =M and if false MN = N)

Ordered pairs

A-definability (cont.)

Booleans
e true = Axy.x;
e false = Axy.y;
o if = A\bxy.bxy;
(show that if true M N =M and if false MN = N)

Ordered pairs
e pair = Axyf.fxy;

A-definability (cont.)

Booleans
e true = Axy.x;
e false = Axy.y;
o if = A\bxy.bxy;
(show that if true M N =M and if false MN = N)

Ordered pairs
e pair = Axyf.fxy;
e fst = Ap.p true;

A-definability (cont.)

Booleans
e true = Axy.x;
e false = Axy.y;
o if = A\bxy.bxy;
(show that if true M N =M and if false MN = N)

Ordered pairs
e pair = Axyf.fxy;
e fst = Ap.p true;
e snd = Ap.p false;

A-definability (cont.)

Booleans
e true = Axy.x;
e false = Axy.y;
o if = A\bxy.bxy;
(show that if true M N =M and if false MN = N)

Ordered pairs
e pair = Axyf.fxy;
e fst = Ap.p true;
e snd = Ap.p false;
(show that fst(pairMN)=M and...)

A-definability (cont.)

A-definability (cont.)

e iszero = An.n(Ax.false)true;

A-definability (cont.)

e iszero = An.n(Ax.false)true;

e suc = Anfx.f(nfx);

A-definability (cont.)

e iszero = An.n(Ax.false)true;
e suc = Anfx.f(nfx);
e prefn = Ap.pair(f(fst p))(fst p);

A-definability (cont.)

iszero = An.n(Ax.false)true;

suc = Anfx.f(nfx);

prefn = Afp.pair(f(fst p))(fst p);
pre = Anfx.snd(n(prefn f)(pair xx));

A-definability (cont.)

iszero = An.n(Ax.false)true;

suc = Anfx.f(nfx);

prefn = Afp.pair(f(fst p))(fst p);
pre = Anfx.snd(n(prefn f)(pair xx));

sub = Amn.npre m;

A-definability (cont.)

iszero = An.n(Ax.false)true;

suc = Anfx.f(nfx);

prefn = Afp.pair(f(fst p))(fst p);
pre = Anfx.snd(n(prefn f)(pair xx));

sub = Amn.npre m;

Lists

A-definability (cont.)

iszero = An.n(Ax.false)true;

suc = Anfx.f(nfx);

prefn = Afp.pair(f(fst p))(fst p);
pre = Anfx.snd(n(prefn f)(pair xx));

sub = Amn.npre m;

Lists

e nil = A\z.z;

A-definability (cont.)

iszero = An.n(Ax.false)true;

suc = Anfx.f(nfx);

prefn = Afp.pair(f(fst p))(fst p);
pre = Anfx.snd(n(prefn f)(pair xx));

sub = Amn.npre m;

Lists

e nil = A\z.z;

e cons = Axy.pair false (pair xy);

A-definability (cont.)

iszero = An.n(Ax.false)true;

suc = Anfx.f(nfx);

prefn = Afp.pair(f(fst p))(fst p);
pre = Anfx.snd(n(prefn f)(pair xx));

sub = Amn.npre m;

Lists

e nil = A\z.z;
e cons = Axy.pair false (pair xy);

e null = fst;

A-definability (cont.)

iszero = An.n(Ax.false)true;

suc = Anfx.f(nfx);

prefn = Afp.pair(f(fst p))(fst p);
pre = Anfx.snd(n(prefn f)(pair xx));

sub = Amn.npre m;

Lists

e nil = A\z.z;

e cons = Axy.pair false (pair xy);
e null = fst;

e hd = \z.fst (snd z);

A-definability (cont.)

iszero = An.n(Ax.false)true;

suc = Anfx.f(nfx);

prefn = Afp.pair(f(fst p))(fst p);
pre = Anfx.snd(n(prefn f)(pair xx));

sub = Amn.npre m;

Lists

e nil = A\z.z;

e cons = Axy.pair false (pair xy);
e null = fst;

hd = A\z.fst (snd z);

tl = Az.snd (snd z).

