λ-calculus and simple types

Sabine Broda
Departamento de Ciência de Computadores
Faculdade de Ciências da Universidade do Porto

MAP-i, Braga 2007

λ-calculus

λ-calculus

- conceived (ca. 1930) as part of a general (later shown inconsistent) theory of functions and logic, intended as a foundation for mathematics;

λ-calculus

- conceived (ca. 1930) as part of a general (later shown inconsistent) theory of functions and logic, intended as a foundation for mathematics;
- all recursive functions can be represented in the (pure) λ-calculus;

λ-calculus

- conceived (ca. 1930) as part of a general (later shown inconsistent) theory of functions and logic, intended as a foundation for mathematics;
- all recursive functions can be represented in the (pure) λ-calculus;
- theory modelling functions and their applicative behaviour;

λ-calculus

- conceived (ca. 1930) as part of a general (later shown inconsistent) theory of functions and logic, intended as a foundation for mathematics;
- all recursive functions can be represented in the (pure) λ-calculus;
- theory modelling functions and their applicative behaviour;
- concept of function seen as a rule, i.e. process of passing an argument to a value (contrary to the notion of seeing a function as a graph);

λ-calculus

- conceived (ca. 1930) as part of a general (later shown inconsistent) theory of functions and logic, intended as a foundation for mathematics;
- all recursive functions can be represented in the (pure) λ-calculus;
- theory modelling functions and their applicative behaviour;
- concept of function seen as a rule, i.e. process of passing an argument to a value (contrary to the notion of seeing a function as a graph);
- this is important for the study of computability and for theory of computation in general, since it emphasizes the computational aspect associated to the notion of function.
λ-terms

λ-terms

- infinite set of term-variables x, y, z, \ldots;

λ-terms

- infinite set of term-variables x, y, z, \ldots;
- each variable x is a λ-term;

λ-terms

- infinite set of term-variables x, y, z, \ldots;
- each variable x is a λ-term;
- if M and N are λ-terms, then ($M N$) is a λ-term, (application);

λ-terms

- infinite set of term-variables x, y, z, \ldots;
- each variable x is a λ-term;
- if M and N are λ-terms, then ($M N$) is a λ-term, (application);
- if M is a λ-term and x a variable, then $(\lambda x . M)$ is a λ-term, (abstraction).

λ-terms

- infinite set of term-variables x, y, z, \ldots;
- each variable x is a λ-term;
- if M and N are λ-terms, then ($M N$) is a λ-term, (application);
- if M is a λ-term and x a variable, then $(\lambda x . M)$ is a λ-term, (abstraction).

Examples: $(\lambda x \cdot x),(x(\lambda y \cdot(x y))), \ldots$

Conventions

Conventions

- application associates to the left;

MNO stands for $((M N) O)$

Conventions

- application associates to the left;

$$
M N O \text { stands for }((M N) O)
$$

- bodies of lambdas extend as far as possible;
$\lambda x . \lambda y . M$ stands for $\lambda x .(\lambda y . M)$

Conventions

- application associates to the left;

MNO stands for $((M N) O)$

- bodies of lambdas extend as far as possible;

$$
\lambda x . \lambda y . M \text { stands for } \lambda x .(\lambda y . M)
$$

- nested lambdas may be collapsed together;
$\lambda x y . M$ stands for $\lambda x .(\lambda y . M)$

Bound occurrences of variables - α-conversion

Bound occurrences of variables - α-conversion

- all occurrences of a variable x that occur in an expression of the form $\lambda x . M$ are bound;

Bound occurrences of variables - α-conversion

- all occurrences of a variable x that occur in an expression of the form $\lambda x . M$ are bound;
- an occurrence of a variable that is not bound is called free;

Bound occurrences of variables - α-conversion

- all occurrences of a variable x that occur in an expression of the form $\lambda x . M$ are bound;
- an occurrence of a variable that is not bound is called free;
- $F V(M)$ is the set of variables with free occurrences in M;

Bound occurrences of variables - α-conversion

- all occurrences of a variable x that occur in an expression of the form $\lambda x . M$ are bound;
- an occurrence of a variable that is not bound is called free;
- $F V(M)$ is the set of variables with free occurrences in M;
- if $F V(M)=\emptyset$ we say that M is closed;

Bound occurrences of variables - α-conversion

- all occurrences of a variable x that occur in an expression of the form $\lambda x . M$ are bound;
- an occurrence of a variable that is not bound is called free;
- $F V(M)$ is the set of variables with free occurrences in M;
- if $F V(M)=\emptyset$ we say that M is closed;
- we will consider λ-terms equivalent up to bound variable renaming, (α-conversion).

Bound occurrences of variables - α-conversion

- all occurrences of a variable x that occur in an expression of the form $\lambda x . M$ are bound;
- an occurrence of a variable that is not bound is called free;
- $F V(M)$ is the set of variables with free occurrences in M;
- if $F V(M)=\emptyset$ we say that M is closed;
- we will consider λ-terms equivalent up to bound variable renaming, (α-conversion).

