
λ-calculus and simple types

Sabine Broda
Departamento de Ciência de Computadores

Faculdade de Ciências da Universidade do Porto

MAP-i, Braga 2007



λ-calculus

• conceived (ca. 1930) as part of a general (later shown
inconsistent) theory of functions and logic, intended as a
foundation for mathematics;

• all recursive functions can be represented in the (pure)
λ-calculus;

• theory modelling functions and their applicative behaviour;

• concept of function seen as a rule, i.e. process of passing an
argument to a value (contrary to the notion of seeing a
function as a graph);

• this is important for the study of computability and for theory
of computation in general, since it emphasizes the
computational aspect associated to the notion of function.



λ-calculus

• conceived (ca. 1930) as part of a general (later shown
inconsistent) theory of functions and logic, intended as a
foundation for mathematics;

• all recursive functions can be represented in the (pure)
λ-calculus;

• theory modelling functions and their applicative behaviour;

• concept of function seen as a rule, i.e. process of passing an
argument to a value (contrary to the notion of seeing a
function as a graph);

• this is important for the study of computability and for theory
of computation in general, since it emphasizes the
computational aspect associated to the notion of function.



λ-calculus

• conceived (ca. 1930) as part of a general (later shown
inconsistent) theory of functions and logic, intended as a
foundation for mathematics;

• all recursive functions can be represented in the (pure)
λ-calculus;

• theory modelling functions and their applicative behaviour;

• concept of function seen as a rule, i.e. process of passing an
argument to a value (contrary to the notion of seeing a
function as a graph);

• this is important for the study of computability and for theory
of computation in general, since it emphasizes the
computational aspect associated to the notion of function.



λ-calculus

• conceived (ca. 1930) as part of a general (later shown
inconsistent) theory of functions and logic, intended as a
foundation for mathematics;

• all recursive functions can be represented in the (pure)
λ-calculus;

• theory modelling functions and their applicative behaviour;

• concept of function seen as a rule, i.e. process of passing an
argument to a value (contrary to the notion of seeing a
function as a graph);

• this is important for the study of computability and for theory
of computation in general, since it emphasizes the
computational aspect associated to the notion of function.



λ-calculus

• conceived (ca. 1930) as part of a general (later shown
inconsistent) theory of functions and logic, intended as a
foundation for mathematics;

• all recursive functions can be represented in the (pure)
λ-calculus;

• theory modelling functions and their applicative behaviour;

• concept of function seen as a rule, i.e. process of passing an
argument to a value (contrary to the notion of seeing a
function as a graph);

• this is important for the study of computability and for theory
of computation in general, since it emphasizes the
computational aspect associated to the notion of function.



λ-calculus

• conceived (ca. 1930) as part of a general (later shown
inconsistent) theory of functions and logic, intended as a
foundation for mathematics;

• all recursive functions can be represented in the (pure)
λ-calculus;

• theory modelling functions and their applicative behaviour;

• concept of function seen as a rule, i.e. process of passing an
argument to a value (contrary to the notion of seeing a
function as a graph);

• this is important for the study of computability and for theory
of computation in general, since it emphasizes the
computational aspect associated to the notion of function.



λ-terms

- infinite set of term-variables x , y , z , . . . ;

• each variable x is a λ-term;

• if M and N are λ-terms, then (MN) is a λ-term, (application);

• if M is a λ-term and x a variable, then (λx .M) is a λ-term,
(abstraction).

Examples: (λx .x), (x(λy .(xy))),. . .



λ-terms

- infinite set of term-variables x , y , z , . . . ;

• each variable x is a λ-term;

• if M and N are λ-terms, then (MN) is a λ-term, (application);

• if M is a λ-term and x a variable, then (λx .M) is a λ-term,
(abstraction).

Examples: (λx .x), (x(λy .(xy))),. . .



λ-terms

- infinite set of term-variables x , y , z , . . . ;

• each variable x is a λ-term;

• if M and N are λ-terms, then (MN) is a λ-term, (application);

• if M is a λ-term and x a variable, then (λx .M) is a λ-term,
(abstraction).

Examples: (λx .x), (x(λy .(xy))),. . .



λ-terms

- infinite set of term-variables x , y , z , . . . ;

• each variable x is a λ-term;

• if M and N are λ-terms, then (MN) is a λ-term, (application);

• if M is a λ-term and x a variable, then (λx .M) is a λ-term,
(abstraction).

Examples: (λx .x), (x(λy .(xy))),. . .



λ-terms

- infinite set of term-variables x , y , z , . . . ;

• each variable x is a λ-term;

• if M and N are λ-terms, then (MN) is a λ-term, (application);

• if M is a λ-term and x a variable, then (λx .M) is a λ-term,
(abstraction).

Examples: (λx .x), (x(λy .(xy))),. . .



λ-terms

- infinite set of term-variables x , y , z , . . . ;

• each variable x is a λ-term;

• if M and N are λ-terms, then (MN) is a λ-term, (application);

• if M is a λ-term and x a variable, then (λx .M) is a λ-term,
(abstraction).

Examples: (λx .x), (x(λy .(xy))),. . .



Conventions

• application associates to the left;

MNO stands for ((MN)O)

• bodies of lambdas extend as far as possible;

λx .λy .M stands for λx .(λy .M)

• nested lambdas may be collapsed together;

λxy .M stands for λx .(λy .M)



Conventions

• application associates to the left;

MNO stands for ((MN)O)

• bodies of lambdas extend as far as possible;

λx .λy .M stands for λx .(λy .M)

• nested lambdas may be collapsed together;

λxy .M stands for λx .(λy .M)



Conventions

• application associates to the left;

MNO stands for ((MN)O)

• bodies of lambdas extend as far as possible;

λx .λy .M stands for λx .(λy .M)

• nested lambdas may be collapsed together;

λxy .M stands for λx .(λy .M)



Conventions

• application associates to the left;

MNO stands for ((MN)O)

• bodies of lambdas extend as far as possible;

λx .λy .M stands for λx .(λy .M)

• nested lambdas may be collapsed together;

λxy .M stands for λx .(λy .M)



Bound occurrences of variables - α-conversion

• all occurrences of a variable x that occur in an expression of
the form λx .M are bound;

• an occurrence of a variable that is not bound is called free;

• FV (M) is the set of variables with free occurrences in M;

• if FV (M) = ∅ we say that M is closed;

• we will consider λ-terms equivalent up to bound variable
renaming, (α-conversion).

Examples: λxy .xyz ≡α λyu.yuz , but (λx .x)z 6≡α (λx .y)z



Bound occurrences of variables - α-conversion

• all occurrences of a variable x that occur in an expression of
the form λx .M are bound;

• an occurrence of a variable that is not bound is called free;

• FV (M) is the set of variables with free occurrences in M;

• if FV (M) = ∅ we say that M is closed;

• we will consider λ-terms equivalent up to bound variable
renaming, (α-conversion).

