λ -calculus and simple types

Sabine Broda Departamento de Ciência de Computadores Faculdade de Ciências da Universidade do Porto

MAP-i, Braga 2007

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 conceived (ca. 1930) as part of a general (later shown inconsistent) theory of functions and logic, intended as a foundation for mathematics;

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- conceived (ca. 1930) as part of a general (later shown inconsistent) theory of functions and logic, intended as a foundation for mathematics;
- all recursive functions can be represented in the (pure) λ-calculus;

- conceived (ca. 1930) as part of a general (later shown inconsistent) theory of functions and logic, intended as a foundation for mathematics;
- all recursive functions can be represented in the (pure) λ -calculus;
- theory modelling functions and their applicative behaviour;

- conceived (ca. 1930) as part of a general (later shown inconsistent) theory of functions and logic, intended as a foundation for mathematics;
- all recursive functions can be represented in the (pure) λ -calculus;
- theory modelling functions and their applicative behaviour;
- concept of function seen as a rule, i.e. process of passing an argument to a value (contrary to the notion of seeing a function as a graph);

- conceived (ca. 1930) as part of a general (later shown inconsistent) theory of functions and logic, intended as a foundation for mathematics;
- all recursive functions can be represented in the (pure) λ -calculus;
- theory modelling functions and their applicative behaviour;
- concept of function seen as a rule, i.e. process of passing an argument to a value (contrary to the notion of seeing a function as a graph);
- this is important for the study of computability and for theory of computation in general, since it emphasizes the computational aspect associated to the notion of function.

$\lambda\text{-terms}$

- infinite set of *term-variables x*, *y*, *z*, ...;

- infinite set of *term-variables x*, *y*, *z*, ...;

• each variable x is a λ -term;

λ -terms

- infinite set of *term-variables x*, *y*, *z*, ...;
 - each variable x is a λ -term;
 - if *M* and *N* are λ -terms, then (*MN*) is a λ -term, (*application*);

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

λ -terms

- infinite set of *term-variables x*, *y*, *z*, ...;
 - each variable x is a λ -term;
 - if *M* and *N* are λ -terms, then (*MN*) is a λ -term, (*application*);

 if M is a λ-term and x a variable, then (λx.M) is a λ-term, (abstraction).

λ -terms

- infinite set of *term-variables x*, *y*, *z*, ...;
 - each variable x is a λ -term;
 - if *M* and *N* are λ -terms, then (*MN*) is a λ -term, (*application*);

 if M is a λ-term and x a variable, then (λx.M) is a λ-term, (abstraction).

Examples: $(\lambda x.x), (x(\lambda y.(xy))), \ldots$

Conventions

• application associates to the left;

MNO stands for ((MN)O)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Conventions

• application associates to the left;

MNO stands for ((MN)O)

• bodies of lambdas extend as far as possible;

 $\lambda x.\lambda y.M$ stands for $\lambda x.(\lambda y.M)$

Conventions

• application associates to the left;

MNO stands for ((MN)O)

• bodies of lambdas extend as far as possible;

 $\lambda x.\lambda y.M$ stands for $\lambda x.(\lambda y.M)$

nested lambdas may be collapsed together;

 $\lambda xy.M$ stands for $\lambda x.(\lambda y.M)$

 all occurrences of a variable x that occur in an expression of the form λx.M are bound;

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- all occurrences of a variable x that occur in an expression of the form λx.M are bound;
- an occurrence of a variable that is not bound is called *free*;

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- all occurrences of a variable x that occur in an expression of the form λx.M are bound;
- an occurrence of a variable that is not bound is called *free*;
- FV(M) is the set of variables with free occurrences in M;

- all occurrences of a variable x that occur in an expression of the form λx.M are bound;
- an occurrence of a variable that is not bound is called *free*;
- FV(M) is the set of variables with free occurrences in M;

• if $FV(M) = \emptyset$ we say that M is closed;

- all occurrences of a variable x that occur in an expression of the form λx.M are bound;
- an occurrence of a variable that is not bound is called *free*;
- FV(M) is the set of variables with free occurrences in M;
- if $FV(M) = \emptyset$ we say that M is closed;
- we will consider λ -terms equivalent up to bound variable renaming, (α -conversion).

