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Motivation Binary Relations Composition Inclusion Converse All in one Summary Background

Pairs

Consider assertions

0 ≤ π

John IsFatherOf Mary

3 = (1+) 2

• They are statements of fact concerning various kinds of object
— real numbers, people, natural numbers, etc

• They involve two such objects, that is, pairs

(0, π)

(John, Mary)

(3, 2)

respectively.
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Sets of pairs

So, we might have written

(0, π) ∈ ≤

(John, Mary) ∈ IsFatherOf

(3, 2) ∈ (1+)

What are (≤), IsFatherOf , (1+)?

• they are sets of pairs

• they are binary relations

Therefore,

• partial orders — eg. (≤) — are special cases of relations

• functions — eg. succ △ (1+) — are special cases of relations
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Binary Relations

Binary relations are typed:

Arrow notation

Arrow A
R // B denotes a binary relation from A (source) to B

(target).

A,B are types. Writing B A
Roo means the same as A

R // B .

Infix notation
The usual infix notation used in natural language — eg.
John IsFatherOf Mary — and in maths — eg. 0 ≤ π — extends to

arbitrary B A
Roo : we write

b R a

to denote that (b, a) ∈ R .
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Functions are relations

• Lowercase letters (or identifiers starting by one such letter) will
denote special relations known as functions, eg. f , g , succ , etc.

• We regard function f : A −→ B as the binary relation which relates
b to a iff b = f a. So, b f a literally means b = f a.

• Therefore, we generalize

B A
foo

b = f a

to B A
Roo

b R a
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Composition

Recall function composition

B A
foo C

g
oo

f ·g

ii

b = f (g c)

(1)

and extend f · g to R · S in the obvious way:

b(R · S)c ≡ 〈∃ a :: b R a ∧ a S c〉 (2)

Note how this rule of the PF-transform removes ∃ when applied
from right to left
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Check generalization

Back to functions, (2) becomes

b(f · g)c ≡ 〈∃ a :: b f a ∧ a g c〉

≡ { a g c means a = g c }

〈∃ a :: b f a ∧ a = g c〉

≡ { ∃-trading ; b f a means b = f a }

〈∃ a : a = g c : b = f a〉

≡ { one-point rule (∃) }

b = f (g c)

So, we easily recover what we had before (1).
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Inclusion generalizes equality

• Equality on functions

f = g ≡ 〈∀ a : a ∈ A : f a =B g a〉

generalizes to inclusion on relations:

R ⊆ S ≡ 〈∀ b, a :: b R a ⇒ b S a〉 (3)

(read R ⊆ S as “R is at most S”)

• For R ⊆ S to hold both need to be of the same type, say

B A
R,Soo

• R ⊆ S is a partial order (reflexive, transitive and
anti-symmetric)
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Exercises

Exercise 1: We want to compare

IsPrefixOf : (s : A⋆) → (r : A⋆)
post length r ≤ length s ∧ 〈∀ i : i ≤ length r : r i = s i〉

(4)

with

Permutes : (s : A⋆) → (r : A⋆) (5)

post 〈∀ e : e ∈ elems s ∪ elems r : count e s = count e r〉

and with function tail , all of type A⋆ A⋆oo . Check which of the
following hold:

• tail ⊆ IsPrefixOf

• IsPrefixOf ⊆ Permutes

�
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Special relations

Every type B Aoo has its

• bottom relation B A
⊥oo , which is such that, for all b, a,

b⊥a ≡ False

• topmost relation B A
⊤oo , which is such that, for all b, a,

b⊤a ≡ True

Type A Aoo has the

• identity relation A A
idoo which is function id a △ a.