Examples: λxy .xyz ≡α λyu.yuz , but (λx .x)z 6≡α (λx .y)z



Bound occurrences of variables - α-conversion

• all occurrences of a variable x that occur in an expression of
the form λx .M are bound;

• an occurrence of a variable that is not bound is called free;

• FV (M) is the set of variables with free occurrences in M;

• if FV (M) = ∅ we say that M is closed;

• we will consider λ-terms equivalent up to bound variable
renaming, (α-conversion).

Examples: λxy .xyz ≡α λyu.yuz , but (λx .x)z 6≡α (λx .y)z



Bound occurrences of variables - α-conversion

• all occurrences of a variable x that occur in an expression of
the form λx .M are bound;

• an occurrence of a variable that is not bound is called free;

• FV (M) is the set of variables with free occurrences in M;

• if FV (M) = ∅ we say that M is closed;

• we will consider λ-terms equivalent up to bound variable
renaming, (α-conversion).

Examples: λxy .xyz ≡α λyu.yuz , but (λx .x)z 6≡α (λx .y)z



Bound occurrences of variables - α-conversion

• all occurrences of a variable x that occur in an expression of
the form λx .M are bound;

• an occurrence of a variable that is not bound is called free;

• FV (M) is the set of variables with free occurrences in M;

• if FV (M) = ∅ we say that M is closed;

• we will consider λ-terms equivalent up to bound variable
renaming, (α-conversion).

Examples: λxy .xyz ≡α λyu.yuz , but (λx .x)z 6≡α (λx .y)z



Bound occurrences of variables - α-conversion

• all occurrences of a variable x that occur in an expression of
the form λx .M are bound;

• an occurrence of a variable that is not bound is called free;

• FV (M) is the set of variables with free occurrences in M;

• if FV (M) = ∅ we say that M is closed;

• we will consider λ-terms equivalent up to bound variable
renaming, (α-conversion).

Examples: λxy .xyz ≡α λyu.yuz , but (λx .x)z 6≡α (λx .y)z



Bound occurrences of variables - α-conversion

• all occurrences of a variable x that occur in an expression of
the form λx .M are bound;

• an occurrence of a variable that is not bound is called free;

• FV (M) is the set of variables with free occurrences in M;

• if FV (M) = ∅ we say that M is closed;

• we will consider λ-terms equivalent up to bound variable
renaming, (α-conversion).

Examples: λxy .xyz ≡α λyu.yuz , but (λx .x)z 6≡α (λx .y)z



Substitution

The expression M[N/x ] denotes the result of substituting in M
each free occurrence of x by N and making any changes of bound
variables needed to prevent variables free in N from becoming
bound in M[N/x ].

Example:
(λxy .xyz)[(λu.y)/z ] 6≡ λxy .xy(λu.y)

but
(λxy .xyz)[(λu.y)/z ] ≡ λxv .xv(λu.y)



Substitution

The expression M[N/x ] denotes the result of substituting in M
each free occurrence of x by N and making any changes of bound
variables needed to prevent variables free in N from becoming
bound in M[N/x ].

Example:
(λxy .xyz)[(λu.y)/z ] 6≡ λxy .xy(λu.y)

but
(λxy .xyz)[(λu.y)/z ] ≡ λxv .xv(λu.y)



Substitution

The expression M[N/x ] denotes the result of substituting in M
each free occurrence of x by N and making any changes of bound
variables needed to prevent variables free in N from becoming
bound in M[N/x ].

Example:
(λxy .xyz)[(λu.y)/z ] 6≡ λxy .xy(λu.y)

but
(λxy .xyz)[(λu.y)/z ] ≡ λxv .xv(λu.y)



Substitution

The expression M[N/x ] denotes the result of substituting in M
each free occurrence of x by N and making any changes of bound
variables needed to prevent variables free in N from becoming
bound in M[N/x ].

Example:
(λxy .xyz)[(λu.y)/z ] 6≡ λxy .xy(λu.y)

but
(λxy .xyz)[(λu.y)/z ] ≡ λxv .xv(λu.y)



β-reduction

• a term of the form (λx .M)N is called a β-redex;

• its contractum is the term M[N/x ];

• we write M →1β N, and say that M reduces in one step of
β-reduction to N, iff N can be obtained from M by replacing
one β-redex in M by its contractum;

• →β is the reflexive and transitive closure of →1β;

• ≡β is the reflexive, simetric and transitive closure of →1β.



β-reduction

• a term of the form (λx .M)N is called a β-redex;

• its contractum is the term M[N/x ];

• we write M →1β N, and say that M reduces in one step of
β-reduction to N, iff N can be obtained from M by replacing
one β-redex in M by its contractum;

• →β is the reflexive and transitive closure of →1β;

• ≡β is the reflexive, simetric and transitive closure of →1β.



β-reduction

• a term of the form (λx .M)N is called a β-redex;

• its contractum is the term M[N/x ];

• we write M →1β N, and say that M reduces in one step of
β-reduction to N, iff N can be obtained from M by replacing
one β-redex in M by its contractum;

• →β is the reflexive and transitive closure of →1β;

• ≡β is the reflexive, simetric and transitive closure of →1β.



β-reduction

• a term of the form (λx .M)N is called a β-redex;

• its contractum is the term M[N/x ];

• we write M →1β N, and say that M reduces in one step of
β-reduction to N, iff N can be obtained from M by replacing
one β-redex in M by its contractum;

• →β is the reflexive and transitive closure of →1β;

• ≡β is the reflexive, simetric and transitive closure of →1β.



β-reduction

• a term of the form (λx .M)N is called a β-redex;

• its contractum is the term M[N/x ];

• we write M →1β N, and say that M reduces in one step of
β-reduction to N, iff N can be obtained from M by replacing
one β-redex in M by its contractum;

• →β is the reflexive and transitive closure of →1β ;

• ≡β is the reflexive, simetric and transitive closure of →1β.



β-reduction

• a term of the form (λx .M)N is called a β-redex;

• its contractum is the term M[N/x ];

• we write M →1β N, and say that M reduces in one step of
β-reduction to N, iff N can be obtained from M by replacing
one β-redex in M by its contractum;

• →β is the reflexive and transitive closure of →1β ;

• ≡β is the reflexive, simetric and transitive closure of →1β.



β-normal forms

• A term M is said to be in β-normal form (or β-nf) if it
contains no β-redex;

• we say that M has a β-nf if there is some β-nf N such that
M →β N.

Exercise: Reduce the following terms to their β-normal form.
• (λx .xx)(λx .xx)
• (λxy .x)(λx .x)((λx .xx)(λx .xx))
• (λx .xx)(λyz .yz).

