
PF transform: where everything becomes a
relation

J.N. Oliveira

Dept. Informática,
Universidade do Minho

Braga, Portugal

DI/UM, 2007



Motivation Binary Relations Composition Inclusion Converse All in one Summary Background

Pairs

Consider assertions

0 ≤ π

John IsFatherOf Mary

3 = (1+) 2

• They are statements of fact concerning various kinds of object
— real numbers, people, natural numbers, etc

• They involve two such objects, that is, pairs

(0, π)

(John, Mary)

(3, 2)

respectively.



Motivation Binary Relations Composition Inclusion Converse All in one Summary Background

Sets of pairs

So, we might have written

(0, π) ∈ ≤

(John, Mary) ∈ IsFatherOf

(3, 2) ∈ (1+)

What are (≤), IsFatherOf , (1+)?

• they are sets of pairs

• they are binary relations

Therefore,

• partial orders — eg. (≤) — are special cases of relations

• functions — eg. succ △ (1+) — are special cases of relations



Motivation Binary Relations Composition Inclusion Converse All in one Summary Background

Binary Relations

Binary relations are typed:

Arrow notation

Arrow A
R // B denotes a binary relation from A (source) to B

(target).

A,B are types. Writing B A
Roo means the same as A

R // B .

Infix notation
The usual infix notation used in natural language — eg.
John IsFatherOf Mary — and in maths — eg. 0 ≤ π — extends to

arbitrary B A
Roo : we write

b R a

to denote that (b, a) ∈ R .



Motivation Binary Relations Composition Inclusion Converse All in one Summary Background

Binary Relations

Binary relations are typed:

Arrow notation

Arrow A
R // B denotes a binary relation from A (source) to B

(target).

A,B are types. Writing B A
Roo means the same as A

R // B .

Infix notation
The usual infix notation used in natural language — eg.
John IsFatherOf Mary — and in maths — eg. 0 ≤ π — extends to

arbitrary B A
Roo : we write

b R a

to denote that (b, a) ∈ R .



Motivation Binary Relations Composition Inclusion Converse All in one Summary Background

Functions are relations

• Lowercase letters (or identifiers starting by one such letter) will
denote special relations known as functions, eg. f , g , succ , etc.

• We regard function f : A −→ B as the binary relation which relates
b to a iff b = f a. So, b f a literally means b = f a.

• Therefore, we generalize

B A
foo

b = f a

to B A
Roo

b R a



Motivation Binary Relations Composition Inclusion Converse All in one Summary Background

Composition

Recall function composition

B A
foo C

g
oo

f ·g

ii

b = f (g c)

(1)

and extend f · g to R · S in the obvious way:

b(R · S)c ≡ 〈∃ a :: b R a ∧ a S c〉 (2)

Note how this rule of the PF-transform removes ∃ when applied
from right to left



Motivation Binary Relations Composition Inclusion Converse All in one Summary Background

Check generalization

Back to functions, (2) becomes

b(f · g)c ≡ 〈∃ a :: b f a ∧ a g c〉

≡ { a g c means a = g c }

〈∃ a :: b f a ∧ a = g c〉

≡ { ∃-trading ; b f a means b = f a }

〈∃ a : a = g c : b = f a〉

≡ { one-point rule (∃) }

b = f (g c)

So, we easily recover what we had before (1).



Motivation Binary Relations Composition Inclusion Converse All in one Summary Background

Inclusion generalizes equality

• Equality on functions

f = g ≡ 〈∀ a : a ∈ A : f a =B g a〉

generalizes to inclusion on relations:

R ⊆ S ≡ 〈∀ b, a :: b R a ⇒ b S a〉 (3)

(read R ⊆ S as “R is at most S”)

• For R ⊆ S to hold both need to be of the same type, say

B A
R,Soo

• R ⊆ S is a partial order (reflexive, transitive and
anti-symmetric)



Motivation Binary Relations Composition Inclusion Converse All in one Summary Background

Exercises

Exercise 1: We want to compare

IsPrefixOf : (s : A⋆) → (r : A⋆)
post length r ≤ length s ∧ 〈∀ i : i ≤ length r : r i = s i〉