- all occurrences of a variable x that occur in an expression of the form λx.M are bound;
- an occurrence of a variable that is not bound is called *free*;
- FV(M) is the set of variables with free occurrences in M;
- if $FV(M) = \emptyset$ we say that M is closed;
- we will consider λ -terms equivalent up to bound variable renaming, (α -conversion).

Examples: $\lambda xy.xyz \equiv_{\alpha} \lambda yu.yuz$, but $(\lambda x.x)z \not\equiv_{\alpha} (\lambda x.y)z$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

The expression M[N/x] denotes the result of substituting in M each free occurrence of x by N and making any changes of bound variables needed to prevent variables free in N from becoming bound in M[N/x].

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The expression M[N/x] denotes the result of substituting in M each free occurrence of x by N and making any changes of bound variables needed to prevent variables free in N from becoming bound in M[N/x].

Example:

$$(\lambda xy.xyz)[(\lambda u.y)/z] \not\equiv \lambda xy.xy(\lambda u.y)$$

The expression M[N/x] denotes the result of substituting in M each free occurrence of x by N and making any changes of bound variables needed to prevent variables free in N from becoming bound in M[N/x].

Example:

1

but

$$(\lambda xy.xyz)[(\lambda u.y)/z] \neq \lambda xy.xy(\lambda u.y)$$
$$(\lambda xy.xyz)[(\lambda u.y)/z] \equiv \lambda xv.xv(\lambda u.y)$$

)

<□> <@> < E> < E> E のQ@

• a term of the form $(\lambda x.M)N$ is called a β -redex;

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

• a term of the form $(\lambda x.M)N$ is called a β -redex;

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• its contractum is the term M[N/x];

- a term of the form (λx.M)N is called a β-redex;
- its contractum is the term M[N/x];
- we write $M \rightarrow_{1\beta} N$, and say that M reduces in one step of β -reduction to N, iff N can be obtained from M by replacing one β -redex in M by its contractum;

- a term of the form (λx.M)N is called a β-redex;
- its contractum is the term M[N/x];
- we write $M \rightarrow_{1\beta} N$, and say that M reduces in one step of β -reduction to N, iff N can be obtained from M by replacing one β -redex in M by its contractum;

• \rightarrow_{β} is the reflexive and transitive closure of $\rightarrow_{1\beta}$;

- a term of the form (λx.M)N is called a β-redex;
- its contractum is the term M[N/x];
- we write M →_{1β} N, and say that M reduces in one step of β-reduction to N, iff N can be obtained from M by replacing one β-redex in M by its contractum;
- \rightarrow_{β} is the reflexive and transitive closure of $\rightarrow_{1\beta}$;
- \equiv_{β} is the reflexive, simetric and transitive closure of $\rightarrow_{1\beta}$.

β -normal forms

<ロ> <@> < E> < E> E のQの

$\beta\text{-normal forms}$

A term *M* is said to be in β-normal form (or β-nf) if it contains no β-redex;
- A term *M* is said to be in β-normal form (or β-nf) if it contains no β-redex;
- we say that *M* has a β -nf if there is some β -nf *N* such that $M \rightarrow_{\beta} N$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- A term *M* is said to be in β-normal form (or β-nf) if it contains no β-redex;
- we say that *M* has a β -nf if there is some β -nf *N* such that $M \rightarrow_{\beta} N$.

Exercise: Reduce the following terms to their β -normal form.

- $(\lambda x.xx)(\lambda x.xx)$
- $(\lambda xy.x)(\lambda x.x)((\lambda x.xx)(\lambda x.xx))$
- $(\lambda x.xx)(\lambda yz.yz).$

- A term *M* is said to be in β-normal form (or β-nf) if it contains no β-redex;
- we say that *M* has a β -nf if there is some β -nf *N* such that $M \rightarrow_{\beta} N$.

Exercise: Reduce the following terms to their β -normal form.