Conclusions:
• The term (λx .xx)(λx .xx) has no β-nf since

(λx .xx)(λx .xx) →1β (λx .xx)(λx .xx)
→1β (λx .xx)(λx .xx)
→1β . . .

• the term (λxy .x)(λx .x)((λx .xx)(λx .xx)) has normal form
λx .x , but not every reduction sequence leads to this normal
form.



β-normal forms

• A term M is said to be in β-normal form (or β-nf) if it
contains no β-redex;

• we say that M has a β-nf if there is some β-nf N such that
M →β N.

Exercise: Reduce the following terms to their β-normal form.
• (λx .xx)(λx .xx)
• (λxy .x)(λx .x)((λx .xx)(λx .xx))
• (λx .xx)(λyz .yz).

Conclusions:
• The term (λx .xx)(λx .xx) has no β-nf since

(λx .xx)(λx .xx) →1β (λx .xx)(λx .xx)
→1β (λx .xx)(λx .xx)
→1β . . .

• the term (λxy .x)(λx .x)((λx .xx)(λx .xx)) has normal form
λx .x , but not every reduction sequence leads to this normal
form.



β-normal forms

• A term M is said to be in β-normal form (or β-nf) if it
contains no β-redex;

• we say that M has a β-nf if there is some β-nf N such that
M →β N.

Exercise: Reduce the following terms to their β-normal form.
• (λx .xx)(λx .xx)
• (λxy .x)(λx .x)((λx .xx)(λx .xx))
• (λx .xx)(λyz .yz).

Conclusions:
• The term (λx .xx)(λx .xx) has no β-nf since

(λx .xx)(λx .xx) →1β (λx .xx)(λx .xx)
→1β (λx .xx)(λx .xx)
→1β . . .

• the term (λxy .x)(λx .x)((λx .xx)(λx .xx)) has normal form
λx .x , but not every reduction sequence leads to this normal
form.



β-normal forms

• A term M is said to be in β-normal form (or β-nf) if it
contains no β-redex;

• we say that M has a β-nf if there is some β-nf N such that
M →β N.

Exercise: Reduce the following terms to their β-normal form.
• (λx .xx)(λx .xx)
• (λxy .x)(λx .x)((λx .xx)(λx .xx))
• (λx .xx)(λyz .yz).

Conclusions:
• The term (λx .xx)(λx .xx) has no β-nf since

(λx .xx)(λx .xx) →1β (λx .xx)(λx .xx)
→1β (λx .xx)(λx .xx)
→1β . . .

• the term (λxy .x)(λx .x)((λx .xx)(λx .xx)) has normal form
λx .x , but not every reduction sequence leads to this normal
form.



β-normal forms

• A term M is said to be in β-normal form (or β-nf) if it
contains no β-redex;

• we say that M has a β-nf if there is some β-nf N such that
M →β N.

Exercise: Reduce the following terms to their β-normal form.
• (λx .xx)(λx .xx)
• (λxy .x)(λx .x)((λx .xx)(λx .xx))
• (λx .xx)(λyz .yz).

Conclusions:
• The term (λx .xx)(λx .xx) has no β-nf since

(λx .xx)(λx .xx) →1β (λx .xx)(λx .xx)
→1β (λx .xx)(λx .xx)
→1β . . .

• the term (λxy .x)(λx .x)((λx .xx)(λx .xx)) has normal form
λx .x , but not every reduction sequence leads to this normal
form.



β-normal forms

• A term M is said to be in β-normal form (or β-nf) if it
contains no β-redex;

• we say that M has a β-nf if there is some β-nf N such that
M →β N.

Exercise: Reduce the following terms to their β-normal form.
• (λx .xx)(λx .xx)
• (λxy .x)(λx .x)((λx .xx)(λx .xx))
• (λx .xx)(λyz .yz).

Conclusions:
• The term (λx .xx)(λx .xx) has no β-nf since

(λx .xx)(λx .xx) →1β (λx .xx)(λx .xx)
→1β (λx .xx)(λx .xx)
→1β . . .

• the term (λxy .x)(λx .x)((λx .xx)(λx .xx)) has normal form
λx .x , but not every reduction sequence leads to this normal
form.



Confluence

Theorem: (Church-Rosser) If M →β N1 and M →β N2, then
there is a term P such that N1 →β P and N2 →β P.

Corollary: Every term M has at most one β-nf.

Normal order reduction: Deterministic strategy which chooses
the leftmost, outermost redex, until there are no more redexes.

Theorem: A term M has a β-nf N iff the normal order reduction
of M is finite and ends at N (this is an undecidable problem!).

Structure of β-nfs: Every β-normal form M is of the form
λx1 . . . xn.yN1 . . .Nm

with n,m ≥ 0 and such that N1, . . . ,Nm are terms in β-normal
form.



Confluence

Theorem: (Church-Rosser) If M →β N1 and M →β N2, then
there is a term P such that N1 →β P and N2 →β P.

Corollary: Every term M has at most one β-nf.

Normal order reduction: Deterministic strategy which chooses
the leftmost, outermost redex, until there are no more redexes.

Theorem: A term M has a β-nf N iff the normal order reduction
of M is finite and ends at N (this is an undecidable problem!).

Structure of β-nfs: Every β-normal form M is of the form
λx1 . . . xn.yN1 . . .Nm

with n,m ≥ 0 and such that N1, . . . ,Nm are terms in β-normal
form.



Confluence

Theorem: (Church-Rosser) If M →β N1 and M →β N2, then
there is a term P such that N1 →β P and N2 →β P.

Corollary: Every term M has at most one β-nf.

Normal order reduction: Deterministic strategy which chooses
the leftmost, outermost redex, until there are no more redexes.

Theorem: A term M has a β-nf N iff the normal order reduction
of M is finite and ends at N (this is an undecidable problem!).

Structure of β-nfs: Every β-normal form M is of the form
λx1 . . . xn.yN1 . . .Nm

with n,m ≥ 0 and such that N1, . . . ,Nm are terms in β-normal
form.



Confluence

Theorem: (Church-Rosser) If M →β N1 and M →β N2, then
there is a term P such that N1 →β P and N2 →β P.

Corollary: Every term M has at most one β-nf.

Normal order reduction: Deterministic strategy which chooses
the leftmost, outermost redex, until there are no more redexes.

Theorem: A term M has a β-nf N iff the normal order reduction
of M is finite and ends at N (this is an undecidable problem!).

Structure of β-nfs: Every β-normal form M is of the form
λx1 . . . xn.yN1 . . .Nm

with n,m ≥ 0 and such that N1, . . . ,Nm are terms in β-normal
form.