Examples: $\lambda x y . x y z \equiv_{\alpha} \lambda y u \cdot y u z$, but $(\lambda x \cdot x) z \not \equiv_{\alpha}(\lambda x \cdot y) z$

Substitution

Substitution

The expression $M[N / x]$ denotes the result of substituting in M each free occurrence of x by N and making any changes of bound variables needed to prevent variables free in N from becoming bound in $M[N / x]$.

Substitution

The expression $M[N / x]$ denotes the result of substituting in M each free occurrence of x by N and making any changes of bound variables needed to prevent variables free in N from becoming bound in $M[N / x]$.

Example:

$$
(\lambda x y . x y z)[(\lambda u \cdot y) / z] \not \equiv \lambda x y \cdot x y(\lambda u \cdot y)
$$

Substitution

The expression $M[N / x]$ denotes the result of substituting in M each free occurrence of x by N and making any changes of bound variables needed to prevent variables free in N from becoming bound in $M[N / x]$.

Example:

$$
(\lambda x y \cdot x y z)[(\lambda u \cdot y) / z] \not \equiv \lambda x y . x y(\lambda u . y)
$$

but

$$
(\lambda x y \cdot x y z)[(\lambda u \cdot y) / z] \equiv \lambda x v \cdot x v(\lambda u \cdot y)
$$

β-reduction

β-reduction

- a term of the form $(\lambda x . M) N$ is called a β-redex;

β-reduction

- a term of the form $(\lambda x . M) N$ is called a β-redex;
- its contractum is the term $M[N / x]$;

β-reduction

- a term of the form $(\lambda x . M) N$ is called a β-redex;
- its contractum is the term $M[N / x]$;
- we write $M \rightarrow_{1 \beta} N$, and say that M reduces in one step of β-reduction to N, iff N can be obtained from M by replacing one β-redex in M by its contractum;

β-reduction

- a term of the form $(\lambda x . M) N$ is called a β-redex;
- its contractum is the term $M[N / x]$;
- we write $M \rightarrow_{1 \beta} N$, and say that M reduces in one step of β-reduction to N, iff N can be obtained from M by replacing one β-redex in M by its contractum;
- \rightarrow_{β} is the reflexive and transitive closure of $\rightarrow_{1 \beta}$;

β-reduction

- a term of the form $(\lambda x . M) N$ is called a β-redex;
- its contractum is the term $M[N / x]$;
- we write $M \rightarrow_{1 \beta} N$, and say that M reduces in one step of β-reduction to N, iff N can be obtained from M by replacing one β-redex in M by its contractum;
- \rightarrow_{β} is the reflexive and transitive closure of $\rightarrow_{1 \beta}$;
- \equiv_{β} is the reflexive, simetric and transitive closure of $\rightarrow_{1 \beta}$.
β-normal forms

β-normal forms

- A term M is said to be in β-normal form (or β-nf) if it contains no β-redex;

β-normal forms

- A term M is said to be in β-normal form (or β-nf) if it contains no β-redex;
- we say that M has a β-nf if there is some β-nf N such that $M \rightarrow{ }_{\beta} N$.

β-normal forms

- A term M is said to be in β-normal form (or β-nf) if it contains no β-redex;
- we say that M has a β-nf if there is some β-nf N such that $M \rightarrow{ }_{\beta} N$.

Exercise: Reduce the following terms to their β-normal form.

- $(\lambda x . x x)(\lambda x . x x)$
- $(\lambda x y . x)(\lambda x . x)((\lambda x . x x)(\lambda x . x x))$
- $(\lambda x . x x)(\lambda y z . y z)$.

β-normal forms

- A term M is said to be in β-normal form (or β-nf) if it contains no β-redex;
- we say that M has a β-nf if there is some β-nf N such that $M \rightarrow{ }_{\beta} N$.

Exercise: Reduce the following terms to their β-normal form.

- $(\lambda x . x x)(\lambda x . x x)$
- $(\lambda x y . x)(\lambda x . x)((\lambda x . x x)(\lambda x . x x))$
- $(\lambda x . x x)(\lambda y z . y z)$.

Conclusions:

- The term $(\lambda x . x x)(\lambda x . x x)$ has no β-nf since

$$
\begin{aligned}
(\lambda x \cdot x x)(\lambda x \cdot x x) & \rightarrow_{1 \beta}(\lambda x \cdot x x)(\lambda x \cdot x x) \\
& \rightarrow_{1 \beta}(\lambda x \cdot x x)(\lambda x \cdot x x) \\
& \rightarrow_{1 \beta} \ldots
\end{aligned}
$$

β-normal forms

- A term M is said to be in β-normal form (or β-nf) if it contains no β-redex;
- we say that M has a β-nf if there is some $\beta-n f N$ such that $M \rightarrow_{\beta} N$.

Exercise: Reduce the following terms to their β-normal form.