- $(\lambda x.xx)(\lambda x.xx)$
- $(\lambda xy.x)(\lambda x.x)((\lambda x.xx)(\lambda x.xx))$
- $(\lambda x.xx)(\lambda yz.yz).$

Conclusions:

• The term $(\lambda x.xx)(\lambda x.xx)$ has no β -nf since $(\lambda x.xx)(\lambda x.xx) \rightarrow_{1\beta} (\lambda x.xx)(\lambda x.xx)$ $\rightarrow_{1\beta} (\lambda x.xx)(\lambda x.xx)$ $\rightarrow_{1\beta} (\lambda x.xx)(\lambda x.xx)$ $\rightarrow_{1\beta} ...$

- A term *M* is said to be in β-normal form (or β-nf) if it contains no β-redex;
- we say that *M* has a β -nf if there is some β -nf *N* such that $M \rightarrow_{\beta} N$.

Exercise: Reduce the following terms to their β -normal form.

- $(\lambda x.xx)(\lambda x.xx)$
- $(\lambda xy.x)(\lambda x.x)((\lambda x.xx)(\lambda x.xx))$
- $(\lambda x.xx)(\lambda yz.yz).$

Conclusions:

• The term $(\lambda x.xx)(\lambda x.xx)$ has no β -nf since $(\lambda x.xx)(\lambda x.xx) \rightarrow_{1\beta} (\lambda x.xx)(\lambda x.xx)$ $\rightarrow_{1\beta} (\lambda x.xx)(\lambda x.xx)$

 $\rightarrow 1\beta \cdots$

• the term $(\lambda xy.x)(\lambda x.x)((\lambda x.xx)(\lambda x.xx))$ has normal form $\lambda x.x$, but not every reduction sequence leads to this normal form.

Theorem: (Church-Rosser) If $M \rightarrow_{\beta} N_1$ and $M \rightarrow_{\beta} N_2$, then there is a term P such that $N_1 \rightarrow_{\beta} P$ and $N_2 \rightarrow_{\beta} P$.

Theorem: (Church-Rosser) If $M \rightarrow_{\beta} N_1$ and $M \rightarrow_{\beta} N_2$, then there is a term P such that $N_1 \rightarrow_{\beta} P$ and $N_2 \rightarrow_{\beta} P$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Corollary: Every term *M* has at most one β -nf.

Theorem: (Church-Rosser) If $M \rightarrow_{\beta} N_1$ and $M \rightarrow_{\beta} N_2$, then there is a term P such that $N_1 \rightarrow_{\beta} P$ and $N_2 \rightarrow_{\beta} P$.

Corollary: Every term M has at most one β -nf.

Normal order reduction: Deterministic strategy which chooses the leftmost, outermost redex, until there are no more redexes.

Theorem: (Church-Rosser) If $M \rightarrow_{\beta} N_1$ and $M \rightarrow_{\beta} N_2$, then there is a term P such that $N_1 \rightarrow_{\beta} P$ and $N_2 \rightarrow_{\beta} P$.

Corollary: Every term M has at most one β -nf.

Normal order reduction: Deterministic strategy which chooses the leftmost, outermost redex, until there are no more redexes.

Theorem: A term M has a β -nf N iff the normal order reduction of M is finite and ends at N (this is an undecidable problem!).

Theorem: (Church-Rosser) If $M \rightarrow_{\beta} N_1$ and $M \rightarrow_{\beta} N_2$, then there is a term P such that $N_1 \rightarrow_{\beta} P$ and $N_2 \rightarrow_{\beta} P$.

Corollary: Every term *M* has at most one β -nf.

Normal order reduction: Deterministic strategy which chooses the leftmost, outermost redex, until there are no more redexes.

Theorem: A term M has a β -nf N iff the normal order reduction of M is finite and ends at N (this is an undecidable problem!).

Structure of β -nfs: Every β -normal form M is of the form $\lambda x_1 \dots x_n . y N_1 \dots N_m$

with $n, m \ge 0$ and such that N_1, \ldots, N_m are terms in β -normal form.