Clearly, for every R ,

⊥ ⊆ R ⊆ ⊤ (6)
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Exercises

Exercise 2: Resort to PF-transform rule (2) and to the Eindhoven
quantifier calculus to show that

R · id = R = id · R (7)

R · ⊥ = ⊥ = ⊥ · R (8)

hold and that composition is associative:

R · (S · T ) = (R · S) · T (9)

�
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Converses

Every relation B A
Roo has a converse B

R◦

// A which is
such that, for all a, b,

a(R◦)b ≡ b R a (10)

Note that converse commutes with composition

(R · S)◦ = S◦ · R◦ (11)

and with itself:

(R◦)◦ = R (12)
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Function converses

Function converses f ◦, g◦ etc. always exist (as relations) and
enjoy the following (very useful) PF-transform property:

(f b)R(g a) ≡ b(f ◦ · R · g)a (13)

cf. diagram:

B

f ◦

��

A
Roo

C D

g

OO

f ◦·R·g
oo

Let us see an example of its use.
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PF-transform at work

Transforming a well-known PW-formula:

f is injective

≡ { recall definition from discrete maths }

〈∀ y , x :: (f y) = (f x) ⇒ y = x〉

≡ { introduce id (twice) }

〈∀ y , x :: (f y)id(f x) ⇒ y(id)x〉

≡ { rule (f b)R(g a) ≡ b(f ◦ · R · g)a (13) }

〈∀ y , x :: y(f ◦ · id · f )x ⇒ y(id)x〉

≡ { (7) ; then go pointfree via (3) }

f ◦ · f ⊆ id
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The other way round

Let us now see what id ⊆ f · f ◦ means:

id ⊆ f · f ◦

≡ { relational inclusion (3) }

〈∀ y , x :: y(id)x ⇒ y(f · f ◦)x〉

≡ { identity relation ; composition (2) }

〈∀ y , x :: y = x ⇒ 〈∃ z :: y f z ∧ z f ◦x〉〉

≡ { ∀-trading ; converse (10) }

〈∀ y , x : y = x : 〈∃ z :: y f z ∧ x f z〉〉

≡ { ∀-one point ; trivia ; function f }

〈∀ x :: 〈∃ z :: x = f z〉〉

≡ { recalling definition from maths }

f is surjective
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Why id (really) matters

Terminology:

• Say R is reflexive iff id ⊆ R

pointwise: 〈∀ a : : a R a〉 (check as homework);

• Say R is coreflexive iff R ⊆ id

pointwise: 〈∀ a : : b R a ⇒ b = a〉 (check as homework).

Define, for B A
Roo :

Kernel of R Image of R

A A
ker Roo B B

imgRoo

ker R
def
= R◦ · R imgR

def
= R · R◦
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Example: kernels of functions

a′(ker f )a

≡ { substitution }

a′(f ◦ · f )a

≡ { PF-transform rule (13) }

(f a′) = (f a)

In words: a′(ker f )a means a′ and a “have the same f -image”

Exercise 3: Let C be a nonempty data domain and let and c ∈ C . Let
c be the “everywhere c” function:

c : A // C
c a △ c

(14)

Compute which relations are defined by the following PF-expressions:

ker c , b · c◦ , img c (15)
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Binary relation taxonomy

Topmost criteria:
relation

injective entire simple surjective

Definitions:

Reflexive Coreflexive

kerR entire R injective R

img R surjective R simple R

(16)

Facts:

ker (R◦) = img R (17)

img (R◦) = kerR (18)
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Binary relation taxonomy

The whole picture:

binary relation

ZZZZZZZZZZZZZZZ
RRR

mmm
ddddddddddddddddd

injective
QQQ

entire
mmm QQQ

Q
simple

PPPlll
l

surjective
ooo

representation
QQQ

function
RRR

mmm
abstraction
nnn

injection
QQQ

surjection
lll

bijection

(19)

Exercise 4: Resort to (17,18) and (16) to prove the following rules of
thumb:

• converse of injective is simple (and vice-versa)

• converse of entire is surjective (and vice-versa)

�
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Functions in one slide

A function f is a binary relation such that

Pointwise Pointfree
“Left” Uniqueness

b f a ∧ b′ f a ⇒ b = b′ img f ⊆ id (f is simple)
Leibniz principle

a = a′ ⇒ f a = f a′ id ⊆ ker f (f is entire)

NB: Following a widespread convention, functions will be denoted by

lowercase characters (eg. f , g , φ) or identifiers starting with lowercase

characters, and function application will be denoted by juxtaposition, eg.

f a instead of f (a).
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Relation taxonomy — orders

Orders are endo-relations A A
Roo classified as

endo-relation

symmetric transitive reflexive anti-symmetric connected

per preorder

coreflexive equivalence partial order

id linear order

(Criteria definitions: next slide)