Confluence

Theorem: (Church-Rosser) If M →β N1 and M →β N2, then
there is a term P such that N1 →β P and N2 →β P.

Corollary: Every term M has at most one β-nf.

Normal order reduction: Deterministic strategy which chooses
the leftmost, outermost redex, until there are no more redexes.

Theorem: A term M has a β-nf N iff the normal order reduction
of M is finite and ends at N (this is an undecidable problem!).

Structure of β-nfs: Every β-normal form M is of the form
λx1 . . . xn.yN1 . . .Nm

with n,m ≥ 0 and such that N1, . . . ,Nm are terms in β-normal
form.



Confluence

Theorem: (Church-Rosser) If M →β N1 and M →β N2, then
there is a term P such that N1 →β P and N2 →β P.

Corollary: Every term M has at most one β-nf.

Normal order reduction: Deterministic strategy which chooses
the leftmost, outermost redex, until there are no more redexes.

Theorem: A term M has a β-nf N iff the normal order reduction
of M is finite and ends at N (this is an undecidable problem!).

Structure of β-nfs: Every β-normal form M is of the form
λx1 . . . xn.yN1 . . .Nm

with n,m ≥ 0 and such that N1, . . . ,Nm are terms in β-normal
form.



η-reduction

• a term of the form λx .Mx , such that x 6∈ FV (M), is called an
η-redex;

• its contractum is the term M;

• →1η, →η and ≡η;

• all η-reductions are finite;

• Church-Rosser;

• every term has exactly one η-nf;

• the η-family of a term M is the (finite) set of all terms N such
that M →η N.



η-reduction

• a term of the form λx .Mx , such that x 6∈ FV (M), is called an
η-redex;

• its contractum is the term M;

• →1η, →η and ≡η;

• all η-reductions are finite;

• Church-Rosser;

• every term has exactly one η-nf;

• the η-family of a term M is the (finite) set of all terms N such
that M →η N.



η-reduction

• a term of the form λx .Mx , such that x 6∈ FV (M), is called an
η-redex;

• its contractum is the term M;

• →1η, →η and ≡η;

• all η-reductions are finite;

• Church-Rosser;

• every term has exactly one η-nf;

• the η-family of a term M is the (finite) set of all terms N such
that M →η N.



η-reduction

• a term of the form λx .Mx , such that x 6∈ FV (M), is called an
η-redex;

• its contractum is the term M;

• →1η, →η and ≡η;

• all η-reductions are finite;

• Church-Rosser;

• every term has exactly one η-nf;

• the η-family of a term M is the (finite) set of all terms N such
that M →η N.



η-reduction

• a term of the form λx .Mx , such that x 6∈ FV (M), is called an
η-redex;

• its contractum is the term M;

• →1η, →η and ≡η;

• all η-reductions are finite;

• Church-Rosser;

• every term has exactly one η-nf;

• the η-family of a term M is the (finite) set of all terms N such
that M →η N.



η-reduction

• a term of the form λx .Mx , such that x 6∈ FV (M), is called an
η-redex;

• its contractum is the term M;

• →1η, →η and ≡η;

• all η-reductions are finite;

• Church-Rosser;

• every term has exactly one η-nf;

• the η-family of a term M is the (finite) set of all terms N such
that M →η N.



η-reduction

• a term of the form λx .Mx , such that x 6∈ FV (M), is called an
η-redex;

• its contractum is the term M;

• →1η, →η and ≡η;

• all η-reductions are finite;

• Church-Rosser;

• every term has exactly one η-nf;

• the η-family of a term M is the (finite) set of all terms N such
that M →η N.



η-reduction

• a term of the form λx .Mx , such that x 6∈ FV (M), is called an
η-redex;

• its contractum is the term M;

• →1η, →η and ≡η;

• all η-reductions are finite;

• Church-Rosser;

• every term has exactly one η-nf;

• the η-family of a term M is the (finite) set of all terms N such
that M →η N.



βη-reduction

• a βη-redex is any β- or η-redex;

• →1βη, →βη and ≡βη;

• Church-Rosser;

• every term has at most one βη-nf;

• if M is a β-nf, then all members of its η-family are β-nfs and
exactly one of them is a βη-nf.



βη-reduction

• a βη-redex is any β- or η-redex;

• →1βη, →βη and ≡βη;

• Church-Rosser;

• every term has at most one βη-nf;

• if M is a β-nf, then all members of its η-family are β-nfs and
exactly one of them is a βη-nf.



βη-reduction

• a βη-redex is any β- or η-redex;

• →1βη, →βη and ≡βη;

• Church-Rosser;

• every term has at most one βη-nf;

• if M is a β-nf, then all members of its η-family are β-nfs and
exactly one of them is a βη-nf.



βη-reduction

• a βη-redex is any β- or η-redex;

• →1βη, →βη and ≡βη;

• Church-Rosser;

• every term has at most one βη-nf;

• if M is a β-nf, then all members of its η-family are β-nfs and
exactly one of them is a βη-nf.



βη-reduction

• a βη-redex is any β- or η-redex;

• →1βη, →βη and ≡βη;

• Church-Rosser;

• every term has at most one βη-nf;

• if M is a β-nf, then all members of its η-family are β-nfs and
exactly one of them is a βη-nf.



βη-reduction

• a βη-redex is any β- or η-redex;

• →1βη, →βη and ≡βη;

• Church-Rosser;

• every term has at most one βη-nf;

• if M is a β-nf, then all members of its η-family are β-nfs and
exactly one of them is a βη-nf.



λ-definability

Notation: F nX = F (F (. . . (F︸ ︷︷ ︸
n

X ) . . .))

• Church numerals: cn = λfx .f nx , for n ≥ 0;

• A+ = λmnfx .mf (nfx);

(show that A+cncm ≡ cn+m)

• A∗ = λmnfx .m(nf )x ;

(show that A∗cncm ≡ cn∗m)

• Aexp = λmnfx .nmfx ;

(show that Aexpcncm ≡ cnm)



λ-definability

Notation: F nX = F (F (. . . (F︸ ︷︷ ︸
n

X ) . . .))

• Church numerals: cn = λfx .f nx , for n ≥ 0;

• A+ = λmnfx .mf (nfx);

(show that A+cncm ≡ cn+m)

• A∗ = λmnfx .m(nf )x ;

(show that A∗cncm ≡ cn∗m)

• Aexp = λmnfx .nmfx ;

(show that Aexpcncm ≡ cnm)



λ-definability

Notation: F nX = F (F (. . . (F︸ ︷︷ ︸
n

X ) . . .))