(4)

with

Permutes : (s : A⋆) → (r : A⋆) (5)

post 〈∀ e : e ∈ elems s ∪ elems r : count e s = count e r〉

and with function tail , all of type A⋆ A⋆oo . Check which of the
following hold:

• tail ⊆ IsPrefixOf

• IsPrefixOf ⊆ Permutes

�



Motivation Binary Relations Composition Inclusion Converse All in one Summary Background

Special relations

Every type B Aoo has its

• bottom relation B A
⊥oo , which is such that, for all b, a,

b⊥a ≡ False

• topmost relation B A
⊤oo , which is such that, for all b, a,

b⊤a ≡ True

Type A Aoo has the

• identity relation A A
idoo which is function id a △ a.

Clearly, for every R ,

⊥ ⊆ R ⊆ ⊤ (6)



Motivation Binary Relations Composition Inclusion Converse All in one Summary Background

Exercises

Exercise 2: Resort to PF-transform rule (2) and to the Eindhoven
quantifier calculus to show that

R · id = R = id · R (7)

R · ⊥ = ⊥ = ⊥ · R (8)

hold and that composition is associative:

R · (S · T ) = (R · S) · T (9)

�



Motivation Binary Relations Composition Inclusion Converse All in one Summary Background

Converses

Every relation B A
Roo has a converse B

R◦

// A which is
such that, for all a, b,

a(R◦)b ≡ b R a (10)

Note that converse commutes with composition

(R · S)◦ = S◦ · R◦ (11)

and with itself:

(R◦)◦ = R (12)



Motivation Binary Relations Composition Inclusion Converse All in one Summary Background

Function converses

Function converses f ◦, g◦ etc. always exist (as relations) and
enjoy the following (very useful) PF-transform property:

(f b)R(g a) ≡ b(f ◦ · R · g)a (13)

cf. diagram:

B

f ◦

��

A
Roo

C D

g

OO

f ◦·R·g
oo

Let us see an example of its use.



Motivation Binary Relations Composition Inclusion Converse All in one Summary Background

PF-transform at work

Transforming a well-known PW-formula:

f is injective

≡ { recall definition from discrete maths }

〈∀ y , x :: (f y) = (f x) ⇒ y = x〉

≡ { introduce id (twice) }

〈∀ y , x :: (f y)id(f x) ⇒ y(id)x〉

≡ { rule (f b)R(g a) ≡ b(f ◦ · R · g)a (13) }

〈∀ y , x :: y(f ◦ · id · f )x ⇒ y(id)x〉

≡ { (7) ; then go pointfree via (3) }

f ◦ · f ⊆ id



Motivation Binary Relations Composition Inclusion Converse All in one Summary Background

The other way round

Let us now see what id ⊆ f · f ◦ means:

id ⊆ f · f ◦

≡ { relational inclusion (3) }

〈∀ y , x :: y(id)x ⇒ y(f · f ◦)x〉

≡ { identity relation ; composition (2) }

〈∀ y , x :: y = x ⇒ 〈∃ z :: y f z ∧ z f ◦x〉〉

≡ { ∀-trading ; converse (10) }

〈∀ y , x : y = x : 〈∃ z :: y f z ∧ x f z〉〉

≡ { ∀-one point ; trivia ; function f }

〈∀ x :: 〈∃ z :: x = f z〉〉

≡ { recalling definition from maths }

f is surjective



Motivation Binary Relations Composition Inclusion Converse All in one Summary Background

Why id (really) matters

Terminology:

• Say R is reflexive iff id ⊆ R

pointwise: 〈∀ a : : a R a〉 (check as homework);

• Say R is coreflexive iff R ⊆ id

pointwise: 〈∀ a : : b R a ⇒ b = a〉 (check as homework).