Motivation Binary Relations Composition Inclusion Converse All in one Summary Background

Orders and their taxonomy

Besides

reflexive: iff idA ⊆ R

coreflexive: iff R ⊆ idA

an order (or endo-relation) A A
Roo can be

transitive: iff R · R ⊆ R

anti-symmetric: iff R ∩ R◦ ⊆ idA

symmetric: iff R ⊆ R◦(≡ R = R◦)

connected: iff R ∪ R◦ = ⊤
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Orders and their taxonomy

Therefore:

• Preorders are reflexive and transitive orders.
Example: y IsAtMostAsOldAs x

• Partial orders are anti-symmetric preorders
Example: y ⊆ x

• Linear orders are connected partial orders
Example: y ≤ x

• Equivalences are symmetric preorders
Example: y Permutes x

• Pers are partial equivalences
Example: y IsBrotherOf x
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Exercises

Exercise 5: Expand all criteria in the previous slides to pointwise
notation.

�

Exercise 6: A relation R is said to be co-transitive iff the following
holds:

〈∀ b, a : b R a : 〈∃ c : b R c : c R a〉〉 (20)

Compute the PF-transform of the formula above. Find a relation (eg.
over numbers) which is co-transitive and another which is not.

�
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Meet and join

Meet (intersection) and join (union) internalize conjunction and
disjunction, respectively,

b (R ∩ S) a ≡ b R a ∧ b S a (21)

b (R ∪ S) a ≡ b R a ∨ b S a (22)

for R , S of the same type. Their meaning is captured by the
following universal properties:

X ⊆ R ∩ S ≡ X ⊆ R ∧ X ⊆ S (23)

R ∪ S ⊆ X ≡ R ⊆ X ∧ S ⊆ X (24)
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In summary

Type B Aoo forms a lattice:

⊤ “top”

R ∪ S join, lub (“least upper bound”)

R S

R ∩ S

DDDDDDDDD

zzzzzzzzz

meet, glb (“greatest lower bound”)

⊥ “bottom”
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All (data structures) in one (PF notation)

Products

A A × B
π1oo π2 // B

C

R

ffMMMMMMMMMMMMM

〈R,S〉

OO

S

88qqqqqqqqqqqqq

(25)

where

ψ PF ψ

a R c ∧ b S c (a, b)〈R ,S〉c
b R a ∧ d S c (b, d)(R × S)(a, c)

(26)

Clearly: R × S = 〈R · π1,S · π2〉
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Sums

Example (Haskell):

data X = Boo Bool | Err String

PF-transforms to

Bool
i1 //

Boo
))SSSSSSSSSSSSSSSSSS Bool + String

[Boo ,Err ]

��

String
i2oo

Err
uukkkkkkkkkkkkkkkkkk

X

(27)

where

[R ,S ] = (R · i◦1 ) ∪ (S · i◦2 ) cf. A
i1 //

R
&&MMMMMMMMMMMMM A + B

[R ,S]

��

B
i2oo

S
xxqqqqqqqqqqqqq

CDually: R + S = [i1 · R , i2 · S ]



Motivation Binary Relations Composition Inclusion Converse All in one Summary Background

Sums

Example (Haskell):

data X = Boo Bool | Err String

PF-transforms to

Bool
i1 //

Boo
))SSSSSSSSSSSSSSSSSS Bool + String

[Boo ,Err ]

��

String
i2oo

Err
uukkkkkkkkkkkkkkkkkk

X

(27)

where

[R ,S ] = (R · i◦1 ) ∪ (S · i◦2 ) cf. A
i1 //

R
&&MMMMMMMMMMMMM A + B

[R ,S]

��

B
i2oo

S
xxqqqqqqqqqqqqq

CDually: R + S = [i1 · R , i2 · S ]



Motivation Binary Relations Composition Inclusion Converse All in one Summary Background

Last but not least: relational equality

• Pointwise equality:

R = S ≡ 〈∀ b, a : : b R a ≡ b S a〉

• Pointfree equality:

• Cyclic inclusion (“ping-pong”) rule:

R = S ≡ R ⊆ S ∧ S ⊆ R (28)