- $(\lambda x . x x)(\lambda x . x x)$
- $(\lambda x y . x)(\lambda x . x)((\lambda x . x x)(\lambda x . x x))$
- $(\lambda x . x x)(\lambda y z . y z)$.

Conclusions:

- The term $(\lambda x . x x)(\lambda x . x x)$ has no β-nf since

$$
\begin{aligned}
(\lambda x . x x)(\lambda x . x x) & \rightarrow_{1 \beta}(\lambda x . x x)(\lambda x . x x) \\
& \rightarrow_{1 \beta}(\lambda x . x x)(\lambda x . x x) \\
& \rightarrow_{1 \beta} \ldots
\end{aligned}
$$

- the term $(\lambda x y \cdot x)(\lambda x \cdot x)((\lambda x \cdot x x)(\lambda x \cdot x x))$ has normal form $\lambda x . x$, but not every reduction sequence leads to this normal form.

Confluence

Confluence

Theorem: (Church-Rosser) If $M \rightarrow_{\beta} N_{1}$ and $M \rightarrow_{\beta} N_{2}$, then there is a term P such that $N_{1} \rightarrow_{\beta} P$ and $N_{2} \rightarrow_{\beta} P$.

Confluence

Theorem: (Church-Rosser) If $M \rightarrow_{\beta} N_{1}$ and $M \rightarrow_{\beta} N_{2}$, then there is a term P such that $N_{1} \rightarrow_{\beta} P$ and $N_{2} \rightarrow_{\beta} P$.

Corollary: Every term M has at most one β-nf.

Confluence

Theorem: (Church-Rosser) If $M \rightarrow_{\beta} N_{1}$ and $M \rightarrow_{\beta} N_{2}$, then there is a term P such that $N_{1} \rightarrow_{\beta} P$ and $N_{2} \rightarrow_{\beta} P$.

Corollary: Every term M has at most one β-nf.
Normal order reduction: Deterministic strategy which chooses the leftmost, outermost redex, until there are no more redexes.

Confluence

Theorem: (Church-Rosser) If $M \rightarrow_{\beta} N_{1}$ and $M \rightarrow_{\beta} N_{2}$, then there is a term P such that $N_{1} \rightarrow_{\beta} P$ and $N_{2} \rightarrow_{\beta} P$.

Corollary: Every term M has at most one β-nf.
Normal order reduction: Deterministic strategy which chooses the leftmost, outermost redex, until there are no more redexes.

Theorem: A term M has a β-nf N iff the normal order reduction of M is finite and ends at N (this is an undecidable problem!).

Confluence

Theorem: (Church-Rosser) If $M \rightarrow_{\beta} N_{1}$ and $M \rightarrow_{\beta} N_{2}$, then there is a term P such that $N_{1} \rightarrow_{\beta} P$ and $N_{2} \rightarrow_{\beta} P$.

Corollary: Every term M has at most one β-nf.
Normal order reduction: Deterministic strategy which chooses the leftmost, outermost redex, until there are no more redexes.

Theorem: A term M has a β-nf N iff the normal order reduction of M is finite and ends at N (this is an undecidable problem!).

Structure of β-nfs: Every β-normal form M is of the form

$$
\lambda x_{1} \ldots x_{n} \cdot y N_{1} \ldots N_{m}
$$

with $n, m \geq 0$ and such that N_{1}, \ldots, N_{m} are terms in β-normal form.
η-reduction

η-reduction

- a term of the form $\lambda x . M x$, such that $x \notin F V(M)$, is called an η-redex;

η-reduction

- a term of the form $\lambda x . M x$, such that $x \notin F V(M)$, is called an η-redex;
- its contractum is the term M;

η-reduction

- a term of the form $\lambda x . M x$, such that $x \notin F V(M)$, is called an η-redex;
- its contractum is the term M;
- $\rightarrow_{1 \eta}, \rightarrow_{\eta}$ and \equiv_{η};

η-reduction

- a term of the form $\lambda x . M x$, such that $x \notin F V(M)$, is called an η-redex;
- its contractum is the term M;
- $\rightarrow_{1 \eta}, \rightarrow_{\eta}$ and \equiv_{η};
- all η-reductions are finite;

η-reduction

- a term of the form $\lambda x . M x$, such that $x \notin F V(M)$, is called an η-redex;
- its contractum is the term M;
- $\rightarrow_{1 \eta}, \rightarrow_{\eta}$ and \equiv_{η};
- all η-reductions are finite;
- Church-Rosser;

η-reduction

- a term of the form $\lambda x . M x$, such that $x \notin F V(M)$, is called an η-redex;
- its contractum is the term M;
- $\rightarrow_{1 \eta}, \rightarrow_{\eta}$ and \equiv_{η};
- all η-reductions are finite;
- Church-Rosser;
- every term has exactly one η-nf;

η-reduction

- a term of the form $\lambda x . M x$, such that $x \notin F V(M)$, is called an η-redex;
- its contractum is the term M;
- $\rightarrow_{1 \eta}, \rightarrow_{\eta}$ and \equiv_{η};
- all η-reductions are finite;
- Church-Rosser;
- every term has exactly one η-nf;
- the η-family of a term M is the (finite) set of all terms N such that $M \rightarrow{ }_{\eta} N$.
$\beta \eta$-reduction