Define, for B A
Roo :

Kernel of R Image of R

A A
ker Roo B B

imgRoo

ker R
def
= R◦ · R imgR

def
= R · R◦



Motivation Binary Relations Composition Inclusion Converse All in one Summary Background

Example: kernels of functions

a′(ker f )a

≡ { substitution }

a′(f ◦ · f )a

≡ { PF-transform rule (13) }

(f a′) = (f a)

In words: a′(ker f )a means a′ and a “have the same f -image”

Exercise 3: Let C be a nonempty data domain and let and c ∈ C . Let
c be the “everywhere c” function:

c : A // C
c a △ c

(14)

Compute which relations are defined by the following PF-expressions:

ker c , b · c◦ , img c (15)



Motivation Binary Relations Composition Inclusion Converse All in one Summary Background

Binary relation taxonomy

Topmost criteria:
relation

injective entire simple surjective

Definitions:

Reflexive Coreflexive

kerR entire R injective R

img R surjective R simple R

(16)

Facts:

ker (R◦) = img R (17)

img (R◦) = kerR (18)



Motivation Binary Relations Composition Inclusion Converse All in one Summary Background

Binary relation taxonomy

The whole picture:

binary relation

ZZZZZZZZZZZZZZZ
RRR

mmm
ddddddddddddddddd

injective
QQQ

entire
mmm QQQ

Q
simple

PPPlll
l

surjective
ooo

representation
QQQ

function
RRR

mmm
abstraction
nnn

injection
QQQ

surjection
lll

bijection

(19)

Exercise 4: Resort to (17,18) and (16) to prove the following rules of
thumb:

• converse of injective is simple (and vice-versa)

• converse of entire is surjective (and vice-versa)

�



Motivation Binary Relations Composition Inclusion Converse All in one Summary Background

Functions in one slide

A function f is a binary relation such that

Pointwise Pointfree
“Left” Uniqueness

b f a ∧ b′ f a ⇒ b = b′ img f ⊆ id (f is simple)
Leibniz principle

a = a′ ⇒ f a = f a′ id ⊆ ker f (f is entire)

NB: Following a widespread convention, functions will be denoted by

lowercase characters (eg. f , g , φ) or identifiers starting with lowercase

characters, and function application will be denoted by juxtaposition, eg.

f a instead of f (a).



Motivation Binary Relations Composition Inclusion Converse All in one Summary Background

Relation taxonomy — orders

Orders are endo-relations A A
Roo classified as

endo-relation

symmetric transitive reflexive anti-symmetric connected

per preorder

coreflexive equivalence partial order

id linear order

(Criteria definitions: next slide)



Motivation Binary Relations Composition Inclusion Converse All in one Summary Background

Orders and their taxonomy

Besides

reflexive: iff idA ⊆ R

coreflexive: iff R ⊆ idA

an order (or endo-relation) A A
Roo can be

transitive: iff R · R ⊆ R

anti-symmetric: iff R ∩ R◦ ⊆ idA

symmetric: iff R ⊆ R◦(≡ R = R◦)

connected: iff R ∪ R◦ = ⊤



Motivation Binary Relations Composition Inclusion Converse All in one Summary Background

Orders and their taxonomy

Therefore:

• Preorders are reflexive and transitive orders.
Example: y IsAtMostAsOldAs x

• Partial orders are anti-symmetric preorders
Example: y ⊆ x

• Linear orders are connected partial orders
Example: y ≤ x

• Equivalences are symmetric preorders
Example: y Permutes x

• Pers are partial equivalences
Example: y IsBrotherOf x



Motivation Binary Relations Composition Inclusion Converse All in one Summary Background

Exercises

Exercise 5: Expand all criteria in the previous slides to pointwise
notation.

�

Exercise 6: A relation R is said to be co-transitive iff the following
holds:

〈∀ b, a : b R a : 〈∃ c : b R c : c R a〉〉 (20)

Compute the PF-transform of the formula above. Find a relation (eg.
over numbers) which is co-transitive and another which is not.