A-definability (cont.)

A-definability (cont.)

Recursive Functions
e Y is a fixed point operator iff YF = F(YF) for all terms F;

A-definability (cont.)

Recursive Functions
e Y is a fixed point operator iff YF = F(YF) for all terms F;

e show that Y = Af.(Ax.f(xx))(Ax.f(xx)) is a fixed point
operator (there are many others!);

A-definability (cont.)

Recursive Functions
e Y is a fixed point operator iff YF = F(YF) for all terms F;

e show that Y = Af.(Ax.f(xx))(Ax.f(xx)) is a fixed point
operator (there are many others!);

e show that Mx; ...x, = PM is satisfied by defining
M =Y(Agx1...xn.Pg), whenever Y is a fixed point operator;

A-definability (cont.)

Recursive Functions
e Y is a fixed point operator iff YF = F(YF) for all terms F;

e show that Y = Af.(Ax.f(xx))(Ax.f(xx)) is a fixed point
operator (there are many others!);

e show that Mx; ...x, = PM is satisfied by defining
M =Y(Agx1...xn.Pg), whenever Y is a fixed point operator;

e define the functions fact and tail.

Restricted classes of \-terms

Restricted classes of \-terms

e M is a Al-term iff for every subterm of the form Ax.N of M, x
occurs at least once free in N:

Restricted classes of \-terms

e M is a Al-term iff for every subterm of the form Ax.N of M, x
occurs at least once free in N:

e M is a BCK-term iff for every subterm of the form Ax.N of
M, x occurs at most once free in N;

Restricted classes of \-terms

e M is a Al-term iff for every subterm of the form Ax.N of M, x
occurs at least once free in N:

e M is a BCK-term iff for every subterm of the form Ax.N of
M, x occurs at most once free in N;

e M is a BCl-term iff for every subterm of the form Ax.N of M,
x occurs exactly once free in N.

Simple Types

Simple Types

- infinite set of type-variables a, b, c, ...;

Simple Types

- infinite set of type-variables a, b, c, ...;

e each type-variable a is a type (atomic);

Simple Types

- infinite set of type-variables a, b, c, ...;
e each type-variable a is a type (atomic);

e if & and [3 are type, then (o — (3) is a type.

Simple Types

- infinite set of type-variables a, b, c, ...;
e each type-variable a is a type (atomic);

e if & and [3 are type, then (o — (3) is a type.

Convention: — associates to the right

Simple Types

- infinite set of type-variables a, b, c, ...;
e each type-variable a is a type (atomic);

e if & and [3 are type, then (o — (3) is a type.

Convention: — associates to the right

a—b—c—d
stands for

(a—(b—(c—d)))

Simple Types

- infinite set of type-variables a, b, c, ...;
e each type-variable a is a type (atomic);

e if & and [3 are type, then (o — (3) is a type.

Convention: — associates to the right
a—-b—c—d
stands for

(a—(b—(c—d)))

Examples: 2, a — a, ((a — b) — a) — a

Type-assignment

Type-assignment

e an expression M : « is a type-assignment (M is called its
subject);

Type-assignment

e an expression M : « is a type-assignment (M is called its
subject);

e a type-context is a finite, perhaps empty, set of
type-assignments

F={x1:a1,...,% : an},

such that xq, ..., x, are distinct term-variables.

The system A\ —-Curry

The system \—-Curry

We say that the type-assignment M : 7 is derivable from a context
I, and write
M= M:r,

iff the formula '~ M : 7 can be produced by the following rules.

The system \—-Curry

We say that the type-assignment M : 7 is derivable from a context
I, and write

M= M:r,

iff the formula '~ M : 7 can be produced by the following rules.

(axiom) (ifx:ael)

N x:«

The system \—-Curry

We say that the type-assignment M : 7 is derivable from a context
I, and write
M= M:r,

iff the formula '~ M : 7 can be produced by the following rules.