$\beta \eta$-reduction

- a $\beta \eta$-redex is any β - or η-redex;

$\beta \eta$-reduction

- a $\beta \eta$-redex is any β - or η-redex;
- $\rightarrow_{1 \beta \eta}, \rightarrow_{\beta \eta}$ and $\equiv_{\beta \eta}$;

$\beta \eta$-reduction

- a $\beta \eta$-redex is any β - or η-redex;
- $\rightarrow_{1 \beta \eta}, \rightarrow_{\beta \eta}$ and $\equiv_{\beta \eta}$;
- Church-Rosser;

$\beta \eta$-reduction

- a $\beta \eta$-redex is any β - or η-redex;
- $\rightarrow_{1 \beta \eta}, \rightarrow_{\beta \eta}$ and $\equiv_{\beta \eta}$;
- Church-Rosser;
- every term has at most one $\beta \eta$-nf;

$\beta \eta$-reduction

- a $\beta \eta$-redex is any β - or η-redex;
- $\rightarrow_{1 \beta \eta}, \rightarrow_{\beta \eta}$ and $\equiv_{\beta \eta}$;
- Church-Rosser;
- every term has at most one $\beta \eta$-nf;
- if M is a β-nf, then all members of its η-family are β-nfs and exactly one of them is a $\beta \eta$-nf.

λ-definability

λ-definability

Notation: $F^{n} X=\underbrace{F(F(\ldots(F X) \ldots))}_{n}$

- Church numerals: $c_{n}=\lambda f x . f^{n} x$, for $n \geq 0$;

λ-definability

Notation: $F^{n} X=\underbrace{F(F(\ldots(F X) \ldots))}_{n}$

- Church numerals: $c_{n}=\lambda f x . f^{n} x$, for $n \geq 0$;
- $A_{+}=\lambda m n f x . m f(n f x)$;

λ-definability

Notation: $F^{n} X=\underbrace{F(F(\ldots(F}_{n} X) \ldots))$

- Church numerals: $c_{n}=\lambda f x . f^{n} x$, for $n \geq 0$;
- $A_{+}=\lambda m n f x . m f(n f x)$;
(show that $A_{+} c_{n} c_{m} \equiv c_{n+m}$)

λ-definability

Notation: $F^{n} X=\underbrace{F(F(\ldots(F}_{n} X) \ldots))$

- Church numerals: $c_{n}=\lambda f x . f^{n} x$, for $n \geq 0$;
- $A_{+}=\lambda m n f x . m f(n f x)$;
(show that $A_{+} c_{n} c_{m} \equiv c_{n+m}$)
- $A_{*}=\lambda m n f x \cdot m(n f) x$;

λ-definability

Notation: $F^{n} X=\underbrace{F(F(\ldots(F}_{n} X) \ldots))$

- Church numerals: $c_{n}=\lambda f x . f^{n} x$, for $n \geq 0$;
- $A_{+}=\lambda m n f x . m f(n f x)$;
(show that $A_{+} c_{n} c_{m} \equiv c_{n+m}$)
- $A_{*}=\lambda m n f x \cdot m(n f) x$;
(show that $A_{*} c_{n} c_{m} \equiv c_{n * m}$)

λ-definability

Notation: $F^{n} X=\underbrace{F(F(\ldots(F}_{n} X) \ldots))$

- Church numerals: $c_{n}=\lambda f x . f^{n} x$, for $n \geq 0$;
- $A_{+}=\lambda m n f x . m f(n f x)$;
(show that $A_{+} c_{n} c_{m} \equiv c_{n+m}$)
- $A_{*}=\lambda m n f x . m(n f) x ;$
(show that $A_{*} c_{n} c_{m} \equiv c_{n * m}$)
- $A_{\text {exp }}=\lambda m n f x . n m f x ;$

λ-definability

Notation: $F^{n} X=\underbrace{F(F(\ldots(F X) \ldots))}_{n}$

- Church numerals: $c_{n}=\lambda f x . f^{n} x$, for $n \geq 0$;
- $A_{+}=\lambda m n f x . m f(n f x)$;
(show that $A_{+} c_{n} c_{m} \equiv c_{n+m}$)
- $A_{*}=\lambda m n f x \cdot m(n f) x$;
(show that $A_{*} c_{n} c_{m} \equiv c_{n * m}$)
- $A_{\text {exp }}=\lambda m n f x . n m f x ;$
(show that $A_{\exp } c_{n} c_{m} \equiv c_{n^{m}}$)

λ-definability (cont.)

λ-definability (cont.)

Booleans

λ-definability (cont.)

Booleans

- true $=\lambda x y . x$;

λ-definability (cont.)

Booleans

- true $=\lambda x y . x$;
- fal se $=\lambda x y . y$;

λ-definability (cont.)