$\eta\text{-reduction}$

◆□ ▶ < @ ▶ < E ▶ < E ▶ E りへぐ</p>

• a term of the form $\lambda x.Mx$, such that $x \notin FV(M)$, is called an η -redex;

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

• a term of the form $\lambda x.Mx$, such that $x \notin FV(M)$, is called an η -redex;

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• its *contractum* is the term *M*;

• a term of the form $\lambda x.Mx$, such that $x \notin FV(M)$, is called an η -redex;

- its contractum is the term M;
- $\rightarrow_{1\eta}$, \rightarrow_{η} and \equiv_{η} ;

• a term of the form $\lambda x.Mx$, such that $x \notin FV(M)$, is called an η -redex;

- its contractum is the term M;
- $\rightarrow_{1\eta}$, \rightarrow_{η} and \equiv_{η} ;
- all η -reductions are finite;

• a term of the form $\lambda x.Mx$, such that $x \notin FV(M)$, is called an η -redex;

- its contractum is the term M;
- $\rightarrow_{1\eta}$, \rightarrow_{η} and \equiv_{η} ;
- all η -reductions are finite;
- Church-Rosser;

• a term of the form $\lambda x.Mx$, such that $x \notin FV(M)$, is called an η -redex;

- its contractum is the term M;
- $\rightarrow_{1\eta}$, \rightarrow_{η} and \equiv_{η} ;
- all η -reductions are finite;
- Church-Rosser;
- every term has exactly one η -nf;

- a term of the form $\lambda x.Mx$, such that $x \notin FV(M)$, is called an η -redex;
- its contractum is the term M;
- $\rightarrow_{1\eta}$, \rightarrow_{η} and \equiv_{η} ;
- all η-reductions are finite;
- Church-Rosser;
- every term has exactly one η -nf;
- the η -family of a term M is the (finite) set of all terms N such that $M \rightarrow_{\eta} N$.

• a $\beta\eta$ -redex is any β - or η -redex;

• a $\beta\eta$ -redex is any β - or η -redex;

• $\rightarrow_{1\beta\eta}$, $\rightarrow_{\beta\eta}$ and $\equiv_{\beta\eta}$;

• a $\beta\eta$ -redex is any β - or η -redex;

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- $\rightarrow_{1\beta\eta}$, $\rightarrow_{\beta\eta}$ and $\equiv_{\beta\eta}$;
- Church-Rosser;

- a $\beta\eta$ -redex is any β or η -redex;
- $\rightarrow_{1\beta\eta}$, $\rightarrow_{\beta\eta}$ and $\equiv_{\beta\eta}$;
- Church-Rosser;
- every term has at most one $\beta\eta$ -nf;

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- a $\beta\eta$ -redex is any β or η -redex;
- $\rightarrow_{1\beta\eta}$, $\rightarrow_{\beta\eta}$ and $\equiv_{\beta\eta}$;
- Church-Rosser;
- every term has at most one $\beta\eta$ -nf;
- if *M* is a β-nf, then all members of its η-family are β-nfs and exactly one of them is a βη-nf.

$\lambda\text{-definability}$

<ロ> <@> < E> < E> E のQの

Notation:
$$F^n X = \underbrace{F(F(\dots(F X) \dots))}_n$$

• Church numerals: $c_n = \lambda f x. f^n x$, for $n \ge 0$;

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?

Notation:
$$F^n X = \underbrace{F(F(\dots(F X)\dots))}_n$$

• Church numerals: $c_n = \lambda f x. f^n x$, for $n \ge 0$;

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

• $A_+ = \lambda mnfx.mf(nfx);$

Notation:
$$F^n X = \underbrace{F(F(\dots(F X) \dots))}_n$$

• Church numerals: $c_n = \lambda f x. f^n x$, for $n \ge 0$;
• $A_+ = \lambda mnf x. mf(nf x)$;

(show that $A_+c_nc_m \equiv c_{n+m}$)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Notation:
$$F^n X = \underbrace{F(F(\dots(F X)\dots))}_n$$

• Church numerals: $c_n = \lambda fx.f^n x$, for $n \ge 0$;
• $A_+ = \lambda mnfx.mf(nfx)$;

(show that $A_+c_nc_m \equiv c_{n+m}$)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• $A_* = \lambda mnfx.m(nf)x;$

Notation:
$$F^n X = \underbrace{F(F(\dots(F X) \dots))}_n$$

• Church numerals: $c_n = \lambda fx.f^n x$, for $n \ge 0$;
• $A_+ = \lambda mnfx.mf(nfx)$;

(show that
$$A_+c_nc_m \equiv c_{n+m}$$
)