• Church numerals: cn = λfx .f nx , for n ≥ 0;

• A+ = λmnfx .mf (nfx);

(show that A+cncm ≡ cn+m)

• A∗ = λmnfx .m(nf )x ;

(show that A∗cncm ≡ cn∗m)

• Aexp = λmnfx .nmfx ;

(show that Aexpcncm ≡ cnm)



λ-definability

Notation: F nX = F (F (. . . (F︸ ︷︷ ︸
n

X ) . . .))

• Church numerals: cn = λfx .f nx , for n ≥ 0;

• A+ = λmnfx .mf (nfx);

(show that A+cncm ≡ cn+m)

• A∗ = λmnfx .m(nf )x ;

(show that A∗cncm ≡ cn∗m)

• Aexp = λmnfx .nmfx ;

(show that Aexpcncm ≡ cnm)



λ-definability

Notation: F nX = F (F (. . . (F︸ ︷︷ ︸
n

X ) . . .))

• Church numerals: cn = λfx .f nx , for n ≥ 0;

• A+ = λmnfx .mf (nfx);

(show that A+cncm ≡ cn+m)

• A∗ = λmnfx .m(nf )x ;

(show that A∗cncm ≡ cn∗m)

• Aexp = λmnfx .nmfx ;

(show that Aexpcncm ≡ cnm)



λ-definability

Notation: F nX = F (F (. . . (F︸ ︷︷ ︸
n

X ) . . .))

• Church numerals: cn = λfx .f nx , for n ≥ 0;

• A+ = λmnfx .mf (nfx);

(show that A+cncm ≡ cn+m)

• A∗ = λmnfx .m(nf )x ;

(show that A∗cncm ≡ cn∗m)

• Aexp = λmnfx .nmfx ;

(show that Aexpcncm ≡ cnm)



λ-definability

Notation: F nX = F (F (. . . (F︸ ︷︷ ︸
n

X ) . . .))

• Church numerals: cn = λfx .f nx , for n ≥ 0;

• A+ = λmnfx .mf (nfx);

(show that A+cncm ≡ cn+m)

• A∗ = λmnfx .m(nf )x ;

(show that A∗cncm ≡ cn∗m)

• Aexp = λmnfx .nmfx ;

(show that Aexpcncm ≡ cnm)



λ-definability

Notation: F nX = F (F (. . . (F︸ ︷︷ ︸
n

X ) . . .))

• Church numerals: cn = λfx .f nx , for n ≥ 0;

• A+ = λmnfx .mf (nfx);

(show that A+cncm ≡ cn+m)

• A∗ = λmnfx .m(nf )x ;

(show that A∗cncm ≡ cn∗m)

• Aexp = λmnfx .nmfx ;

(show that Aexpcncm ≡ cnm)



λ-definability (cont.)

Booleans

• true = λxy .x ;

• false = λxy .y ;

• if = λbxy .bxy ;

(show that if trueM N ≡ M and if falseM N ≡ N)

Ordered pairs

• pair = λxyf .fxy ;

• fst = λp.p true;

• snd = λp.p false;

(show that fst (pairM N) ≡ M and . . . )



λ-definability (cont.)

Booleans

• true = λxy .x ;

• false = λxy .y ;

• if = λbxy .bxy ;

(show that if trueM N ≡ M and if falseM N ≡ N)

Ordered pairs

• pair = λxyf .fxy ;

• fst = λp.p true;

• snd = λp.p false;

(show that fst (pairM N) ≡ M and . . . )



λ-definability (cont.)

Booleans

• true = λxy .x ;

• false = λxy .y ;

• if = λbxy .bxy ;

(show that if trueM N ≡ M and if falseM N ≡ N)

Ordered pairs

• pair = λxyf .fxy ;

• fst = λp.p true;

• snd = λp.p false;

(show that fst (pairM N) ≡ M and . . . )



λ-definability (cont.)

Booleans

• true = λxy .x ;

• false = λxy .y ;

• if = λbxy .bxy ;

(show that if trueM N ≡ M and if falseM N ≡ N)

Ordered pairs

• pair = λxyf .fxy ;

• fst = λp.p true;

• snd = λp.p false;

(show that fst (pairM N) ≡ M and . . . )



λ-definability (cont.)

Booleans

• true = λxy .x ;

• false = λxy .y ;

• if = λbxy .bxy ;

(show that if trueM N ≡ M and if falseM N ≡ N)

Ordered pairs

• pair = λxyf .fxy ;

• fst = λp.p true;

• snd = λp.p false;

(show that fst (pairM N) ≡ M and . . . )



λ-definability (cont.)

Booleans

• true = λxy .x ;

• false = λxy .y ;

• if = λbxy .bxy ;

(show that if trueM N ≡ M and if falseM N ≡ N)

Ordered pairs

• pair = λxyf .fxy ;

• fst = λp.p true;

• snd = λp.p false;

(show that fst (pairM N) ≡ M and . . . )



λ-definability (cont.)

Booleans

• true = λxy .x ;

• false = λxy .y ;

• if = λbxy .bxy ;

(show that if trueM N ≡ M and if falseM N ≡ N)

Ordered pairs

• pair = λxyf .fxy ;

• fst = λp.p true;

• snd = λp.p false;

(show that fst (pairM N) ≡ M and . . . )



λ-definability (cont.)

Booleans

• true = λxy .x ;

• false = λxy .y ;

• if = λbxy .bxy ;

(show that if trueM N ≡ M and if falseM N ≡ N)

Ordered pairs

• pair = λxyf .fxy ;

• fst = λp.p true;

• snd = λp.p false;

(show that fst (pairM N) ≡ M and . . . )



λ-definability (cont.)

Booleans

• true = λxy .x ;

• false = λxy .y ;

• if = λbxy .bxy ;

(show that if trueM N ≡ M and if falseM N ≡ N)

Ordered pairs

• pair = λxyf .fxy ;

• fst = λp.p true;

• snd = λp.p false;

(show that fst (pairM N) ≡ M and . . . )



λ-definability (cont.)

Booleans

• true = λxy .x ;

• false = λxy .y ;

• if = λbxy .bxy ;

(show that if trueM N ≡ M and if falseM N ≡ N)

Ordered pairs

• pair = λxyf .fxy ;

• fst = λp.p true;

• snd = λp.p false;

(show that fst (pairM N) ≡ M and . . . )



λ-definability (cont.)

Booleans

• true = λxy .x ;

• false = λxy .y ;

• if = λbxy .bxy ;

(show that if trueM N ≡ M and if falseM N ≡ N)

Ordered pairs

• pair = λxyf .fxy ;

• fst = λp.p true;

• snd = λp.p false;

(show that fst (pairM N) ≡ M and . . . )



λ-definability (cont.)

• iszero = λn.n(λx .false)true;

• suc = λnfx .f (nfx);

• prefn = λfp.pair(f (fst p))(fst p);

• pre = λnfx .snd(n(prefn f )(pair xx));

• sub = λmn.n prem;

Lists

• nil = λz .z ;

• cons = λxy .pair false (pair xy);

• null = fst;

• hd = λz .fst (snd z);

• tl = λz .snd (snd z).