(axiom) (ifx:ael)

N x:«

(app) rM-M:a—-p N N:a«a
app T~ MN: 3

The system \—-Curry

We say that the type-assignment M : 7 is derivable from a context
I, and write
M= M:r,

iff the formula '~ M : 7 can be produced by the following rules.

(aX|om) ﬁ (ifXZOéE F)
(app) rM-M:a—-p N N:a«a
app T~ MN: 3

Mx:aa - M:j

(abs) I - MXxXM:a— g

The system \—-Curry

We say that the type-assignment M : 7 is derivable from a context

I, and write
M= M:r,

iff the formula '~ M : 7 can be produced by the following rules.

(aX|om) ﬁ (If X € F)
rMM:a—0 N N:a«
(app) M MN: 3
Mx:aa - M:j
(abs) I - MXxXM:a— g

A deduction A of '~ M : 7 is a tree of formulae, those at the
tops of branches being axioms and those below being deduced
from those immediately above them by a rule ((app) or (abs)) and
with bottom formula ' M : 7.

Related problems:

Related problems:

e Type-checking: Given I, M and 7, is it true that [— M : 77

Related problems:

e Type-checking: Given I, M and 7, is it true that [— M : 77

e Typability: Given M, are there I and 7 such that T~ M : 77
(M is said to be typable)

Related problems:

e Type-checking: Given I, M and 7, is it true that [— M : 77

e Typability: Given M, are there I and 7 such that T~ M : 77
(M is said to be typable)

e [nhabitation: Given I and T, is there M such that '~ M : 77
(If T = 0, we say that 7 is inhabited; also M is called an
inhabitant of 7)

Related problems:

e Type-checking: Given I, M and 7, is it true that [— M : 77

e Typability: Given M, are there I and 7 such that T~ M : 77
(M is said to be typable)

e [nhabitation: Given I and T, is there M such that '~ M : 77
(If T = 0, we say that 7 is inhabited; also M is called an
inhabitant of 7)

All these problems are decidable!

Exercises

o L=

Show that - Ax.x : a — a.

Show that +~ Ax.x : (a — b) — a — b.

Find T and « such that '+~ (Axy.xy)z : a.
Find M such that~ M :a — b — a.

Find M such that+ M : ((a — b) — a) — a.

Properties

Properties

e Confluence (Church-Rosser);

Properties

e Confluence (Church-Rosser);

e strong normalization;

Properties

e Confluence (Church-Rosser);
e strong normalization;

e existence of unique normal forms;

Properties

Confluence (Church-Rosser);

e strong normalization;

existence of unique normal forms;

subject-reduction;

Properties

Confluence (Church-Rosser);

e strong normalization;

existence of unique normal forms;

subject-reduction;

principal types;

The system A —-Church

- term-variables annotated with types: x¢, x?,

The system A —-Church

(67

- term-variables annotated with types: x¢, X2, . Y

e each annotated variable x® is a A-term of type q;

The system A —-Church

- term-variables annotated with types: x¢, X2, . Y
e each annotated variable x® is a A-term of type q;

e if M and N are A-terms, respectively of type a — (5 and «,
then (MN) is a A-term of type (3, (application);

The system A —-Church

- term-variables annotated with types: x¢, X2, . Y
e each annotated variable x® is a A-term of type q;
e if M and N are A-terms, respectively of type a — (5 and «,
then (MN) is a A-term of type (3, (application);
o if M is a A-term of type 5 and x® an annotated variable, then
(Ax®.M) is a A-term of type a — (3, (abstraction).

The system A —-Church

- term-variables annotated with types: x¢, X2, . Y
e each annotated variable x® is a A-term of type q;

e if M and N are A-terms, respectively of type a — (5 and «,
then (MN) is a A-term of type (3, (application);

o if M is a A-term of type 5 and x® an annotated variable, then
(Ax®.M) is a A-term of type a — (3, (abstraction).

Church vs. Curry Differences and similarities...