• $A_* = \lambda mnfx.m(nf)x;$

(show that $A_*c_nc_m \equiv c_{n*m}$)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Notation:
$$F^n X = \underbrace{F(F(\dots(F X) \dots))}_n$$

• Church numerals: $c_n = \lambda f x. f^n x$, for $n \ge 0$;
• $A_+ = \lambda mnf x.mf(nf x)$;
(show that $A_+ c_n c_m \equiv c_{n+m}$)

• $A_* = \lambda mnfx.m(nf)x;$

(show that $A_*c_nc_m \equiv c_{n*m}$)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• $A_{exp} = \lambda mnfx.nmfx;$

Notation:
$$F^n X = \underbrace{F(F(\dots(F X) \dots))}_n$$

• Church numerals: $c_n = \lambda f x. f^n x$, for $n \ge 0$;
• $A_+ = \lambda mnf x.mf(nf x)$;
(show that $A_+ c_n c_m \equiv c_{n+m}$)

•
$$A_* = \lambda mnfx.m(nf)x;$$

(show that $A_*c_nc_m \equiv c_{n*m}$)

• $A_{exp} = \lambda mnfx.nmfx;$

(show that $A_{e \times p} c_n c_m \equiv c_{n^m}$)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

(4日) (個) (目) (目) (目) (の)()

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Booleans

Booleans

• true = $\lambda xy.x$;

Booleans

- true = $\lambda xy.x$;
- false = $\lambda xy.y$;

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?
Booleans

- true = $\lambda xy.x$;
- false = $\lambda xy.y$;
- if = $\lambda bxy.bxy$;

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Booleans

- true = $\lambda xy.x$;
- false = $\lambda xy.y$;
- if = $\lambda bxy.bxy$;

(show that if true $M N \equiv M$ and if false $M N \equiv N$)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Booleans

- true = $\lambda xy.x$;
- false = $\lambda xy.y$;
- if = $\lambda bxy.bxy$;

(show that if true $M N \equiv M$ and if false $M N \equiv N$)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Ordered pairs

Booleans

- true = $\lambda xy.x$;
- false = $\lambda xy.y$;
- if = $\lambda bxy.bxy$;

(show that if true $M N \equiv M$ and if false $M N \equiv N$)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Ordered pairs

• pair = $\lambda xyf.fxy$;

Booleans

- true = $\lambda xy.x$;
- false = $\lambda xy.y$;
- if = $\lambda bxy.bxy$;

(show that if true $M N \equiv M$ and if false $M N \equiv N$)

Ordered pairs

- pair = $\lambda xyf.fxy$;
- $fst = \lambda p.p$ true;

Booleans

- true = $\lambda xy.x$;
- false = $\lambda xy.y$;
- if = $\lambda bxy.bxy$;

(show that if true $M N \equiv M$ and if false $M N \equiv N$)

Ordered pairs

- pair = $\lambda xyf.fxy$;
- $fst = \lambda p.p$ true;
- snd = $\lambda p.p$ false;

Booleans

- true = $\lambda xy.x$;
- false = $\lambda xy.y$;
- if = $\lambda bxy.bxy$;

(show that if true $M N \equiv M$ and if false $M N \equiv N$)

Ordered pairs

- pair = $\lambda xyf.fxy$;
- $fst = \lambda p.p$ true;
- snd = $\lambda p.p$ false;

(show that $fst(pair M N) \equiv M$ and ...)

(4日) (個) (目) (目) (目) (の)

• iszero = $\lambda n.n(\lambda x.false)$ true;

• iszero = $\lambda n.n(\lambda x.false)$ true;

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• $suc = \lambda nfx.f(nfx);$

- iszero = $\lambda n.n(\lambda x.false)$ true;
- $suc = \lambda nfx.f(nfx);$
- $prefn = \lambda fp.pair(f(fst p))(fst p);$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- iszero = $\lambda n.n(\lambda x.false)$ true;
- $suc = \lambda nfx.f(nfx);$
- $prefn = \lambda fp.pair(f(fst p))(fst p);$
- pre = $\lambda nfx.snd(n(prefn f)(pair xx));$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- iszero = $\lambda n.n(\lambda x.false)$ true;
- $suc = \lambda nfx.f(nfx);$
- $prefn = \lambda fp.pair(f(fst p))(fst p);$
- pre = $\lambda nfx.snd(n(prefn f)(pair xx));$