• Indirect equality rules 1:

R = S ≡ 〈∀ X : : (X ⊆ R ≡ X ⊆ S)〉 (29)

≡ 〈∀ X : : (R ⊆ X ≡ S ⊆ X )〉 (30)

1Cf. [1], p. 82.
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Example of indirect proof

X ⊆ (R ∩ S) ∩ T

≡ { ∩-universal (23) }

X ⊆ (R ∩ S) ∧ X ⊆ T

≡ { ∩-universal (23) }

(X ⊆ R ∧ X ⊆ S) ∧ X ⊆ T

≡ { ∧ is associative }

X ⊆ R ∧ (X ⊆ S ∧ X ⊆ T )

≡ { ∩-universal (23) twice }

X ⊆ R ∩ (S ∩ T )

:: { indirection }

(R ∩ S) ∩ T = R ∩ (S ∩ T ) (31)
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Last but not least: monotonicity

All relational combinators seen so far are ⊆-monotonic, for
instance:

R ⊆ S ⇒ R◦ ⊆ S◦

R ⊆ S ∧ U ⊆ V ⇒ R · U ⊆ S · V

R ⊆ S ∧ U ⊆ V ⇒ R ∩ U ⊆ S ∩ V

R ⊆ S ∧ U ⊆ V ⇒ R ∪ U ⊆ S ∪ V

etc

Exercise 7: Prove the following rules of thumb:

• smaller than injective (simple) is injective (simple)

• larger than entire (surjective) is entire (surjective)

�
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Exercises

Exercise 8: Show that (13) holds.

�

Exercise 9: Check which of the following hold:

• If relations R and S are simple, then so is R ∩ S

• If relations R and S are injective, then so is R ∪ S

• If relations R and S are entire, then so is R ∩ S

�

Exercise 10: Prove that relational composition preserves all relational
classes in the taxonomy of (19).

�
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Exercises

Exercise 11: Prove the following fact

A function f is a bijection iff its converse f ◦ is a function (32)

by completing:

f and f ◦ are functions

≡ { ... }

(id ⊆ ker f ∧ img f ⊆ id) ∧ (id ⊆ ker f ◦ ∧ img f ◦ ⊆ id)

≡ { ... }

...

≡ { ... }

f is a bijection

�
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Exercises

Exercise 12: Prove that swap △ 〈π2, π1〉 is a bijection.

�
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Summary

Rules of the PF-transform seen so far:

φ PF φ

〈∃ a :: b R a ∧ a S c〉 b(R · S)c
〈∀ a, b : : b R a ⇒ b S a〉 R ⊆ S

〈∀ a :: a R a〉 id ⊆ R

b R a ∧ c S a (b, c)〈R ,S〉a
b R a ∧ d S c (b, d)(R × S)(a, c)
b R a ∧ b S a b (R ∩ S) a

b R a ∨ b S a b (R ∪ S) a

(f b) R (g a) b(f ◦ · R · g)a
True b ⊤ a

False b ⊥ a
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Background — Eindhoven quantifier calculus

When writing ∀, ∃-quantified expressions is useful to know a number of
rules which help in reasoning about them. Below we list some of these
rules:

• Trading:

〈∀ i : R ∧ S : T 〉 = 〈∀ i : R : S ⇒ T 〉 (33)

〈∃ i : R ∧ S : T 〉 = 〈∃ i : R : S ∧ T 〉 (34)
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Background — Eindhoven quantifier calculus

Splitting:

〈∀ j : R : 〈∀ k : S : T 〉〉 = 〈∀ k : 〈∃ j : R : S〉 : T 〉 (35)

〈∃ j : R : 〈∃ k : S : T 〉〉 = 〈∃ k : 〈∃ j : R : S〉 : T 〉 (36)

One-point:

〈∀ k : k = e : T 〉 = T [k := e] (37)

〈∃ k : k = e : T 〉 = T [k := e] (38)

Nesting:

〈∀ a, b : R ∧ S : T 〉 = 〈∀ a : R : 〈∀ b : S : T 〉〉 (39)

〈∃ a, b : R ∧ S : T 〉 = 〈∃ a : R : 〈∃ b : S : T 〉〉 (40)
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