
Extended static checking (ESC) via the PF
transform

J.N. Oliveira

Dept. Informática,

Universidade do Minho

Braga, Portugal

DI/UM, 2008

Motivation Case studies

Motivation

• Software design is error-prone.

• Negative impact of programming errors on software
productivity can only be limited by catching them early.

• Static checkers (eg. syntax and type checkers) are tools which
catch errors at compile-time, ie. before running the program.

• Errors such as null dereferencing, division by 0 and array
bound overflow, are not caught by standard static checking.

• Detecting their presence requires extensive testing, and if
their presence can not be excluded with certainty, they must
be handled at run-time via exception mechanisms.

Motivation Case studies

Abstract modeling

• Software formalists argue that error checking in the coding
phase is too late

• First, a formal model should be written, queried, reasoned
about, and possibly animated (using eg. a symbolic
interpreter).

• Formal modeling relies on “rich” datatypes such as eg. finite
mappings, finite sequences, and recursive data structures,
which abstract from much of the complexity found in
common imperative programming languages (eg. pointers,
loop boundaries)

Motivation Case studies

Dynamic checking

• However, “rich” datatyping is not able to capture all
properties

• This means that additional constraints need to be added to
models such as invariants (attached to types) and
pre-conditions (attached to operations)

• Checking such constraints is once again a process which falls
outside standard static type-checking, leading to a so-called
dynamic type checking process.

Motivation Case studies

Extended static checking

• Static checking of formal models involving such constraints is
a complex process, relying on generation and discharge of
proof obligations [5]:

The valid objects of Datec are those which (...) satisfy
inv-Datec . This has a profound consequence for the type
mechanism of the notation. (...) The inclusion of a
sub-typing mechanism which allows truth-valued
functions forces the type checking here to rely on proofs.

• While proof obligations can be generated mechanically, their
discharge is in general above the decidability ceiling in
requiring full-fledged formal verification (theorem proving).

Motivation Case studies

Extended static checking

• Between the two extremes (cheap, decidable static checking
versus costly theorem proving), extended static checking

(ESC) [4] aims to catch more errors at compile-time at the
relatively moderate cost of adding annotations to the code
which record design decisions which were lost throughout the
programming process (if ever explicitly recorded).

• ESC tools have been developed for imperative programming
languages such as Modula-3 (ESC/Modula-3) and Java
(ESC/Java) [4].

• At their heart we find a verification condition generator and
the Simplify theorem prover [3].

Motivation Case studies

ESC

• Verification conditions are predicates in first-order logic which
are computed in weakest pre-condition style.

• Theorem proving is performed by a combination of
techniques, including SAT solvers, matching algorithms, and
heuristics to guide proof search.

• In what follows we follow the spirit of this approach but
intend to apply it much earlier in the design process

• We wish to perform ESC for formal modeling languages such
as VDM, Z, and Alloy.

• Since the rich data structures of these modeling languages
already preclude by construction the occurrence of errors such
as null pointers and array bound overflow, we will aim to
catch errors higher on the semantic scale.

Motivation Case studies

PF-ESC

• The main novelty of our approach resides in the chosen
method of proof construction: first-order proof obligations are
subject to the PF-transform [6] before they are reasoned
about.

• This transformation eliminates quantifiers and bound variables
and reduces complex formulas to algebraic relational
expressions which are more agile to calculate with.

• Suitable relational encoding of recursive structures makes it
possible to perform non-inductive proofs over such
structures.

Motivation Case studies

Case study 1 — Lists with no duplicates

Consider the data type of lists with no duplicates:

NRList X = X ⋆

inv l △ length l = card elems l

Clearly, the operation which adds an element to the front of a list
requires a pre-condition for the invariant to be preserved:

add : X → NRList X → NRList X

add x l △ a : l

pre . . .

We can easily guess such pre-condition. But,

• how can we be sure that our guess is the weakest?

• more generally, can we calculate it instead of inventing and
checking?

Motivation Case studies

Case study 2 — mobile phone directory

Requirements fragment:

(...) For each list of calls stored in the mobile phone (eg.
numbers dialed, SMS messages, lost calls), the store operation
should work in a way such that (a) the more recently a call is
made the more accessible it is; (b) no number appears twice in
a list; (c) only the last 10 entries in each list are stored.

Functional model:

store c △ (take 10) · (c :) · filter(c 6=) (1)

where take and filter are the obvious functions. The question is:

Does store ensure requirements (a)-(c)?

A (triple) proof obligation is left pending.