• sub = $\lambda mn.n$ pre m;

- iszero = $\lambda n.n(\lambda x.false)$ true;
- $suc = \lambda nfx.f(nfx);$
- $prefn = \lambda fp.pair(f(fst p))(fst p);$
- pre = $\lambda nfx.snd(n(prefn f)(pair xx));$

• sub = $\lambda mn.n$ pre m;

Lists

- iszero = $\lambda n.n(\lambda x.false)$ true;
- $suc = \lambda nfx.f(nfx);$
- $prefn = \lambda fp.pair(f(fst p))(fst p);$
- pre = $\lambda nfx.snd(n(prefn f)(pair xx));$

• $sub = \lambda mn.n pre m;$

Lists

• nil =
$$\lambda z.z$$
;

- iszero = $\lambda n.n(\lambda x.false)$ true;
- $suc = \lambda nfx.f(nfx);$
- $prefn = \lambda fp.pair(f(fst p))(fst p);$
- pre = $\lambda nfx.snd(n(prefn f)(pair xx));$
- $sub = \lambda mn.n pre m;$

Lists

• nil =
$$\lambda z.z$$
;

• cons = λxy .pair false (pair xy);

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- iszero = $\lambda n.n(\lambda x.false)$ true;
- $suc = \lambda nfx.f(nfx);$
- $prefn = \lambda fp.pair(f(fst p))(fst p);$
- pre = $\lambda nfx.snd(n(prefn f)(pair xx));$
- $sub = \lambda mn.n pre m;$

Lists

- nil = $\lambda z.z$;
- cons = λxy .pair false (pair xy);

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

null = fst;

- iszero = $\lambda n.n(\lambda x.false)$ true;
- $suc = \lambda nfx.f(nfx);$
- $prefn = \lambda fp.pair(f(fst p))(fst p);$
- pre = $\lambda nfx.snd(n(prefn f)(pair xx));$
- sub = $\lambda mn.n$ pre m;

Lists

- nil = $\lambda z.z$;
- cons = λxy .pair false (pair xy);

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- null = fst;
- $hd = \lambda z.fst(snd z);$

- iszero = $\lambda n.n(\lambda x.false)$ true;
- $suc = \lambda nfx.f(nfx);$
- $prefn = \lambda fp.pair(f(fst p))(fst p);$
- pre = $\lambda nfx.snd(n(prefn f)(pair xx));$
- sub = $\lambda mn.n$ pre m;

Lists

- nil = $\lambda z.z$;
- cons = λxy .pair false (pair xy);

- null = fst;
- $hd = \lambda z.fst(snd z);$
- $tl = \lambda z.snd(snd z)$.

(4日) (個) (目) (目) (目) (の)

Recursive Functions

• **Y** is a fixed point operator iff $\mathbf{Y}F \equiv F(\mathbf{Y}F)$ for all terms F;

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Recursive Functions

• **Y** is a fixed point operator iff $\mathbf{Y}F \equiv F(\mathbf{Y}F)$ for all terms F;

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

show that Y = λf.(λx.f(xx))(λx.f(xx)) is a fixed point operator (there are many others!);

Recursive Functions

- **Y** is a fixed point operator iff $\mathbf{Y}F \equiv F(\mathbf{Y}F)$ for all terms F;
- show that Y = λf.(λx.f(xx))(λx.f(xx)) is a fixed point operator (there are many others!);
- show that $Mx_1 \dots x_n \equiv PM$ is satisfied by defining $M = \mathbf{Y}(\lambda g x_1 \dots x_n Pg)$, whenever \mathbf{Y} is a fixed point operator;

Recursive Functions

- **Y** is a fixed point operator iff $\mathbf{Y}F \equiv F(\mathbf{Y}F)$ for all terms *F*;
- show that Y = λf.(λx.f(xx))(λx.f(xx)) is a fixed point operator (there are many others!);
- show that $Mx_1 \dots x_n \equiv PM$ is satisfied by defining $M = \mathbf{Y}(\lambda g x_1 \dots x_n P g)$, whenever \mathbf{Y} is a fixed point operator;

• define the functions fact and tail.