Booleans

- true $=\lambda x y . x$;
- $\mathrm{false}=\lambda x y . y$;
- if $=\lambda b x y . b x y$;

λ-definability (cont.)

Booleans

- true $=\lambda x y . x$;
- false $=\lambda x y \cdot y$;
- $\operatorname{if}=\lambda b x y . b x y$;
(show that if true $M N \equiv M$ and iffalse $M N \equiv N$)

λ-definability (cont.)

Booleans

- true $=\lambda x y . x$;
- false $=\lambda x y \cdot y$;
- $\operatorname{if}=\lambda b x y . b x y$;
(show that if true $M N \equiv M$ and if false $M N \equiv N$)
Ordered pairs

λ-definability (cont.)

Booleans

- true $=\lambda x y . x$;
- false $=\lambda x y . y$;
- if $=\lambda b x y . b x y$;
(show that if true $M N \equiv M$ and if false $M \equiv N$)

Ordered pairs

- pair $=\lambda x y f . f x y ;$

λ-definability (cont.)

Booleans

- true $=\lambda x y . x$;
- false $=\lambda x y . y$;
- if $=\lambda b x y . b x y$;
(show that if true $M N$ and if false $M N \equiv N$)
Ordered pairs
- pair $=\lambda x y f . f x y ;$
- $\mathrm{fst}=\lambda p . p$ true;

λ-definability (cont.)

Booleans

- true $=\lambda x y . x$;
- false $=\lambda x y . y$;
- if $=\lambda b x y . b x y$;
(show that if true $M N \equiv M$ and iffalse $M N \equiv N$)
Ordered pairs
- pair $=\lambda x y f . f x y ;$
- $\mathrm{fst}=\lambda p . p$ true;
- $\operatorname{snd}=\lambda p . p$ false;

λ-definability (cont.)

Booleans

- true $=\lambda x y . x$;
- $\mathrm{false}=\lambda x y . y$;
- if $=\lambda b x y . b x y$;
(show that if true $M N \equiv M$ and if false $M N \equiv N$)
Ordered pairs
- pair $=\lambda x y f . f x y ;$
- $\mathrm{fst}=\lambda p . p$ true;
- $\operatorname{snd}=\lambda p . p$ false;
(show that $\operatorname{fst}($ pair $M N) \equiv M$ and...)

λ-definability (cont.)

λ-definability (cont.)

- iszero $=\lambda n . n(\lambda x . f a l s e)$ true;

λ-definability (cont.)

- iszero $=\lambda n . n(\lambda x . f a l s e)$ true;
- suc $=\lambda n f x . f(n f x)$;

λ-definability (cont.)

- iszero $=\lambda n . n(\lambda x . f a l s e)$ true;
- $\operatorname{suc}=\lambda n f x . f(n f x)$;
- prefn $=\lambda f p . \operatorname{pair}(f(f s t p))($ fst $p)$;

λ-definability (cont.)

- iszero $=\lambda n . n(\lambda x . f a l s e)$ true;
- $\operatorname{suc}=\lambda n f x . f(n f x)$;
- $\operatorname{prefn}=\lambda f p . \operatorname{pair}(f(\mathrm{fst} p))($ fst $p)$;
- $\operatorname{pre}=\lambda n f x \cdot \operatorname{snd}(n(\operatorname{prefn} f)(\operatorname{pair} x x))$;

λ-definability (cont.)

- iszero $=\lambda n . n(\lambda x . f a l s e)$ true;
- $\operatorname{suc}=\lambda n f x . f(n f x)$;
- $\operatorname{prefn}=\lambda f p . \operatorname{pair}(f($ fst $p))($ fst $p)$;
- $\operatorname{pre}=\lambda n f x \cdot \operatorname{snd}(n(\operatorname{prefn} f)(\operatorname{pair} x x))$;
- $\operatorname{sub}=\lambda m n . n$ pre $m ;$

λ-definability (cont.)

- iszero $=\lambda n . n(\lambda x . f a l s e)$ true;
- $\operatorname{suc}=\lambda n f x . f(n f x)$;
- $\operatorname{prefn}=\lambda f p . \operatorname{pair}(f($ fst $p))($ fst $p)$;
- $\operatorname{pre}=\lambda n f x \cdot \operatorname{snd}(n(\operatorname{prefn} f)(\operatorname{pair} x x))$;
- $\operatorname{sub}=\lambda m n . n$ pre $m ;$

Lists

λ-definability (cont.)

- iszero $=\lambda n . n(\lambda x . f a l s e)$ true;
- $\operatorname{suc}=\lambda n f x . f(n f x)$;
- $\operatorname{prefn}=\lambda f p . \operatorname{pair}(f($ fst $p))($ fst $p)$;
- $\operatorname{pre}=\lambda n f x \cdot \operatorname{snd}(n(\operatorname{prefn} f)(\operatorname{pair} x x))$;
- $\operatorname{sub}=\lambda m n . n$ pre $m ;$

Lists

- nil $=\lambda z . z ;$

λ-definability (cont.)

