
8

Constructive Logics. Part I: A Tutorial
on Proof Systems and Typed

�
-Calculi

Jean Gallier

May 1991

Publication Notes

This work was done while the author was on sabbatical leave from the University of
Pennsylvania at Digital PRL.

c
�

Digital Equipment Corporation 1991

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for non-profit educational and research
purposes provided that all such whole or partial copies include the following: a notice that such copying
is by permission of the Paris Research Laboratory of Digital Equipment Centre Technique Europe, in
Rueil-Malmaison, France; an acknowledgement of the authors and individual contributors to the work;
and all applicable portions of the copyright notice. Copying, reproducing, or republishing for any other
purpose shall require a license with payment of fee to the Paris Research Laboratory. All rights reserved.

ii

Abstract

The purpose of this paper is to give an exposition of material dealing with constructive logics,
typed

�
-calculi, and linear logic. The emergence in the past ten years of a coherent field

of research often named “logic and computation” has had two major (and related) effects:
firstly, it has rocked vigorously the world of mathematical logic; secondly, it has created
a new computer science discipline, which spans from what is traditionally called theory of
computation, to programming language design. Remarkably, this new body of work relies
heavily on some “old” concepts found in mathematical logic, like natural deduction, sequent
calculus, and

�
-calculus (but often viewed in a different light), and also on some newer

concepts. Thus, it may be quite a challenge to become initiated to this new body of work (but
the situation is improving, there are now some excellent texts on this subject matter). This
paper attempts to provide a coherent and hopefully “gentle” initiation to this new body of
work. We have attempted to cover the basic material on natural deduction, sequent calculus,
and typed

�
-calculus, but also to provide an introduction to Girard’s linear logic, one of the

most exciting developments in logic these past five years. The first part of these notes gives
an exposition of background material (with the exception of the Girard-translation of classical
logic into intuitionistic logic, which is new). The second part is devoted to linear logic and
proof nets.

Résumé

Le but de cet article est de donner une présentation d’éléments de logique constructive,
de lambda calcul typé, et de logique linéaire. L’émergence, ces dix dernières années, d’un
domaine cohérent de recherche souvent appelé “logique et calcul” a eu deux effets majeurs
(et concommitents): tout d’abord, elle a dynamisé le monde de la logique mathématique;
deuxièmement, elle a créée une nouvelle discipline d’informatique, discipline qui s’étend
depuis ce qu’on appelle traditionellement la théorie de la calculabilité à la conception des
langages de programmation. Remarquablement, ce corps de connaissances repose en grande
partie sur certains “vieux” concepts de logique mathématique, tel que la déduction naturelle, le
calcul des séquents, et le

�
-calcul (mais souvent vus avec une optique différente), et d’autres

concepts plus nouveaux. Il est donc assez difficile de s’initier à ce nouveau domaine de
recherche (mais la situation s’est améliorée depuis l’apparition d’excellents livres sur ce sujet).
Cet article essaye de présenter “en douceur” et de façon cohérente ce corps de travaux. Nous
avons essayé de couvrir des sujets classiques tels que la déduction naturelle, le calcul des
séquents, et le

�
-calcul typé, mais aussi de donner une introduction à la logique linéaire de

Girard, un des dévelopements en logique les plus interessants de ces cinq dernières années.
Dans une première partie nous présentons les bases (à l’exception de la traduction de Girard
de la logique classique en logique intuitionniste, qui est nouvelle). La logique linéaire et les
réseaux de preuves sont traités dans la deuxième partie.

iii

Keywords

Natural deduction, lambda calculus, sequent calculus, linear logic.

Acknowledgements

I wish to thank Hassan Aı̈t-Kaci, Andreas Podelski, and Ascánder Súarez, for their comments.
Special thanks to Kathleen Milsted, Marcin Skubiszewski, and Jean-Christophe Patat, for
proofreading earlier versions very carefully.

iv

Contents

1 Introduction 1

2 Natural Deduction and Simply-Typed
�
-Calculus 2

3 Adding Conjunction, Negation, and Disjunction 6

4 Gentzen’s Sequent Calculi 10

5 Definition of the Transformation � from ��� to ��� 14

6 Definition of the Transformation � from ��� to ��� 22

7 First-Order Quantifiers 25

8 Gentzen’s Cut Elimination Theorem 33

9 The Gentzen Systems �	� and ��
 41

10 A Proof-Term Calculus for �	�� �� ��∀ ∃ �� ������ 45

11 Cut Elimination in ��
 (and ���) 47

12 Reductions of Classical to Intuitionistic Logic 63

References 80

v

Constructive Logics. Part I: A Tutorial on Proof Systems and Typed
�
-Calculi 1

1 Introduction

The purpose of this paper is to give an exposition of material dealing with constructive logics,
typed