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ 三臣 - のへで

M is a λ*I*-term iff for every subterm of the form λx.N of M, x occurs at least once free in N;

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

M is a λ*I*-term iff for every subterm of the form λx.N of M, x occurs at least once free in N;

 M is a BCK-term iff for every subterm of the form λx.N of M, x occurs at most once free in N;

- M is a λ*I*-term iff for every subterm of the form λx.N of M, x occurs at least once free in N;
- M is a BCK-term iff for every subterm of the form λx.N of M, x occurs at most once free in N;
- M is a BCI-term iff for every subterm of the form λx.N of M, x occurs exactly once free in N.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 めんぐ

- infinite set of *type-variables a*, *b*, *c*, ...;

- infinite set of *type-variables a*, *b*, *c*, ...;
 - each type-variable *a* is a type (atomic);

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- infinite set of *type-variables a*, *b*, *c*, ...;
 - each type-variable *a* is a type (atomic);
 - if α and β are type, then $(\alpha \rightarrow \beta)$ is a type.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- infinite set of *type-variables a*, *b*, *c*, ...;
 - each type-variable *a* is a type (atomic);
 - if α and β are type, then $(\alpha \rightarrow \beta)$ is a type.

Convention: \rightarrow associates to the right

- infinite set of *type-variables a*, *b*, *c*, ...;
 - each type-variable a is a type (atomic);
 - if α and β are type, then $(\alpha \rightarrow \beta)$ is a type.

Convention: \rightarrow associates to the right

- infinite set of *type-variables a*, *b*, *c*, ...;
 - each type-variable a is a type (atomic);
 - if α and β are type, then $(\alpha \rightarrow \beta)$ is a type.

Convention: \rightarrow associates to the right

$$egin{array}{c} a o b o c o d \ ext{stands for} \ (a o (b o (c o d))) \end{array}$$

Examples: $a, a \rightarrow a, ((a \rightarrow b) \rightarrow a) \rightarrow a$

Type-assignment

<ロ> <@> < E> < E> E のQの
Type-assignment

an expression M : α is a type-assignment (M is called its subject);

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Type-assignment

- an expression M : α is a type-assignment (M is called its subject);
- a *type-context* is a finite, perhaps empty, set of type-assignments

$$\Gamma = \{x_1 : \alpha_1, \ldots, x_n : \alpha_n\},\$$

such that x_1, \ldots, x_n are <u>distinct</u> term-variables.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?

We say that the type-assignment $M : \tau$ is *derivable from a context* Γ , and write

 $\Gamma \vdash M : \tau,$

We say that the type-assignment $M : \tau$ is *derivable from a context* Γ , and write

$$\Gamma \vdash M : \tau,$$

(axiom)
$$\overline{\Gamma \vdash x : \alpha}$$
 (if $x : \alpha \in \Gamma$)

We say that the type-assignment $M : \tau$ is *derivable from a context* Γ , and write

$$\Gamma \Vdash M : \tau,$$

(axiom)
$$\overline{\Gamma \vdash x : \alpha}$$
 (if $x : \alpha \in \Gamma$)
(app) $\frac{\Gamma \vdash M : \alpha \to \beta}{\Gamma \vdash MN : \beta}$

We say that the type-assignment $M : \tau$ is *derivable from a context* Γ , and write

$$\Gamma \Vdash M : \tau,$$

(axiom)
$$\frac{\Gamma \vdash x : \alpha}{\Gamma \vdash M : \alpha \to \beta} \quad (\text{if } x : \alpha \in \Gamma)$$

(app)
$$\frac{\Gamma \vdash M : \alpha \to \beta}{\Gamma \vdash MN : \beta}$$

(abs)
$$\frac{\Gamma, x : \alpha \vdash M : \beta}{\Gamma \vdash \lambda x \cdot M : \alpha \to \beta}$$

We say that the type-assignment $M : \tau$ is *derivable from a context* Γ , and write

$$\Gamma \Vdash M : \tau,$$

iff the formula $\Gamma \vdash M : \tau$ can be produced by the following rules.

