
“Theorems for free”: a (calculational)

introduction

J.N. Oliveira

Dept. Informática,
Universidade do Minho

Braga, Portugal

2003

Parametric polymorphism: why?

• Less code (specific solution = generic solution +
customization)

• Intellectual reward

• Last but not
least, quotation (from Theorems for free!, by Philip Wadler [4]):

From the type of a polymorphic function we can

derive a theorem that is satisfies. (...) How useful

are the theorems so generated? Only time and

experience will tell (...)

• No doubt: free theorems are very useful!

Polymorphic type signatures

Polymorphic function signature:

f : t

where t is a functional type, according to the following “grammar”
of types:

t ::= t ′← t ′′

t ::= F(t1, . . . , tn)

t ::= v type variables v , cf. polymorphism

What does it mean that f is parametrically polymorphic?

Free theorem of type t

Let

• V be the set of type variables involved in type t

• {Rv}v∈V be a V -indexed family of relations (fv in case all
such Rv are functions).

• Rt be a relation defined inductively as follows:

Rt:=F(t1,...,tn) = F(Rt1 , . . . ,Rtn) (1)

Rt:=v = Rv (2)

Rt:=t′←t′′ = Rt′ ← Rt′′ (3)

• What kind of relation is Rt′ ← Rt′′?

“Reynolds arrow” operator

f (R← S)g ≡ f · S ⊆ R · g A

f

��

B
Soo

g

��

C D
R

oo

That is to say, A B
S

C D
R

CA DB
R ← S

For instance, f (id ← id)g ≡ f = g that is, id ← id = id

Free theorem (FT) of type t

The following (remarkable) theorem — due to J. Reynolds [3],
advertised by P. Wadler [4] and re-written by Backhouse [1] —
holds:

Given any function θ : t, and V as above, then θ Rt θ

holds, for any relational instantiation of type variables in

V .

Note that this theorem

• is a result about t

• holds independently of the actual definition of θ.

• holds about any function of type t

First example (invl)

• The target function: θ = invl : a⋆← a⋆.

• Calculation of Rt=a⋆←a⋆ :

Ra⋆←a⋆

≡ { rule Rt=t′←t′′ = Rt′ ← Rt′′ }

Ra⋆ ← Ra⋆

≡ { rule Rt=F(t1,...,tn) = F(Rt1 , . . . , Rtn) }

Ra
⋆← Ra

⋆

where

l R⋆l ′
def
= length l = length l ′ ∧ 〈∀ i : i ∈ inds l : (l i)R(l ′ i〉

Calculation of FT follows.

First example (invl)

The FT itself will predict (Ra abbreviated to R):

invl(R⋆← R⋆)invl

≡ { definition f (R ← S)g ≡ f · S ⊆ R · g }

invl · R⋆ ⊆ R⋆ · invl

In case R is a function r , the FT theorem boils down to invl ’s
natural property:

invl · r⋆ = r⋆ · invl

that is,

invl [r a | a← l] = [r b | b← invl l]

First example (invl)

Further calculation (back to R):

invl · R⋆ ⊆ R⋆ · invl

≡ { shunting rule (9) }

R⋆ ⊆ invl◦ · R⋆ · invl

≡ { going pointwise }

〈∀ l , r :: l R⋆r ⇒ (invl l)R⋆(invl r)〉

An instance of this pointwise version of invl -FT will state that, for
example, invl will respect element-wise orderings (R :=<):

First example (invl)

length l = length l ′ ∧ 〈∀ i : i ∈ inds l : (l i) < (r i)〉

⇓

length(invl l) = length(inv l ′)

∧

〈∀ j : j ∈ inds l : (invl l)j < (invl r)j〉

(Guess other instances.)