Motivation Case studies

Case study 3 — Hashing

Hash tables: given hash function X
hash

// IN , define

HTable X = IN ⇀ PX

inv HT △

〈 ∀ k :
k ∈ dom HT :

HT k 6= {} ∧ 〈∀ d : d ∈ HT k : hash d = k〉

〉

as well as representation function

repf : PX → HTable X

repf S △ {hash x 7→ {d ∈ S : hash d = hash x} : x ∈ S}

Motivation Case studies

Case stdy 3 — Hashing

Questions:

• Are we sure that repf builds a proper mapping (simple

relation) from hash indices to sets of collisions?

• Are we sure that repf builds a mapping satisfying the
invariant on hash tables?

Two proof obligations are thus left pending:

〈∀ S : S ⊆ X : repf S is simple〉 (2)

〈∀ X ,S : S ⊆ X : inv-(HTable X)(repf S)〉 (3)

The ESC approach invites us to discharge these obligations at
compile-time.

Motivation Case studies

Calculating Invariants and Preconditions

• Wherever a function f does not ensure preservation of
invariant inv , there is always a pre-condition pre which
enforces this at the cost of partializing f .

• In the limit, pre is the everywhere false predicate.

• As a rule, the average programmer will become aware of such
a pre-condition at runtime, in the testing phase.

• One can find it much earlier, at specification time, when
trying to discharge the standard proof obligation

〈∀ a : : inv a⇒ inv(f a)〉 (4)

which then gets extended to

〈∀ a : pre a : inv a⇒ inv(f a)〉 (5)

Motivation Case studies

PF-ESC instead of invent & verify

However,

• We seem to be bound to invent pre and hope we’ve guessed
the weakest such pre-condition. Otherwise, future use of this
function will be spuriously constrained.

• Can we be sure of having hit the weakest pre-condition?

Our approach (PF-ESC) will be as follows:

• We take the PF-transform of inv(f a) in (5) — at data level
— and attempt to rewrite it to a term involving inv a and
possibly “something else”: the calculated pre-condition

• This will be the weakest provided the calculation stays within
equivalence steps (as shown in the next slides).

Motivation Case studies

Weakest pre-conditions

• Let us strengthen (5) to equivalence

〈∀ a :: (pre a) ∧ (inv a) ≡ inv(f a)〉 (6)

which PF-transforms to equality

Pre · Inv = ⊤ · Inv · f (7)

for Pre = ⌈pre⌉ and Inv = ⌈inv⌉.

• Below we show that (7) ensures pre as the weakest (up to
logical equivalence) pre-condition for inv to be preserved

• The calculation proceeds by indirect equality (31) over
coreflexive X :

Motivation Case studies

Weakest pre-conditions

X ⊆ Pre · Inv

≡ { (7) }

X ⊆ ⊤ · Inv · f

≡ { shunting (28) ; converses }

f · X ⊆ Inv · ⊤

≡ { range (30) }

ρ (f · X) ⊆ Inv

≡ { weakest pre-condition (25) }

X ⊆ f \• Inv

:: { indirection (31) }

Pre · Inv = f \• Inv

Motivation Case studies

Case study 1: PF-ESC at work

We want to calculate the WP for

add x l △ a : l

to preserve the no duplicates invariant on finite lists.

• First step: PF-transform X ⋆ to IN ⇀ X (simple relation
telling which elements take which position in list).

Then the no duplicates invariant on L is encoded as
ker L ⊆ id (L is injective)

Finally, add x L PF-transforms to

x · 1◦ ∪ L · succ◦ (8)

cf. back to points: {1 7→ x} ∪ {i + 1 7→ (L i) : i ← δ L}.

Motivation Case studies

Case study 1: PF-ESC at work

• Second step: we start from the right hand side inv(add x L)
of (6) and re-write it by successive equivalence steps until we
reach:

• condition inv l ...
• ... “plus something else” — the calculated weakest

pre-condition.

• Since the PF-transformed proof has to do with injectivity of
union of relations, the following fact

R ∪ S is injective ≡

R is injective ∧ S is injective ∧ R◦ · S ⊆ id (9)

(easy to prove) is likely to be of use.

Motivation Case studies

Case study 1: PF-ESC at work

add x L has no duplicates

≡ { cf. (8) etc }

x · 1◦ ∪ L · succ◦ is injective

≡ { (9) }

x · 1◦ is injective ∧ L · succ◦ is injective ∧ (x · 1◦)◦ · L · succ◦ ⊆ id

≡ { definition of injective (twice) ; shunting (28) }

1 · x◦ · x · 1◦ ⊆ id ∧ suc · L◦ · L · succ◦ ⊆ id ∧ x◦ · L ⊆ 1◦ · succ

≡ { shunt (28 , 29) as much as possible }

x◦ · x ⊆ 1◦ · 1 ∧ L◦ · L ⊆ succ◦ · succ ∧ x◦ · L ⊆ 1◦ · succ

≡ { kernel of constant function is ⊤; succ is an injection }

True ∧ L◦ · L ⊆ id ∧ x◦ · L ⊆ 1◦ · succ

Motivation Case studies

Case study 1: summary

We have thus calculated:

add x L has no duplicates ≡ L is injective
︸ ︷︷ ︸

no duplicates in L

∧ x◦ · L ⊆ 1◦ · succ
︸ ︷︷ ︸

WP

PW-expansion of the calculated WP:

x◦ · L ⊆ 1◦ · succ

≡ { go pointwise: (33) twice }

〈∀ n :: x L n⇒ 1 = 1 + n〉

≡ { L models list l }

〈∀ n : n ∈ inds l : x = (l n)⇒ 1 = 1 + n〉

≡ { 1 = 1 + n always false (n ∈ IN) }

〈∀ n : n ∈ inds l : (l n) 6= x〉

Motivation Case studies

Case study 2: PF-ESC at work

From the mobile phone directory problem we select preservation of
the no duplicates invariant by function

store c △ (take 10) · (c :) · filter(c 6=)

Remarks:

• It’s sufficient to show that (c :) · filter(c 6=) preserves
injectivity, since take n L ⊆ L (∀n) and smaller than injective
is injective

• Defined over PF-transformed lists, filter becomes

filter(c 6=)L △ (¬ρ c) · L (10)

where the negated range operator (¬ρ) satisfies property

Φ ⊆ ¬ρR ≡ Φ · R ⊆ ⊥ (11)

Motivation Case studies

Case study 2: PF-ESC at work

c : (filter(c 6=)L) is injective

≡ { case study 1, (10) }

(¬ρ c) · L is injective ∧ c◦ · (¬ρ c) · L ⊆ 1◦ · succ

⇐ { smaller than injective is injective }

L is injective ∧ c◦ · (¬ρ c) · L ⊆ 1◦ · succ

≡ { converses }

L is injective ∧ L◦ · (¬ρ c) · c ⊆ succ◦ · 1

≡ { (¬ρ c) · c = ⊥ by left-cancellation of (11) }

L is injective ∧ L◦ · ⊥ ⊆ succ◦ · 1

≡ { bottom is below anything }

L is injective ∧True

Motivation Case studies

Case study 2: PF-ESC at work

Moral of this case study:

Although the implication in the second step of the
reasoning could put weakness of calculated pre-condition
at risk, we’ve calculated the weakest of all conditions
anyway (True).

Motivation Case studies

Case study 3: PF-ESC at work

Recall that we want to make sure that

repf S △ {hash x 7→ {d ∈ S : hash d = hash x} : x ∈ S}

is properly typed, that is, that its result is a valid mapping (simple

relation). Our reasoning will be based on the PF-transform of
repf ,

⌈repf S⌉ = Λ(⌈S⌉ · ker hash) · ⌈S⌉ · hash◦ (12)

where Λ is the power-transpose operator (34) which captures the
view of relations as “set-valued” functions

A B
R

oo

ΛR
}}||

|
|
|
|
|
|

PA

∈

OO

and ⌈S⌉ is the coreflexive which transforms set S .

Motivation Case studies

(abbreviating hash to h):

⌈repf S⌉ is simple

≡ { (12), (35) }

Λ(⌈S⌉ · h◦) · h · ⌈S⌉ · h◦ · h · ⌈S⌉ · h◦ · Λ(⌈S⌉ · h◦)◦ ⊆ id

≡ { shunting (29), since Λ(⌈S⌉ · h◦) is a function }

Λ(⌈S⌉ · h◦) · h · ⌈S⌉ · h◦ · h · ⌈S⌉ ⊆ Λ(⌈S⌉ · h◦) · h

⇐ { monotonicity of composition }

h · ⌈S⌉ · h◦ · h · ⌈S⌉ ⊆ h

≡ { shunting; kernels }

ker (h · ⌈S⌉) ⊆ ker h

⇐ { ker is monotonic }

h · ⌈S⌉ ⊆ h

≡ { ⌈S⌉ is coreflexive }

Motivation Case studies

Generalizing PF-ESC

Back to where we started, let us PF-transform (5):

Pre · Inv ⊆ ⊤ · Inv · f (13)

If we generalize f above to a (non-functional) post-condition post,
and Inv to different invariants over source and target types, we
obtain

Pre · Inv ⊆ ⊤ · Inv ′ · Post (14)

which expands to

〈∀ a : inv b : pre a⇒ 〈∃ b : inv ′ b : post(b, a)〉〉 (15)

and can be recognized as the satisfiability requirement on pre /
post specification pairs [5].