(axiom)
$$- \overline{\Gamma \vdash x : \alpha}$$
 (if $x : \alpha \in \Gamma$)

(app)
$$\frac{\Gamma \vdash M : \alpha \to \beta}{\Gamma \vdash MN : \beta}$$

(abs)
$$\frac{\Gamma, x : \alpha \quad \vdash \quad M : \beta}{\Gamma \quad \vdash \quad \lambda x.M : \alpha \to \beta}$$

A deduction Δ of $\Gamma \vdash M : \tau$ is a tree of formulae, those at the tops of branches being axioms and those below being deduced from those immediately above them by a rule ((app) or (abs)) and with bottom formula $\Gamma \vdash M : \tau$.

• Type-checking: Given Γ , M and τ , is it true that $\Gamma \vdash M : \tau$?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへぐ

- *Type-checking:* Given Γ , M and τ , is it true that $\Gamma \vdash M : \tau$?
- Typability: Given M, are there Γ and τ such that Γ ⊢ M : τ? (M is said to be typable)

- *Type-checking:* Given Γ , M and τ , is it true that $\Gamma \vdash M : \tau$?
- Typability: Given M, are there Γ and τ such that Γ ⊢ M : τ? (M is said to be typable)
- Inhabitation: Given Γ and τ, is there M such that Γ ⊢ M : τ? (If Γ = Ø, we say that τ is inhabited; also M is called an inhabitant of τ)

- *Type-checking:* Given Γ , M and τ , is it true that $\Gamma \vdash M : \tau$?
- Typability: Given M, are there Γ and τ such that Γ ⊢ M : τ? (M is said to be typable)
- Inhabitation: Given Γ and τ, is there M such that Γ ⊢ M : τ? (If Γ = Ø, we say that τ is inhabited; also M is called an inhabitant of τ)

All these problems are decidable!

Exercises

- 1. Show that $\vdash \lambda x.x : a \rightarrow a$.
- 2. Show that $\vdash \lambda x.x : (a \rightarrow b) \rightarrow a \rightarrow b.$
- 3. Find Γ and α such that $\Gamma \vdash (\lambda xy.xy)z : \alpha$.
- 4. Find *M* such that $\vdash M : a \rightarrow b \rightarrow a$.
- 5. Find M such that $\vdash M : ((a \rightarrow b) \rightarrow a) \rightarrow a$.

• Confluence (Church-Rosser);

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

• Confluence (Church-Rosser);

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

strong normalization;

- Confluence (Church-Rosser);
- strong normalization;
- existence of unique normal forms;

- Confluence (Church-Rosser);
- strong normalization;
- existence of unique normal forms;

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

subject-reduction;

- Confluence (Church-Rosser);
- strong normalization;
- existence of unique normal forms;

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- subject-reduction;
- principal types;

- term-variables annotated with types: x^{α} , x^{β} , ..., y^{α} , ...;

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- term-variables annotated with types: x^{α} , x^{β} , ..., y^{α} , ...;
 - each annotated variable x^{α} is a λ -term of type α ;

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- term-variables annotated with types: x^{α} , x^{β} , ..., y^{α} , ...;
 - each annotated variable x^{α} is a λ -term of type α ;
 - if *M* and *N* are λ -terms, respectively of type $\alpha \rightarrow \beta$ and α , then (*MN*) is a λ -term of type β , (*application*);

- term-variables annotated with types: x^{lpha} , x^{eta} , \ldots y^{lpha} , \ldots ;
 - each annotated variable x^{α} is a λ -term of type α ;
 - if *M* and *N* are λ -terms, respectively of type $\alpha \rightarrow \beta$ and α , then (*MN*) is a λ -term of type β , (*application*);
 - if M is a λ -term of type β and x^{α} an annotated variable, then $(\lambda x^{\alpha}.M)$ is a λ -term of type $\alpha \to \beta$, (abstraction).

- term-variables annotated with types: x^{α} , x^{β} , ..., y^{α} , ...;
 - each annotated variable x^{α} is a λ -term of type α ;
 - if *M* and *N* are λ -terms, respectively of type $\alpha \rightarrow \beta$ and α , then (*MN*) is a λ -term of type β , (*application*);
 - if M is a λ -term of type β and x^{α} an annotated variable, then $(\lambda x^{\alpha}.M)$ is a λ -term of type $\alpha \to \beta$, (abstraction).

Church vs. Curry Differences and similarities...