λ-definability (cont.)

• iszero = λn.n(λx .false)true;

• suc = λnfx .f (nfx);

• prefn = λfp.pair(f (fst p))(fst p);

• pre = λnfx .snd(n(prefn f )(pair xx));

• sub = λmn.n prem;

Lists

• nil = λz .z ;

• cons = λxy .pair false (pair xy);

• null = fst;

• hd = λz .fst (snd z);

• tl = λz .snd (snd z).



λ-definability (cont.)

• iszero = λn.n(λx .false)true;

• suc = λnfx .f (nfx);

• prefn = λfp.pair(f (fst p))(fst p);

• pre = λnfx .snd(n(prefn f )(pair xx));

• sub = λmn.n prem;

Lists

• nil = λz .z ;

• cons = λxy .pair false (pair xy);

• null = fst;

• hd = λz .fst (snd z);

• tl = λz .snd (snd z).



λ-definability (cont.)

• iszero = λn.n(λx .false)true;

• suc = λnfx .f (nfx);

• prefn = λfp.pair(f (fst p))(fst p);

• pre = λnfx .snd(n(prefn f )(pair xx));

• sub = λmn.n prem;

Lists

• nil = λz .z ;

• cons = λxy .pair false (pair xy);

• null = fst;

• hd = λz .fst (snd z);

• tl = λz .snd (snd z).



λ-definability (cont.)

• iszero = λn.n(λx .false)true;

• suc = λnfx .f (nfx);

• prefn = λfp.pair(f (fst p))(fst p);

• pre = λnfx .snd(n(prefn f )(pair xx));

• sub = λmn.n prem;

Lists

• nil = λz .z ;

• cons = λxy .pair false (pair xy);

• null = fst;

• hd = λz .fst (snd z);

• tl = λz .snd (snd z).



λ-definability (cont.)

• iszero = λn.n(λx .false)true;

• suc = λnfx .f (nfx);

• prefn = λfp.pair(f (fst p))(fst p);

• pre = λnfx .snd(n(prefn f )(pair xx));

• sub = λmn.n prem;

Lists

• nil = λz .z ;

• cons = λxy .pair false (pair xy);

• null = fst;

• hd = λz .fst (snd z);

• tl = λz .snd (snd z).



λ-definability (cont.)

• iszero = λn.n(λx .false)true;

• suc = λnfx .f (nfx);

• prefn = λfp.pair(f (fst p))(fst p);

• pre = λnfx .snd(n(prefn f )(pair xx));

• sub = λmn.n prem;

Lists

• nil = λz .z ;

• cons = λxy .pair false (pair xy);

• null = fst;

• hd = λz .fst (snd z);

• tl = λz .snd (snd z).



λ-definability (cont.)

• iszero = λn.n(λx .false)true;

• suc = λnfx .f (nfx);

• prefn = λfp.pair(f (fst p))(fst p);

• pre = λnfx .snd(n(prefn f )(pair xx));

• sub = λmn.n prem;

Lists

• nil = λz .z ;

• cons = λxy .pair false (pair xy);

• null = fst;

• hd = λz .fst (snd z);

• tl = λz .snd (snd z).



λ-definability (cont.)

• iszero = λn.n(λx .false)true;

• suc = λnfx .f (nfx);

• prefn = λfp.pair(f (fst p))(fst p);

• pre = λnfx .snd(n(prefn f )(pair xx));

• sub = λmn.n prem;

Lists

• nil = λz .z ;

• cons = λxy .pair false (pair xy);

• null = fst;

• hd = λz .fst (snd z);

• tl = λz .snd (snd z).



λ-definability (cont.)

• iszero = λn.n(λx .false)true;

• suc = λnfx .f (nfx);

• prefn = λfp.pair(f (fst p))(fst p);

• pre = λnfx .snd(n(prefn f )(pair xx));

• sub = λmn.n prem;

Lists

• nil = λz .z ;

• cons = λxy .pair false (pair xy);

• null = fst;

• hd = λz .fst (snd z);

• tl = λz .snd (snd z).



λ-definability (cont.)

• iszero = λn.n(λx .false)true;

• suc = λnfx .f (nfx);

• prefn = λfp.pair(f (fst p))(fst p);

• pre = λnfx .snd(n(prefn f )(pair xx));

• sub = λmn.n prem;

Lists

• nil = λz .z ;

• cons = λxy .pair false (pair xy);

• null = fst;

• hd = λz .fst (snd z);

• tl = λz .snd (snd z).



λ-definability (cont.)

• iszero = λn.n(λx .false)true;

• suc = λnfx .f (nfx);

• prefn = λfp.pair(f (fst p))(fst p);

• pre = λnfx .snd(n(prefn f )(pair xx));

• sub = λmn.n prem;

Lists

• nil = λz .z ;

• cons = λxy .pair false (pair xy);

• null = fst;

• hd = λz .fst (snd z);

• tl = λz .snd (snd z).



λ-definability (cont.)

Recursive Functions

• Y is a fixed point operator iff YF ≡ F (YF ) for all terms F ;

• show that Y = λf .(λx .f (xx))(λx .f (xx)) is a fixed point
operator (there are many others!);

• show that Mx1 . . . xn ≡ PM is satisfied by defining
M = Y(λgx1 . . . xn.Pg), whenever Y is a fixed point operator;

• define the functions fact and tail.



λ-definability (cont.)

Recursive Functions

• Y is a fixed point operator iff YF ≡ F (YF ) for all terms F ;

• show that Y = λf .(λx .f (xx))(λx .f (xx)) is a fixed point
operator (there are many others!);

• show that Mx1 . . . xn ≡ PM is satisfied by defining
M = Y(λgx1 . . . xn.Pg), whenever Y is a fixed point operator;

• define the functions fact and tail.



λ-definability (cont.)

Recursive Functions

• Y is a fixed point operator iff YF ≡ F (YF ) for all terms F ;

• show that Y = λf .(λx .f (xx))(λx .f (xx)) is a fixed point
operator (there are many others!);

• show that Mx1 . . . xn ≡ PM is satisfied by defining
M = Y(λgx1 . . . xn.Pg), whenever Y is a fixed point operator;

• define the functions fact and tail.



λ-definability (cont.)

Recursive Functions

• Y is a fixed point operator iff YF ≡ F (YF ) for all terms F ;

• show that Y = λf .(λx .f (xx))(λx .f (xx)) is a fixed point
operator (there are many others!);

• show that Mx1 . . . xn ≡ PM is satisfied by defining
M = Y(λgx1 . . . xn.Pg), whenever Y is a fixed point operator;

• define the functions fact and tail.