Motivation Case studies

Relationship with Hoare Logic

We finally show that Hoare triples such as

{p}P{q} (16)

are also instances of ESC proof obligations. First we spell out the
meaning of (16):

〈∀ s : p s : 〈∀ s ′ : s P
// s ′ : q s ′〉〉 (17)

Then (recording the meaning of program P as relation [[P]] on
program states) we PF-transform (17) into

⌈p⌉ ⊆ [[P]] \ (⌈q⌉ · ⊤) (18)

thanks to (27), and then to...

Motivation Case studies

Relationship with Hoare Logic

[[P]] · ⌈p⌉ ⊆ ⌈q⌉ · ⊤ (19)

thanks to (26). By putting (19) and the PF-transform of (4) aside,

f · ⌈inv⌉ ⊆ ⌈inv⌉ · ⊤ (20)

we realize both share the same scheme,

R · Φ ⊆ Ψ · ⊤ (21)

which is equivalent to

R · Φ ⊆ Ψ · R (22)

(see exercise 1) and which one can condense into notation

Φ
R

// Ψ (23)

Motivation Case studies

Relationship with Hoare Logic

All in all

• Notation (23) can be regarded as the type assertion that, if
fed with values (or starting on states) “of type Φ”
computation P yields results (changes to states) “of type Ψ”
(if it terminates).

• We see that functional invariant preservation and Hoare Logic
are one and the same device: a way to type computations, be
them specified as (allways terminating, deterministic)
functions or encoded into (possibly non-terminating,
non-deterministic) programs.

Motivation Case studies

Exercises

Exercise 1: Complete the following reasoning which shows that (21)
and (22) are equivalent:

R ·Φ ⊆ Ψ · ⊤

≡ { }

R ·Φ ⊆ Ψ · ⊤ ∩ R

≡ { }

R ·Φ ⊆ Ψ · R

�

Exercise 2: Show that

Φ
R

// Ψ ≡ Φ ⊆ R \•Ψ (24)

holds.

�

Motivation Case studies

Background

Weakest (liberal) pre-condition is an upper adjoint [2]

ρ (R · Φ) ⊆ Ψ ≡ Φ ⊆ R \•Ψ (25)

whose pointwise version wlp R ψ is:

wlp R ψ △ 〈
∨

φ :: 〈∀ b, a : b R a : φ a⇒ ψ b〉〉

“Left” division:

R · X ⊆ S ≡ X ⊆ R \ S (26)

where

b (R \ S) a ≡ 〈∀ c : c R b : c S a〉 (27)

Motivation Case studies

Background

Shunting rules:

f · R ⊆ S ≡ R ⊆ f ◦ · S (28)

R · f ◦ ⊆ S ≡ R ⊆ S · f (29)

Range:

ρR ⊆ Φ ≡ R ⊆ Φ · ⊤ (30)

Indirect equality rule:

R = S ≡ 〈∀ X : : (X ⊆ R ≡ X ⊆ S)〉 (31)

≡ 〈∀ X : : (R ⊆ X ≡ S ⊆ X)〉 (32)

“Guardanapo” rule:

b(f ◦ · R · g)a ≡ (f b)R(g a) (33)

Motivation Case studies

Background

Power-transpose:

f = ΛR ≡ R = ∈ ·f A B
R

oo

ΛR
}}||

|
|
|
|
|
|

PA

∈

OO (34)

Fusion:

Λ(R · f) = (ΛR) · f (35)

Property (11) stems from Galois connection 1

Φ ⊆ ¬δ R ≡ R ⊆ ⊥/Φ (36)

1This is fact (15.1) of [1], page 288.

Motivation Case studies

C. Aarts, R.C. Backhouse, P. Hoogendijk, E.Voermans, and
J. van der Woude.
A relational theory of datatypes, December 1992.
Available from www.cs.nott.ac.uk/~rcb.

R.C. Backhouse.
Fixed point calculus, 2000.
Summer School and Workshop on Algebraic and Coalgebraic
Methods in the Mathematics of Program Construction, Lincoln
College, Oxford, UK 10th to 14th April 2000.

David Detlefs, Greg Nelson, and James B. Saxe.
Simplify: a theorem prover for program checking.
JACM, 52(3):365–473, 2005.

Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg
Nelson, James B. Saxe, and Raymie Stata.
Extended static checking for java.
In PLDI, pages 234–245, 2002.

C.B. Jones.

Motivation Case studies

Systematic Software Development Using VDM.
Series in Computer Science. Prentice-Hall International, 1986.

J.N. Oliveira and C.J. Rodrigues.
Pointfree factorization of operation refinement.
In FM’06 , volume 4085 of LNCS, pages 236–251.
Springer-Verlag, 2006.

 http://fm06.mcmaster.ca

	Motivation
	Case studies