- iszero $=\lambda n . n(\lambda x . f a l s e)$ true;
- $\operatorname{suc}=\lambda n f x . f(n f x)$;
- $\operatorname{prefn}=\lambda f p . \operatorname{pair}(f($ fst $p))($ fst $p)$;
- $\operatorname{pre}=\lambda n f x \cdot \operatorname{snd}(n(\operatorname{prefn} f)(\operatorname{pair} x x))$;
- $\operatorname{sub}=\lambda m n . n$ pre $m ;$

Lists

- nil $=\lambda z . z ;$
- cons $=\lambda x y$.pairfalse (pair $x y$);

λ-definability (cont.)

- iszero $=\lambda n . n(\lambda x . f a l s e)$ true;
- $\operatorname{suc}=\lambda n f x . f(n f x)$;
- $\operatorname{prefn}=\lambda f p . \operatorname{pair}(f($ fst $p))($ fst $p)$;
- $\operatorname{pre}=\lambda n f x \cdot \operatorname{snd}(n(\operatorname{prefn} f)(\operatorname{pair} x x))$;
- $\operatorname{sub}=\lambda m n . n$ pre $m ;$

Lists

- nil $=\lambda z . z ;$
- cons $=\lambda x y$.pairfalse (pair $x y$);
- null $=f$ ft;

λ-definability (cont.)

- iszero $=\lambda n . n(\lambda x . f a l s e)$ true;
- $\operatorname{suc}=\lambda n f x . f(n f x)$;
- $\operatorname{prefn}=\lambda f p . \operatorname{pair}(f($ fst $p))($ fst $p)$;
- $\operatorname{pre}=\lambda n f x \cdot \operatorname{snd}(n(\operatorname{prefn} f)(\operatorname{pair} x x))$;
- $\operatorname{sub}=\lambda m n . n$ pre $m ;$

Lists

- nil $=\lambda z . z ;$
- cons $=\lambda x y$.pairfalse (pair $x y$);
- null $=f$ ft;
- hd $=\lambda z . f$ st $(\operatorname{snd} z)$;

λ-definability (cont.)

- iszero $=\lambda n . n(\lambda x . f a l s e)$ true;
- $\operatorname{suc}=\lambda n f x . f(n f x)$;
- $\operatorname{prefn}=\lambda f p . \operatorname{pair}(f($ fst $p))($ fst $p)$;
- $\operatorname{pre}=\lambda n f x \cdot \operatorname{snd}(n(\operatorname{prefn} f)($ pair $x x))$;
- $\operatorname{sub}=\lambda m n . n$ pre $m ;$

Lists

- nil $=\lambda z . z ;$
- cons $=\lambda x y$.pairfalse (pair $x y$);
- null $=f$ ft;
- hd $=\lambda z . f$ st $(\operatorname{snd} z)$;
- $\mathrm{tl}=\lambda z$. snd $(\operatorname{snd} z)$.

λ-definability (cont.)

λ-definability (cont.)

Recursive Functions

- \mathbf{Y} is a fixed point operator iff $\mathbf{Y} F \equiv F(\mathbf{Y} F)$ for all terms F;

λ-definability (cont.)

Recursive Functions

- \mathbf{Y} is a fixed point operator iff $\mathbf{Y} F \equiv F(\mathbf{Y} F)$ for all terms F;
- show that $\mathbf{Y}=\lambda f .(\lambda x . f(x x))(\lambda x . f(x x))$ is a fixed point operator (there are many others!);

λ-definability (cont.)

Recursive Functions

- \mathbf{Y} is a fixed point operator iff $\mathbf{Y} F \equiv F(\mathbf{Y} F)$ for all terms F;
- show that $\mathbf{Y}=\lambda f .(\lambda x . f(x x))(\lambda x . f(x x))$ is a fixed point operator (there are many others!);
- show that $M x_{1} \ldots x_{n} \equiv P M$ is satisfied by defining $M=\mathbf{Y}\left(\lambda g x_{1} \ldots x_{n} . P g\right)$, whenever \mathbf{Y} is a fixed point operator;

λ-definability (cont.)

Recursive Functions

- \mathbf{Y} is a fixed point operator iff $\mathbf{Y} F \equiv F(\mathbf{Y} F)$ for all terms F;
- show that $\mathbf{Y}=\lambda f .(\lambda x . f(x x))(\lambda x . f(x x))$ is a fixed point operator (there are many others!);
- show that $M x_{1} \ldots x_{n} \equiv P M$ is satisfied by defining $M=\mathbf{Y}\left(\lambda g x_{1} \ldots x_{n} . P g\right)$, whenever \mathbf{Y} is a fixed point operator;
- define the functions fact and tail.

