“Theorems for free”: a (calculational)
introduction

J.N. Oliveira

Dept. Informatica,
Universidade do Minho
Braga, Portugal

2003

Parametric polymorphism: why?

Less code (specific solution = generic solution +
customization)

Intellectual reward

Last but not

least, quotation (from Theorems for free!, by Philip Wadler [4]):
From the type of a polymorphic function we can
derive a theorem that is satisfies. (...) How useful
are the theorems so generated? Only time and
experience will tell (...)

No doubt: free theorems are very useful!

Polymorphic type signatures

Polymorphic function signature:

f ot

where t is a functional type, according to the following “grammar’
of types:

t o= t —1t"
t == F(t1,...,tn)
t o= v type variables v, cf. polymorphism

What does it mean that f is parametrically polymorphic?

Free theorem of type t

Let

e V be the set of type variables involved in type t

e {R,}, cy bea V-indexed family of relations (f, in case all
such R, are functions).

e R; be a relation defined inductively as follows:

Rt::F(tl,...,tn) = F(Rt17) Rtn)
Rt::v = Rv
Rt::t/<—t” = Rt’ — Rt”

e What kind of relation is Ry «— Ry?

“Reynolds arrow” operator

f(R—S)g = f-SCR-g A<S—B
fl lg
C(TD
S
That is to say, ATB
C~——D
RS

For instance, f(id «—id)g = f =g thatis, id«id

Free theorem (FT) of type t

The following (remarkable) theorem — due to J. Reynolds [3],
advertised by P. Wadler [4] and re-written by Backhouse [1] —
holds:

Given any function 0 : t, and V' as above, then 0 R; 0

holds, for any relational instantiation of type variables in
V.

Note that this theorem
e is a result about t
¢ holds independently of the actual definition of 6.
e holds about any function of type t

First example (inv/)

e The target function: 8 = invl : a* « a*.

e Calculation of Ry— g« a+:

Ryt
= { rle Ry = Rp—Rwm }
Rax <= Ry
= { rule Rir(tn...ty = F(Ra,---»Ry) }
R — Ry

where

I R length | = length I A (Vi :i€indsl: (I)R(I"F)

Calculation of FT follows.

First example (inv/)

The FT itself will predict (R, abbreviated to R):

invl(R* — R*)invl
= { definition f(R—S)g = f-SCR-g }

invl - R* C R* - invl

In case R is a function r, the FT theorem boils down to invl's
natural property:

invl - r* = r*-invl
that is,

invi[rala— 1] = [rb|b«invll]

First example (inv/)

Further calculation (back to R):
invl - R* C R* - invl
{ shunting rule (9) }
R* C invl°® - R* - invl
{ going pointwise }
(VI,r iz | R*r= (invl I)R*(invl r))

An instance of this pointwise version of inv/-FT will state that, for
example, inv/ will respect element-wise orderings (R :=<):

First example (inv/)

length | = length ' AN(N i : i €inds|: (i) <(ri))
Y
length(invl 1) = length(inv I")
A
(Vj : jeinds : (invl 1)j < (invl r)j)

(Guess other instances.)

Our next example calculates the FT of
sort : a* «— a* «— (bool — (a x a))

(the first parameter stands for the chosen ordering relation)

Second example: FT of sort

SOrt(R(ax—a*)—(bool—(ax a)))SOrt
{ (1, 2, 3) ; Rechool = id (cf. constant relator) }
sort((R* — R*) « (id — (R x R)))sort
{ (4}
sort-(id —(Rx R)) C (R*— R*):sort
{ shunting (9) }
(id—(RxR)) C sort®-(R*— R*) - sort
{ introduce variables f and g }
f(id —(RxR))g = (sort f)(R* — R*)(sort g)
{ (1L.3,4)}
f-(RxR)Cg = (sort f)-R*C R*-(sort g)

Second example: FT of sort

Case R:=r:
f-(rxr)y=g = (sort) -r*=r*-(sort g)
= { introduce variables }

(Va,b :: f(ra,rb)y=g(ab)) = (VI :: (sort f)(r* 1) = r*(sor

Denoting predicates f, g by infix orderings <, <:
(Vab::ra<rb=a=xb) = (VI :: sort (Z)(r* I)=r*(sort (X))

That is, for r monotonic and injective,

sort (<) [rala—1I]

is always the same list a

[ral|a—sort ()]

Second example: FT of (|_))

e (|- has generic type
(-):b—Fa—(b—B(a,b))

where Fa = B(a,F a).
. ()-FT

(-)-(Ro—=B(RaRb)) S (Ro—FRa)-(-)

e (_)-FT calculation follows (R,, R, abbreviated to R, S):

(-)-FT corollaries

(-)-(5<=B(RS) < (S=FR)-()

= { definition f(R—S)g = f-SCR-g }
f(S—B(R,S)g = (f)(S—FR)(g)
= { idem }

f-B(R,S)CS-g = (f)-FRCS-(g)

At this point, we can infer ...

(-)-FT corollaries

From this, infer
e (|_)-fusion (R,S :=id,s):

(f-B(id,s)=s-g) = (f)=s-(g)
e (|_))-absorption (R,S := r,id):

(f-B(r,id)=g) = (f)-Fr={(eg
= { replacement of g }
(f)-Fr=(f-B(r,id))

Background: relators

Relators [2] have to do with parametric datatyping: a parametric
datatype G is said to be a relator wherever, given a relation from A to B,
G R extends R to G-structures: it is a relation from GA to GB

R GA (4)
Rl lGR
B GB

which obeys the following properties:

Gid = id (5)
G(R-S5) = (GR)-(GS) (6)
G(R°) = (GR)° (7)

and is monotonic:

Background

e Shunting rules:

f-RCS = RCf°-S 9)
R-f°CS = RCS-f (10)

@ K. Backhouse and R.C. Backhouse.
Safety of abstract interpretations for free, via logical relations

and Galois connections.
SCP, 15(1—2):153—196, 2004.

[R.C. Backhouse, P. de Bruin, P. Hoogendijk, G. Malcolm, T.S.
Voermans, and J. van der Woude.
Polynomial relators.
In AMAST 91, Workshops in Computing, pages 303-362.
Springer, 1992.

@ J.C. Reynolds.
Types, abstraction and parametric polymorphism.
Information Processing 83, pages 513-523, 1983.

@ P.L. Wadler.
Theorems for free!
In 4th International Symposium on Functional Programming
Languages and Computer Architecture, London, Sep. 1989.
ACM.