λ-definability (cont.)

Recursive Functions

• Y is a fixed point operator iff YF ≡ F (YF ) for all terms F ;

• show that Y = λf .(λx .f (xx))(λx .f (xx)) is a fixed point
operator (there are many others!);

• show that Mx1 . . . xn ≡ PM is satisfied by defining
M = Y(λgx1 . . . xn.Pg), whenever Y is a fixed point operator;

• define the functions fact and tail.



Restricted classes of λ-terms

• M is a λI -term iff for every subterm of the form λx .N of M, x
occurs at least once free in N;

• M is a BCK-term iff for every subterm of the form λx .N of
M, x occurs at most once free in N;

• M is a BCI -term iff for every subterm of the form λx .N of M,
x occurs exactly once free in N.



Restricted classes of λ-terms

• M is a λI -term iff for every subterm of the form λx .N of M, x
occurs at least once free in N;

• M is a BCK-term iff for every subterm of the form λx .N of
M, x occurs at most once free in N;

• M is a BCI -term iff for every subterm of the form λx .N of M,
x occurs exactly once free in N.



Restricted classes of λ-terms

• M is a λI -term iff for every subterm of the form λx .N of M, x
occurs at least once free in N;

• M is a BCK-term iff for every subterm of the form λx .N of
M, x occurs at most once free in N;

• M is a BCI -term iff for every subterm of the form λx .N of M,
x occurs exactly once free in N.



Restricted classes of λ-terms

• M is a λI -term iff for every subterm of the form λx .N of M, x
occurs at least once free in N;

• M is a BCK-term iff for every subterm of the form λx .N of
M, x occurs at most once free in N;

• M is a BCI -term iff for every subterm of the form λx .N of M,
x occurs exactly once free in N.



Simple Types

- infinite set of type-variables a, b, c , . . . ;

• each type-variable a is a type (atomic);

• if α and β are type, then (α → β) is a type.

Convention: → associates to the right

a → b → c → d
stands for

(a → (b → (c → d)))

Examples: a, a → a, ((a → b) → a) → a



Simple Types

- infinite set of type-variables a, b, c , . . . ;

• each type-variable a is a type (atomic);

• if α and β are type, then (α → β) is a type.

Convention: → associates to the right

a → b → c → d
stands for

(a → (b → (c → d)))

Examples: a, a → a, ((a → b) → a) → a



Simple Types

- infinite set of type-variables a, b, c , . . . ;

• each type-variable a is a type (atomic);

• if α and β are type, then (α → β) is a type.

Convention: → associates to the right

a → b → c → d
stands for

(a → (b → (c → d)))

Examples: a, a → a, ((a → b) → a) → a



Simple Types

- infinite set of type-variables a, b, c , . . . ;

• each type-variable a is a type (atomic);

• if α and β are type, then (α → β) is a type.

Convention: → associates to the right

a → b → c → d
stands for

(a → (b → (c → d)))

Examples: a, a → a, ((a → b) → a) → a



Simple Types

- infinite set of type-variables a, b, c , . . . ;

• each type-variable a is a type (atomic);

• if α and β are type, then (α → β) is a type.

Convention: → associates to the right

a → b → c → d
stands for

(a → (b → (c → d)))

Examples: a, a → a, ((a → b) → a) → a



Simple Types

- infinite set of type-variables a, b, c , . . . ;

• each type-variable a is a type (atomic);

• if α and β are type, then (α → β) is a type.

Convention: → associates to the right

a → b → c → d
stands for

(a → (b → (c → d)))

Examples: a, a → a, ((a → b) → a) → a



Simple Types

- infinite set of type-variables a, b, c , . . . ;

• each type-variable a is a type (atomic);

• if α and β are type, then (α → β) is a type.

Convention: → associates to the right

a → b → c → d
stands for

(a → (b → (c → d)))

Examples: a, a → a, ((a → b) → a) → a



Type-assignment

• an expression M : α is a type-assignment (M is called its
subject);

• a type-context is a finite, perhaps empty, set of
type-assignments

Γ = {x1 : α1, . . . , xn : αn},

such that x1, . . . , xn are distinct term-variables.



Type-assignment

• an expression M : α is a type-assignment (M is called its
subject);

• a type-context is a finite, perhaps empty, set of
type-assignments

Γ = {x1 : α1, . . . , xn : αn},

such that x1, . . . , xn are distinct term-variables.



Type-assignment

• an expression M : α is a type-assignment (M is called its
subject);

• a type-context is a finite, perhaps empty, set of
type-assignments

Γ = {x1 : α1, . . . , xn : αn},

such that x1, . . . , xn are distinct term-variables.



The system λ→-Curry

We say that the type-assignment M : τ is derivable from a context
Γ, and write

Γ − M : τ,

iff the formula Γ − M : τ can be produced by the following rules.

(axiom)
Γ − x : α

(if x : α ∈ Γ)

(app)
Γ − M : α → β Γ − N : α

Γ − MN : β

(abs)
Γ, x : α − M : β

Γ − λx .M : α → β

A deduction ∆ of Γ − M : τ is a tree of formulae, those at the
tops of branches being axioms and those below being deduced
from those immediately above them by a rule ((app) or (abs)) and
with bottom formula Γ − M : τ .



The system λ→-Curry

We say that the type-assignment M : τ is derivable from a context
Γ, and write

Γ − M : τ,

iff the formula Γ − M : τ can be produced by the following rules.

(axiom)
Γ − x : α

(if x : α ∈ Γ)

(app)
Γ − M : α → β Γ − N : α

Γ − MN : β

(abs)
Γ, x : α − M : β

Γ − λx .M : α → β

A deduction ∆ of Γ − M : τ is a tree of formulae, those at the
tops of branches being axioms and those below being deduced
from those immediately above them by a rule ((app) or (abs)) and
with bottom formula Γ − M : τ .



The system λ→-Curry

We say that the type-assignment M : τ is derivable from a context
Γ, and write

Γ − M : τ,

iff the formula Γ − M : τ can be produced by the following rules.

(axiom)
Γ − x : α

(if x : α ∈ Γ)

(app)
Γ − M : α → β Γ − N : α

Γ − MN : β

(abs)
Γ, x : α − M : β

Γ − λx .M : α → β

A deduction ∆ of Γ − M : τ is a tree of formulae, those at the
tops of branches being axioms and those below being deduced
from those immediately above them by a rule ((app) or (abs)) and
with bottom formula Γ − M : τ .



The system λ→-Curry

We say that the type-assignment M : τ is derivable from a context
Γ, and write

Γ − M : τ,

iff the formula Γ − M : τ can be produced by the following rules.