Restricted classes of λ-terms

Restricted classes of λ-terms

- M is a $\lambda /$-term iff for every subterm of the form $\lambda x . N$ of M, x occurs at least once free in N;

Restricted classes of λ-terms

- M is a $\lambda /$-term iff for every subterm of the form $\lambda x . N$ of M, x occurs at least once free in N;
- M is a BCK-term iff for every subterm of the form $\lambda x . N$ of M, x occurs at most once free in N;

Restricted classes of λ-terms

- M is a $\lambda /$-term iff for every subterm of the form $\lambda x . N$ of M, x occurs at least once free in N;
- M is a BCK-term iff for every subterm of the form $\lambda x . N$ of M, x occurs at most once free in N;
- M is a BCl -term iff for every subterm of the form $\lambda x . N$ of M, x occurs exactly once free in N.

Simple Types

Simple Types

- infinite set of type-variables a, b, c, \ldots;

Simple Types

- infinite set of type-variables a, b, c, \ldots;
- each type-variable a is a type (atomic);

Simple Types

- infinite set of type-variables a, b, c, \ldots;
- each type-variable a is a type (atomic);
- if α and β are type, then $(\alpha \rightarrow \beta)$ is a type.

Simple Types

- infinite set of type-variables a, b, c, \ldots;
- each type-variable a is a type (atomic);
- if α and β are type, then $(\alpha \rightarrow \beta)$ is a type.

Convention: \rightarrow associates to the right

Simple Types

- infinite set of type-variables a, b, c, \ldots;
- each type-variable a is a type (atomic);
- if α and β are type, then $(\alpha \rightarrow \beta)$ is a type.

Convention: \rightarrow associates to the right

$$
\begin{gathered}
a \rightarrow b \rightarrow c \rightarrow d \\
\text { stands for } \\
(a \rightarrow(b \rightarrow(c \rightarrow d)))
\end{gathered}
$$

Simple Types

- infinite set of type-variables a, b, c, \ldots;
- each type-variable a is a type (atomic);
- if α and β are type, then $(\alpha \rightarrow \beta)$ is a type.

Convention: \rightarrow associates to the right

$$
\begin{gathered}
a \rightarrow b \rightarrow c \rightarrow d \\
\text { stands for } \\
(a \rightarrow(b \rightarrow(c \rightarrow d)))
\end{gathered}
$$

Examples: $a, a \rightarrow a,((a \rightarrow b) \rightarrow a) \rightarrow a$

Type-assignment

Type-assignment

- an expression $M: \alpha$ is a type-assignment (M is called its subject);

Type-assignment

- an expression $M: \alpha$ is a type-assignment (M is called its subject);
- a type-context is a finite, perhaps empty, set of type-assignments

$$
\Gamma=\left\{x_{1}: \alpha_{1}, \ldots, x_{n}: \alpha_{n}\right\}
$$

such that x_{1}, \ldots, x_{n} are distinct term-variables.

The system $\lambda \rightarrow$-Curry

The system $\lambda \rightarrow$-Curry

We say that the type-assignment $M: \tau$ is derivable from a context Γ, and write

$$
\ulcorner\vdash M: \tau,
$$

iff the formula $\Gamma \vdash M: \tau$ can be produced by the following rules.

The system $\lambda \rightarrow$-Curry

We say that the type-assignment $M: \tau$ is derivable from a context Γ, and write

$$
\ulcorner\vdash M: \tau
$$

iff the formula $\Gamma \vdash M: \tau$ can be produced by the following rules.
(axiom) $\Gamma \vdash x: \alpha \quad($ if $x: \alpha \in \Gamma)$

The system $\lambda \rightarrow$-Curry

We say that the type-assignment $M: \tau$ is derivable from a context Γ, and write

$$
\Gamma \vdash M: \tau
$$

iff the formula $\Gamma \vdash M: \tau$ can be produced by the following rules.
$\begin{array}{ll}\text { (axiom) } \overline{\Gamma \vdash x: \alpha} & \text { (if } x: \alpha \in \Gamma \text {) } \\ \text { (app) } \frac{\Gamma \vdash M: \alpha \rightarrow \beta}{\Gamma \vdash M N: \beta} & \Gamma \vdash N: \alpha \\ \end{array}$

The system $\lambda \rightarrow$-Curry

We say that the type-assignment $M: \tau$ is derivable from a context Γ, and write

$$
\ulcorner\vdash M: \tau,
$$

iff the formula $\Gamma \vdash M: \tau$ can be produced by the following rules.
(axiom) $\Gamma \vdash x: \alpha \quad($ if $x: \alpha \in \Gamma)$
(app) $\frac{\Gamma \vdash M: \alpha \rightarrow \beta}{\Gamma \vdash M N: \beta}$
$(\mathrm{abs}) \frac{\Gamma, x: \alpha \vdash M: \beta}{\Gamma} \vdash \vdash \lambda x \cdot M: \alpha \rightarrow \beta$

The system $\lambda \rightarrow$-Curry

We say that the type-assignment $M: \tau$ is derivable from a context Γ, and write

$$
\Gamma \vdash M: \tau
$$

iff the formula $\Gamma \vdash M: \tau$ can be produced by the following rules.