�



Motivation Binary Relations Composition Inclusion Converse All in one Summary Background

Meet and join

Meet (intersection) and join (union) internalize conjunction and
disjunction, respectively,

b (R ∩ S) a ≡ b R a ∧ b S a (21)

b (R ∪ S) a ≡ b R a ∨ b S a (22)

for R , S of the same type. Their meaning is captured by the
following universal properties:

X ⊆ R ∩ S ≡ X ⊆ R ∧ X ⊆ S (23)

R ∪ S ⊆ X ≡ R ⊆ X ∧ S ⊆ X (24)



Motivation Binary Relations Composition Inclusion Converse All in one Summary Background

In summary

Type B Aoo forms a lattice:

⊤ “top”

R ∪ S join, lub (“least upper bound”)

R S

R ∩ S

DDDDDDDDD

zzzzzzzzz

meet, glb (“greatest lower bound”)

⊥ “bottom”



Motivation Binary Relations Composition Inclusion Converse All in one Summary Background

All (data structures) in one (PF notation)

Products

A A × B
π1oo π2 // B

C

R

ffMMMMMMMMMMMMM

〈R,S〉

OO

S

88qqqqqqqqqqqqq

(25)

where

ψ PF ψ

a R c ∧ b S c (a, b)〈R ,S〉c
b R a ∧ d S c (b, d)(R × S)(a, c)

(26)

Clearly: R × S = 〈R · π1,S · π2〉



Motivation Binary Relations Composition Inclusion Converse All in one Summary Background

Sums

Example (Haskell):

data X = Boo Bool | Err String

PF-transforms to

Bool
i1 //

Boo
))SSSSSSSSSSSSSSSSSS Bool + String

[Boo ,Err ]

��

String
i2oo

Err
uukkkkkkkkkkkkkkkkkk

X

(27)

where

[R ,S ] = (R · i◦1 ) ∪ (S · i◦2 ) cf. A
i1 //

R
&&MMMMMMMMMMMMM A + B

[R ,S]

��

B
i2oo

S
xxqqqqqqqqqqqqq

CDually: R + S = [i1 · R , i2 · S ]



Motivation Binary Relations Composition Inclusion Converse All in one Summary Background

Sums

Example (Haskell):

data X = Boo Bool | Err String

PF-transforms to

Bool
i1 //

Boo
))SSSSSSSSSSSSSSSSSS Bool + String

[Boo ,Err ]

��

String
i2oo

Err
uukkkkkkkkkkkkkkkkkk

X

(27)

where

[R ,S ] = (R · i◦1 ) ∪ (S · i◦2 ) cf. A
i1 //

R
&&MMMMMMMMMMMMM A + B

[R ,S]

��

B
i2oo

S
xxqqqqqqqqqqqqq

CDually: R + S = [i1 · R , i2 · S ]



Motivation Binary Relations Composition Inclusion Converse All in one Summary Background

Last but not least: relational equality

• Pointwise equality:

R = S ≡ 〈∀ b, a : : b R a ≡ b S a〉

• Pointfree equality:

• Cyclic inclusion (“ping-pong”) rule:

R = S ≡ R ⊆ S ∧ S ⊆ R (28)

• Indirect equality rules 1:

R = S ≡ 〈∀ X : : (X ⊆ R ≡ X ⊆ S)〉 (29)

≡ 〈∀ X : : (R ⊆ X ≡ S ⊆ X )〉 (30)

1Cf. [1], p. 82.



Motivation Binary Relations Composition Inclusion Converse All in one Summary Background

Example of indirect proof

X ⊆ (R ∩ S) ∩ T

≡ { ∩-universal (23) }

X ⊆ (R ∩ S) ∧ X ⊆ T

≡ { ∩-universal (23) }

(X ⊆ R ∧ X ⊆ S) ∧ X ⊆ T

≡ { ∧ is associative }

X ⊆ R ∧ (X ⊆ S ∧ X ⊆ T )

≡ { ∩-universal (23) twice }

X ⊆ R ∩ (S ∩ T )

:: { indirection }

(R ∩ S) ∩ T = R ∩ (S ∩ T ) (31)



Motivation Binary Relations Composition Inclusion Converse All in one Summary Background

Last but not least: monotonicity

All relational combinators seen so far are ⊆-monotonic, for
instance:

