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Universidade do Minho

Braga, Portugal

2003



Parametric polymorphism: why?

• Less code ( specific solution = generic solution +
customization )

• Intellectual reward

• Last but not
least, quotation (from Theorems for free!, by Philip Wadler [4]):

From the type of a polymorphic function we can

derive a theorem that is satisfies. (...) How useful

are the theorems so generated? Only time and

experience will tell (...)

• No doubt: free theorems are very useful!



Polymorphic type signatures

Polymorphic function signature:

f : t

where t is a functional type, according to the following “grammar”
of types:

t ::= t ′← t ′′

t ::= F(t1, . . . , tn)

t ::= v type variables v , cf. polymorphism

What does it mean that f is parametrically polymorphic?



Free theorem of type t

Let

• V be the set of type variables involved in type t

• {Rv}v∈V be a V -indexed family of relations (fv in case all
such Rv are functions).

• Rt be a relation defined inductively as follows:

Rt:=F(t1,...,tn) = F(Rt1 , . . . ,Rtn) (1)

Rt:=v = Rv (2)

Rt:=t′←t′′ = Rt′ ← Rt′′ (3)

• What kind of relation is Rt′ ← Rt′′?



“Reynolds arrow” operator

f (R← S)g ≡ f · S ⊆ R · g A
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R ← S

For instance, f (id ← id)g ≡ f = g that is, id ← id = id



Free theorem (FT) of type t

The following (remarkable) theorem — due to J. Reynolds [3],
advertised by P. Wadler [4] and re-written by Backhouse [1] —
holds:

Given any function θ : t, and V as above, then θ Rt θ

holds, for any relational instantiation of type variables in

V .

Note that this theorem

• is a result about t

• holds independently of the actual definition of θ.

• holds about any function of type t



First example (invl)

• The target function: θ = invl : a⋆← a⋆.

• Calculation of Rt=a⋆←a⋆ :

Ra⋆←a⋆

≡ { rule Rt=t′←t′′ = Rt′ ← Rt′′ }

Ra⋆ ← Ra⋆

≡ { rule Rt=F(t1,...,tn) = F(Rt1 , . . . , Rtn) }

Ra
⋆← Ra

⋆

where

l R⋆l ′
def
= length l = length l ′ ∧ 〈∀ i : i ∈ inds l : (l i)R(l ′ i〉

Calculation of FT follows.



First example (invl)

The FT itself will predict (Ra abbreviated to R):

invl(R⋆← R⋆)invl

≡ { definition f (R ← S)g ≡ f · S ⊆ R · g }

invl · R⋆ ⊆ R⋆ · invl

In case R is a function r , the FT theorem boils down to invl ’s
natural property:

invl · r⋆ = r⋆ · invl

that is,

invl [ r a | a← l ] = [ r b | b← invl l ]



First example (invl)

Further calculation (back to R):

invl · R⋆ ⊆ R⋆ · invl

≡ { shunting rule (9) }

R⋆ ⊆ invl◦ · R⋆ · invl

≡ { going pointwise }

〈∀ l , r :: l R⋆r ⇒ (invl l)R⋆(invl r)〉

An instance of this pointwise version of invl -FT will state that, for
example, invl will respect element-wise orderings (R :=<):



First example (invl)

length l = length l ′ ∧ 〈∀ i : i ∈ inds l : (l i) < (r i)〉

⇓

length(invl l) = length(inv l ′)

∧

〈∀ j : j ∈ inds l : (invl l)j < (invl r)j〉

(Guess other instances.)

Our next example calculates the FT of

sort : a⋆← a⋆← (bool ← (a × a))

(the first parameter stands for the chosen ordering relation)



Second example: FT of sort

sort(R(a⋆
←a⋆)←(bool←(a×a)))sort

≡ { (1, 2, 3) ; Rt:=bool = id (cf. constant relator) }

sort((R⋆← R⋆)← (id ← (R × R)))sort

≡ { (4) }

sort · (id ← (R × R)) ⊆ (R⋆← R⋆) · sort

≡ { shunting (9) }

(id ← (R × R)) ⊆ sort◦ · (R⋆← R⋆) · sort

≡ { introduce variables f and g }

f (id ← (R × R))g ⇒ (sort f )(R⋆← R⋆)(sort g)

≡ { (1, 3, 4) }

f · (R × R) ⊆ g ⇒ (sort f ) · R⋆ ⊆ R⋆ · (sort g)



Second example: FT of sort

Case R := r :

f · (r × r) = g ⇒ (sort f ) · r⋆ = r⋆ · (sort g)

≡ { introduce variables }

〈∀ a, b : : f (r a, r b) = g(a, b)〉 ⇒ 〈∀ l : : (sort f )(r⋆ l) = r⋆(sort

Denoting predicates f , g by infix orderings ≤,�:

〈∀ a, b : : r a ≤ r b ≡ a � b〉 ⇒ 〈∀ l : : sort (≤)(r⋆ l) = r⋆(sort (�) l)〉

That is, for r monotonic and injective,

sort (≤) [ r a | a← l ]

is always the same list a

[ r a | a← sort (�) l ]



Second example: FT of (| |)

• (| |) has generic type

(| |) : b← F a← (b← B (a, b))

where F a ∼= B (a,F a).

• (| |)-FT:

(| |) · (Rb← B (Ra,Rb)) ⊆ (Rb← F Ra) · (| |)

• (| |)-FT calculation follows (Ra,Rb abbreviated to R ,S):



(| |)-FT corollaries

(| |) · (S ← B (R ,S)) ⊆ (S ← F R) · (| |)

≡ { definition f (R ← S)g ≡ f · S ⊆ R · g }

f (S ← B (R ,S))g ⇒ (|f |)(S ← F R)(|g |)

≡ { idem }

f · B (R ,S) ⊆ S · g ⇒ (|f |) · F R ⊆ S · (|g |)

At this point, we can infer . . .



(| |)-FT corollaries

From this, infer

• (| |)-fusion (R ,S := id , s):

(f · B (id , s) = s · g) ⇒ (|f |) = s · (|g |)

• (| |)-absorption (R ,S := r , id):

(f · B (r , id) = g) ⇒ (|f |) · F r = (|g |)

≡ { replacement of g }

(|f |) · F r = (|f · B (r , id)|)



Background: relators

Relators [2] have to do with parametric datatyping: a parametric
datatype G is said to be a relator wherever, given a relation from A to B,
GR extends R to G-structures: it is a relation from GA to GB

A

R

��

GA

G R

��

B GB

(4)

which obeys the following properties:

G id = id (5)

G (R · S) = (GR) · (GS) (6)

G (R◦) = (GR)◦ (7)

and is monotonic:

R ⊆ S ⇒ GR ⊆ GS (8)



Background

• Shunting rules:

f · R ⊆ S ≡ R ⊆ f ◦ · S (9)

R · f ◦ ⊆ S ≡ R ⊆ S · f (10)
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