(axiom)
Γ − x : α

(if x : α ∈ Γ)

(app)
Γ − M : α → β Γ − N : α

Γ − MN : β

(abs)
Γ, x : α − M : β

Γ − λx .M : α → β

A deduction ∆ of Γ − M : τ is a tree of formulae, those at the
tops of branches being axioms and those below being deduced
from those immediately above them by a rule ((app) or (abs)) and
with bottom formula Γ − M : τ .



The system λ→-Curry

We say that the type-assignment M : τ is derivable from a context
Γ, and write

Γ − M : τ,

iff the formula Γ − M : τ can be produced by the following rules.

(axiom)
Γ − x : α

(if x : α ∈ Γ)

(app)
Γ − M : α → β Γ − N : α

Γ − MN : β

(abs)
Γ, x : α − M : β

Γ − λx .M : α → β

A deduction ∆ of Γ − M : τ is a tree of formulae, those at the
tops of branches being axioms and those below being deduced
from those immediately above them by a rule ((app) or (abs)) and
with bottom formula Γ − M : τ .



The system λ→-Curry

We say that the type-assignment M : τ is derivable from a context
Γ, and write

Γ − M : τ,

iff the formula Γ − M : τ can be produced by the following rules.

(axiom)
Γ − x : α

(if x : α ∈ Γ)

(app)
Γ − M : α → β Γ − N : α

Γ − MN : β

(abs)
Γ, x : α − M : β

Γ − λx .M : α → β

A deduction ∆ of Γ − M : τ is a tree of formulae, those at the
tops of branches being axioms and those below being deduced
from those immediately above them by a rule ((app) or (abs)) and
with bottom formula Γ − M : τ .



Related problems:

• Type-checking: Given Γ, M and τ , is it true that Γ − M : τ?

• Typability: Given M, are there Γ and τ such that Γ − M : τ?
(M is said to be typable)

• Inhabitation: Given Γ and τ , is there M such that Γ − M : τ?
(If Γ = ∅, we say that τ is inhabited; also M is called an
inhabitant of τ)

All these problems are decidable!



Related problems:

• Type-checking: Given Γ, M and τ , is it true that Γ − M : τ?

• Typability: Given M, are there Γ and τ such that Γ − M : τ?
(M is said to be typable)

• Inhabitation: Given Γ and τ , is there M such that Γ − M : τ?
(If Γ = ∅, we say that τ is inhabited; also M is called an
inhabitant of τ)

All these problems are decidable!



Related problems:

• Type-checking: Given Γ, M and τ , is it true that Γ − M : τ?

• Typability: Given M, are there Γ and τ such that Γ − M : τ?
(M is said to be typable)

• Inhabitation: Given Γ and τ , is there M such that Γ − M : τ?
(If Γ = ∅, we say that τ is inhabited; also M is called an
inhabitant of τ)

All these problems are decidable!



Related problems:

• Type-checking: Given Γ, M and τ , is it true that Γ − M : τ?

• Typability: Given M, are there Γ and τ such that Γ − M : τ?
(M is said to be typable)

• Inhabitation: Given Γ and τ , is there M such that Γ − M : τ?
(If Γ = ∅, we say that τ is inhabited; also M is called an
inhabitant of τ)

All these problems are decidable!



Related problems:

• Type-checking: Given Γ, M and τ , is it true that Γ − M : τ?

• Typability: Given M, are there Γ and τ such that Γ − M : τ?
(M is said to be typable)

• Inhabitation: Given Γ and τ , is there M such that Γ − M : τ?
(If Γ = ∅, we say that τ is inhabited; also M is called an
inhabitant of τ)

All these problems are decidable!



Exercises

1. Show that − λx .x : a → a.

2. Show that − λx .x : (a → b) → a → b.

3. Find Γ and α such that Γ − (λxy .xy)z : α.

4. Find M such that − M : a → b → a.

5. Find M such that − M : ((a → b) → a) → a.



Properties

• Confluence (Church-Rosser);

• strong normalization;

• existence of unique normal forms;

• subject-reduction;

• principal types;



Properties

• Confluence (Church-Rosser);

• strong normalization;

• existence of unique normal forms;

• subject-reduction;

• principal types;



Properties

• Confluence (Church-Rosser);

• strong normalization;

• existence of unique normal forms;

• subject-reduction;

• principal types;



Properties

• Confluence (Church-Rosser);

• strong normalization;

• existence of unique normal forms;

• subject-reduction;

• principal types;



Properties

• Confluence (Church-Rosser);

• strong normalization;

• existence of unique normal forms;

• subject-reduction;

• principal types;



Properties

• Confluence (Church-Rosser);

• strong normalization;

• existence of unique normal forms;

• subject-reduction;

• principal types;



The system λ→-Church

- term-variables annotated with types: xα, xβ, . . . yα, . . . ;

• each annotated variable xα is a λ-term of type α;

• if M and N are λ-terms, respectively of type α → β and α,
then (MN) is a λ-term of type β, (application);

• if M is a λ-term of type β and xα an annotated variable, then
(λxα.M) is a λ-term of type α → β, (abstraction).

Church vs. Curry Differences and similarities...



The system λ→-Church

- term-variables annotated with types: xα, xβ, . . . yα, . . . ;

• each annotated variable xα is a λ-term of type α;

• if M and N are λ-terms, respectively of type α → β and α,
then (MN) is a λ-term of type β, (application);

• if M is a λ-term of type β and xα an annotated variable, then
(λxα.M) is a λ-term of type α → β, (abstraction).

Church vs. Curry Differences and similarities...



The system λ→-Church

- term-variables annotated with types: xα, xβ, . . . yα, . . . ;

• each annotated variable xα is a λ-term of type α;

• if M and N are λ-terms, respectively of type α → β and α,
then (MN) is a λ-term of type β, (application);

• if M is a λ-term of type β and xα an annotated variable, then
(λxα.M) is a λ-term of type α → β, (abstraction).

Church vs. Curry Differences and similarities...



The system λ→-Church

- term-variables annotated with types: xα, xβ, . . . yα, . . . ;

• each annotated variable xα is a λ-term of type α;

• if M and N are λ-terms, respectively of type α → β and α,
then (MN) is a λ-term of type β, (application);

• if M is a λ-term of type β and xα an annotated variable, then
(λxα.M) is a λ-term of type α → β, (abstraction).

Church vs. Curry Differences and similarities...



The system λ→-Church

- term-variables annotated with types: xα, xβ, . . . yα, . . . ;

• each annotated variable xα is a λ-term of type α;

• if M and N are λ-terms, respectively of type α → β and α,
then (MN) is a λ-term of type β, (application);

• if M is a λ-term of type β and xα an annotated variable, then
(λxα.M) is a λ-term of type α → β, (abstraction).

Church vs. Curry Differences and similarities...