R ⊆ S ⇒ R◦ ⊆ S◦

R ⊆ S ∧ U ⊆ V ⇒ R · U ⊆ S · V

R ⊆ S ∧ U ⊆ V ⇒ R ∩ U ⊆ S ∩ V

R ⊆ S ∧ U ⊆ V ⇒ R ∪ U ⊆ S ∪ V

etc

Exercise 7: Prove the following rules of thumb:

• smaller than injective (simple) is injective (simple)

• larger than entire (surjective) is entire (surjective)

�



Motivation Binary Relations Composition Inclusion Converse All in one Summary Background

Exercises

Exercise 8: Show that (13) holds.

�

Exercise 9: Check which of the following hold:

• If relations R and S are simple, then so is R ∩ S

• If relations R and S are injective, then so is R ∪ S

• If relations R and S are entire, then so is R ∩ S

�

Exercise 10: Prove that relational composition preserves all relational
classes in the taxonomy of (19).

�



Motivation Binary Relations Composition Inclusion Converse All in one Summary Background

Exercises

Exercise 11: Prove the following fact

A function f is a bijection iff its converse f ◦ is a function (32)

by completing:

f and f ◦ are functions

≡ { ... }

(id ⊆ ker f ∧ img f ⊆ id) ∧ (id ⊆ ker f ◦ ∧ img f ◦ ⊆ id)

≡ { ... }

...

≡ { ... }

f is a bijection

�



Motivation Binary Relations Composition Inclusion Converse All in one Summary Background

Exercises

Exercise 12: Prove that swap △ 〈π2, π1〉 is a bijection.

�



Motivation Binary Relations Composition Inclusion Converse All in one Summary Background

Summary

Rules of the PF-transform seen so far:

φ PF φ

〈∃ a :: b R a ∧ a S c〉 b(R · S)c
〈∀ a, b : : b R a ⇒ b S a〉 R ⊆ S

〈∀ a :: a R a〉 id ⊆ R

b R a ∧ c S a (b, c)〈R ,S〉a
b R a ∧ d S c (b, d)(R × S)(a, c)
b R a ∧ b S a b (R ∩ S) a

b R a ∨ b S a b (R ∪ S) a

(f b) R (g a) b(f ◦ · R · g)a
True b ⊤ a

False b ⊥ a



Motivation Binary Relations Composition Inclusion Converse All in one Summary Background

Background — Eindhoven quantifier calculus

When writing ∀, ∃-quantified expressions is useful to know a number of
rules which help in reasoning about them. Below we list some of these
rules:

• Trading:

〈∀ i : R ∧ S : T 〉 = 〈∀ i : R : S ⇒ T 〉 (33)

〈∃ i : R ∧ S : T 〉 = 〈∃ i : R : S ∧ T 〉 (34)



Motivation Binary Relations Composition Inclusion Converse All in one Summary Background

Background — Eindhoven quantifier calculus

Splitting:

〈∀ j : R : 〈∀ k : S : T 〉〉 = 〈∀ k : 〈∃ j : R : S〉 : T 〉 (35)

〈∃ j : R : 〈∃ k : S : T 〉〉 = 〈∃ k : 〈∃ j : R : S〉 : T 〉 (36)

One-point:

〈∀ k : k = e : T 〉 = T [k := e] (37)

〈∃ k : k = e : T 〉 = T [k := e] (38)

Nesting:

〈∀ a, b : R ∧ S : T 〉 = 〈∀ a : R : 〈∀ b : S : T 〉〉 (39)

〈∃ a, b : R ∧ S : T 〉 = 〈∃ a : R : 〈∃ b : S : T 〉〉 (40)



Motivation Binary Relations Composition Inclusion Converse All in one Summary Background

R. Bird and O. de Moor.
Algebra of Programming.
Series in Computer Science. Prentice-Hall International, 1997.
C.A.R. Hoare, series editor.

http://www.phptr.com/ptrbooks/ptr_013507245x.html

	Motivation
	Binary Relations
	Composition
	Inclusion
	Converse
	All in one
	Summary
	Background

