
MAP-i: Program Semantics, Verification, and

Construction

J.N. Oliveira

Dept. Informática,

Universidade do Minho

Braga, Portugal

DI/UM, 2008



Syllabus Motivation Target

Synopsys

Syllabus:

• 12 hours (4 lectures) including assessment:
• Jan 7th
• Jan 14th
• Jan 28th1

• Feb 4th

• Assessment consists of studying and presenting a paper

• Papers should be assigned by Jan 21st

• Presentations will take place on Feb 4th

Handouts:

• several sets of slides

• research papers

1No lecture on Jan 21st (away in a research panel in Estonia).



Syllabus Motivation Target

Syllabus in detail

• First lecture (January 7th, 10am-1pm)

Introduction to the mathematics of program

construction. Correct by verification versus correct
by construction. Description versus calculation.
Historical perspective on the PF-transform.
‘Point-free’ notation and reasoning. Rules of the
PF-transform.

• Second lecture (January 14th, 10am-1pm)

PF-transform: when everything becomes a

relation. Introduction to the binary relation
calculus. Taxonomy of binary relations. Functions.
Conditions and coreflexives. PF-transform of n-ary
relations. Products and Sums. Universal
constructions and properties. Galois connections.



Syllabus Motivation Target

Syllabus in detail

• Third lecture (January 28th, 10am-1pm):
Alternative a)

Program construction. Inductive relations.
‘Hiding’ relational fixpoints into program
combinators. Specs and programs as relational
hylomorphisms. Fusion laws. Calculating recursive
solutions for hylo-equations.

Alternative b)

Constructive proofs. A PF-approach to
polymorphic type checking. Reynolds’ relation on
functions. The free-theorem of polymorphism in one
equation. Extended static checking (ESC) in the
PF-style. Induction-free calculation of preconditions
and invariants. Examples.



Syllabus Motivation Target

Syllabus in detail

• Fourth lecture (February 4th, 10am-1pm)

First part (two hours): Assessment (paper
presentations).
Second part (one hour): Discussion. Open issues
and hot topics in the mathematics of program
construction. Research directions in “correct by
construction”.



Syllabus Motivation Target

Motivation

• Much of our effort in programming goes into making sure
that a number of (“good”) relationships hold among the
artifacts we build.

• We have two main ways of ensuring that such good things
happen:

• postulate the relationship + verify what has been postulated
(“invent & verify”)

• build the relationship out of existing valid relationships using
an algebra of relationships (“correct by construction”)



Syllabus Motivation Target

Example — type checking

In functional programming, eg. Haskell:

• Postulate:

f
︸︷︷︸

function

:: a → b
︸ ︷︷ ︸

type

• Artifacts: functions (λ-expressions), types (τ -expressions)

• Relationship: “is of type”

• Invent & verify: declare f :: a → b, define f and wait for the
interpreter’s reaction

• Correct by construction: start by defining f , then let the
interpreter calculate its (principal) type; instantiate this if
required.



Syllabus Motivation Target

Example — Hoare logic

• Postulate:

{p}P{q}

— in fact “the same as”

P
︸︷︷︸

program

:: p → q
︸ ︷︷ ︸

predicative type

• Artifacts: programs (imperative code), pre/post conditions
(predicates)

• Relationship: “pre-condition p ensures post-condition q”

• Invent & verify: write P , invent p and q and prove that
{p}P{q} holds

• Correct by construction: write P and q; calculate the wp for
q to hold upon execution of P ; obtain p by going stronger, if
required.



Syllabus Motivation Target

Example — Refining specifications

• Postulate:

P
︸︷︷︸

program

⊑ S
︸︷︷︸

specification

• Artifacts: programs, specifications

• Relationship: “is a correct implementation of”

• Invent & verify: given S , invent P and then prove that the
semantics of P are more defined than S

• Correct by construction: calculate P by transforming S
according to some refinement algebra compatible with ⊑.



Syllabus Motivation Target

Example — in discrete maths

• Postulate:

function f is a bijection

• Artifacts: functions, isomorphisms etc

• Invent & verify: given f , invent its converse f ◦ and then prove
the two cancellations

〈∀ x :: f ◦(f (x)) = x〉

〈∀ y :: f (f ◦(y)) = y〉

• Correct by construction: from f calculate f ◦ (which in
general in not a function); both f and f ◦ will be bijective iff a
function f ◦ is obtained.



Syllabus Motivation Target

Our target

Aim:

• Our lectures will be devoted to the calculational, constructive
option illustrated above

However:

• “Traditional” reasoning follows invent & verify

• Thinking constructively requires a “turn of mind”

Question:

• Are the logics and calculi we traditionally rely upon up-to-date
for such a turn of mind ?


	Syllabus
	Motivation
	Target