$$
\begin{aligned}
& \text { (axiom) } \overline{\Gamma \vdash x: \alpha} \quad(\text { if } x: \alpha \in \Gamma) \\
& (\text { app }) \frac{\Gamma \vdash M: \alpha \rightarrow \beta}{\Gamma \vdash M N: \beta} \quad \Gamma \vdash N: \alpha \\
& (\text { abs }) \frac{\Gamma, x: \alpha \vdash M: \beta}{\Gamma} \vdash \lambda x \cdot M: \alpha \rightarrow \beta
\end{aligned}
$$

A deduction Δ of $\Gamma \vdash M: \tau$ is a tree of formulae, those at the tops of branches being axioms and those below being deduced from those immediately above them by a rule ((app) or (abs)) and with bottom formula $Г \vdash M: \tau$.

Related problems:

Related problems:

- Type-checking: Given Γ, M and τ, is it true that $\Gamma \vdash M: \tau$?

Related problems:

- Type-checking: Given Γ, M and τ, is it true that $\Gamma \vdash M: \tau$?
- Typability: Given M, are there Γ and τ such that $\Gamma \vdash M: \tau$? (M is said to be typable)

Related problems:

- Type-checking: Given Γ, M and τ, is it true that $\Gamma \vdash M: \tau$?
- Typability: Given M, are there Γ and τ such that $\Gamma \vdash M: \tau$? (M is said to be typable)
- Inhabitation: Given Γ and τ, is there M such that $\Gamma \vdash M: \tau$? (If $\Gamma=\emptyset$, we say that τ is inhabited; also M is called an inhabitant of τ)

Related problems:

- Type-checking: Given Γ, M and τ, is it true that $\Gamma \vdash M: \tau$?
- Typability: Given M, are there Γ and τ such that $\Gamma \vdash M: \tau$? (M is said to be typable)
- Inhabitation: Given Γ and τ, is there M such that $\Gamma \vdash M: \tau$? (If $\Gamma=\emptyset$, we say that τ is inhabited; also M is called an inhabitant of τ)
All these problems are decidable!

Exercises

1. Show that $\vdash \lambda x \cdot x: a \rightarrow a$.
2. Show that $\vdash \lambda x \cdot x:(a \rightarrow b) \rightarrow a \rightarrow b$.
3. Find Γ and α such that $\Gamma \vdash(\lambda x y \cdot x y) z: \alpha$.
4. Find M such that $\vdash M: a \rightarrow b \rightarrow a$.
5. Find M such that $\vdash M:((a \rightarrow b) \rightarrow a) \rightarrow a$.

Properties

Properties

- Confluence (Church-Rosser);

Properties

- Confluence (Church-Rosser);
- strong normalization;

Properties

- Confluence (Church-Rosser);
- strong normalization;
- existence of unique normal forms;

Properties

- Confluence (Church-Rosser);
- strong normalization;
- existence of unique normal forms;
- subject-reduction;

Properties

- Confluence (Church-Rosser);
- strong normalization;
- existence of unique normal forms;
- subject-reduction;
- principal types;

The system $\lambda \rightarrow$-Church

- term-variables annotated with types: $x^{\alpha}, x^{\beta}, \ldots y^{\alpha}, \ldots$;

The system $\lambda \rightarrow$-Church

- term-variables annotated with types: $x^{\alpha}, x^{\beta}, \ldots y^{\alpha}, \ldots$;
- each annotated variable x^{α} is a λ-term of type α;

The system $\lambda \rightarrow$-Church

- term-variables annotated with types: $x^{\alpha}, x^{\beta}, \ldots y^{\alpha}, \ldots$;
- each annotated variable x^{α} is a λ-term of type α;
- if M and N are λ-terms, respectively of type $\alpha \rightarrow \beta$ and α, then (MN) is a λ-term of type β, (application);

The system $\lambda \rightarrow$-Church

- term-variables annotated with types: $x^{\alpha}, x^{\beta}, \ldots y^{\alpha}, \ldots$;
- each annotated variable x^{α} is a λ-term of type α;
- if M and N are λ-terms, respectively of type $\alpha \rightarrow \beta$ and α, then (MN) is a λ-term of type β, (application);
- if M is a λ-term of type β and x^{α} an annotated variable, then $\left(\lambda x^{\alpha} \cdot M\right)$ is a λ-term of type $\alpha \rightarrow \beta$, (abstraction).

The system $\lambda \rightarrow$-Church

- term-variables annotated with types: $x^{\alpha}, x^{\beta}, \ldots y^{\alpha}, \ldots$;
- each annotated variable x^{α} is a λ-term of type α;
- if M and N are λ-terms, respectively of type $\alpha \rightarrow \beta$ and α, then ($M N$) is a λ-term of type β, (application);
- if M is a λ-term of type β and x^{α} an annotated variable, then $\left(\lambda x^{\alpha} \cdot M\right)$ is a λ-term of type $\alpha \rightarrow \beta$, (abstraction).

Church vs. Curry Differences and similarities...