Our next example calculates the FT of

sort : a⋆← a⋆← (bool ← (a × a))

(the first parameter stands for the chosen ordering relation)

Second example: FT of sort

sort(R(a⋆
←a⋆)←(bool←(a×a)))sort

≡ { (1, 2, 3) ; Rt:=bool = id (cf. constant relator) }

sort((R⋆← R⋆)← (id ← (R × R)))sort

≡ { (4) }

sort · (id ← (R × R)) ⊆ (R⋆← R⋆) · sort

≡ { shunting (9) }

(id ← (R × R)) ⊆ sort◦ · (R⋆← R⋆) · sort

≡ { introduce variables f and g }

f (id ← (R × R))g ⇒ (sort f)(R⋆← R⋆)(sort g)

≡ { (1, 3, 4) }

f · (R × R) ⊆ g ⇒ (sort f) · R⋆ ⊆ R⋆ · (sort g)

Second example: FT of sort

Case R := r :

f · (r × r) = g ⇒ (sort f) · r⋆ = r⋆ · (sort g)

≡ { introduce variables }

〈∀ a, b : : f (r a, r b) = g(a, b)〉 ⇒ 〈∀ l : : (sort f)(r⋆ l) = r⋆(sort

Denoting predicates f , g by infix orderings ≤,�:

〈∀ a, b : : r a ≤ r b ≡ a � b〉 ⇒ 〈∀ l : : sort (≤)(r⋆ l) = r⋆(sort (�) l)〉

That is, for r monotonic and injective,

sort (≤) [r a | a← l]

is always the same list a

[r a | a← sort (�) l]

Second example: FT of (| |)

• (| |) has generic type

(| |) : b← F a← (b← B (a, b))

where F a ∼= B (a,F a).

• (| |)-FT:

(| |) · (Rb← B (Ra,Rb)) ⊆ (Rb← F Ra) · (| |)

• (| |)-FT calculation follows (Ra,Rb abbreviated to R ,S):

(| |)-FT corollaries

(| |) · (S ← B (R ,S)) ⊆ (S ← F R) · (| |)

≡ { definition f (R ← S)g ≡ f · S ⊆ R · g }

f (S ← B (R ,S))g ⇒ (|f |)(S ← F R)(|g |)

≡ { idem }

f · B (R ,S) ⊆ S · g ⇒ (|f |) · F R ⊆ S · (|g |)

At this point, we can infer . . .

(| |)-FT corollaries

From this, infer

• (| |)-fusion (R ,S := id , s):

(f · B (id , s) = s · g) ⇒ (|f |) = s · (|g |)

• (| |)-absorption (R ,S := r , id):

(f · B (r , id) = g) ⇒ (|f |) · F r = (|g |)

≡ { replacement of g }

(|f |) · F r = (|f · B (r , id)|)

Background: relators

Relators [2] have to do with parametric datatyping: a parametric
datatype G is said to be a relator wherever, given a relation from A to B,
GR extends R to G-structures: it is a relation from GA to GB

A

R

��

GA

G R

��

B GB

(4)

which obeys the following properties:

G id = id (5)

G (R · S) = (GR) · (GS) (6)

G (R◦) = (GR)◦ (7)

and is monotonic:

R ⊆ S ⇒ GR ⊆ GS (8)

Background

• Shunting rules:

f · R ⊆ S ≡ R ⊆ f ◦ · S (9)

R · f ◦ ⊆ S ≡ R ⊆ S · f (10)

K. Backhouse and R.C. Backhouse.
Safety of abstract interpretations for free, via logical relations
and Galois connections.
SCP, 15(1–2):153–196, 2004.

R.C. Backhouse, P. de Bruin, P. Hoogendijk, G. Malcolm, T.S.
Voermans, and J. van der Woude.
Polynomial relators.
In AMAST’91, Workshops in Computing, pages 303–362.
Springer, 1992.

J.C. Reynolds.
Types, abstraction and parametric polymorphism.
Information Processing 83, pages 513–523, 1983.

P.L. Wadler.
Theorems for free!
In 4th International Symposium on Functional Programming

Languages and Computer Architecture, London, Sep. 1989.
ACM.