�
-calculi, and linear logic. During the last fifteen years, a significant amount of research

in the areas of programming language theory, automated deduction, and more generally logic
and computation, has relied heavily on concepts and results found in the fields of constructive
logics and typed

�
-calculi. However, there are very few comprehensive and introductory

presentations of constructive logics and typed
�

-calculi for noninitiated researchers, and many
people find it quite frustrating to become acquainted to this type of research. Our motivation
in writing this paper is to help fill this gap. We have attempted to cover the basic material on
natural deduction, sequent calculus, and typed

�
-calculus, but also to provide an introduction

to Girard’s linear logic [7], one of the most exciting developments in logic these past five
years. As a consequence, we discovered that the amount of background material necessary for
a good understanding of linear logic was quite extensive, and we found it convenient to break
this paper into two parts. The first part gives an exposition of background material (with the
exception of the Girard-translation of classical logic into intuitionistic logic, which is new [9]).
The second part is devoted to linear logic and proof nets.

In our presentation of background material, we have tried to motivate the introduction of
various concepts by showing that they are indispensable to achieve certain natural goals. For
pedagogical reasons, it seems that it is best to begin with proof systems in natural deduction
style (originally due to Gentzen [3] and thoroughly investigated by Prawitz [14] in the sixties).
This way, it is fairly natural to introduce the distinction between intuitionistic and classical
logic. By adopting a description of natural deduction in terms of judgements, as opposed to
the tagged trees used by Gentzen and Prawitz, we are also led quite naturally to the encoding
of proofs as certain typed

�
-terms, and to the correspondence between proof normalization and�

-conversion (the Curry/Howard isomorphism [10]). Sequent calculi can be motivated by the
desire to obtain more “symmetric” systems, but also systems in which proof search is easier to
perform (due to the subformula property). At first, the cut rule is totally unnecessary and even
undesirable, since we are trying to design systems as deterministic as possible. We then show
how every proof in the sequent calculus (���) can be converted into a natural deduction proof
(in � �). In order to provide a transformation in the other direction, we introduce the cut rule.
But then, we observe that there is a mismatch, since we have a transformation � : � ����� �
on cut-free proofs, whereas � : � ����� ������ maps to proofs possibly with cuts. The mismatch
is resolved by Gentzen’s fundamental cut elimination theorem, which in turn singles out the
crucial role played by the contraction rule. Indeed, the contraction rule plays a crucial role
in the proof of the cut elimination theorem, and furthermore it cannot be dispensed with in
intuitionistic logic (with some exceptions, as shown by some recent work of Lincoln, Scedrov,
and Shankar [12]). We are thus setting the stage for linear logic, in which contraction (and
weakening) are dealt with in a very subtle way. We then investigate a number of sequent
calculi that allow us to prove the decidability of provability in propositional classical logic
and in propositional intuitionistic logic. The cut elimination theorem is proved in full for the
Gentzen system 	�
 using Tait’s induction measure [18], and some twists due to Girard [8]. We
conclude with a fairly extensive discussion of the reduction of classical logic to intuitionistic

Research Report No. 8 May 1991

2 Jean Gallier

logic. Besides the standard translations due to Gödel, Gentzen, and Kolmogorov, we present
an improved translation due to Girard [9] (based on the notion of polarity of a formula).

2 Natural Deduction and Simply-Typed
�
-Calculus

We first consider a syntactic variant of the natural deduction system for implicational
propositions due to Gentzen [3] and Prawitz [14].

In the natural deduction system of Gentzen and Prawitz, a deduction consists in deriving a
proposition from a finite number of packets of assumptions, using some predefined inference
rules. Technically, packets are multisets of propositions. During the course of a deduction,
certain packets of assumptions can be “closed”, or “discharged”. A proof is a deduction
such that all the assumptions have been discharged. In order to formalize the concept of a
deduction, one faces the problem of describing rigorously the process of discharging packets
of assumptions. The difficulty is that one is allowed to discharge any number of occurrences
of the same proposition in a single step, and this requires some form of tagging mechanism.
At least two forms of tagging techniques have been used.

� The first one, used by Gentzen and Prawitz, consists in viewing a deduction as a tree
whose nodes are labeled with propositions. One is allowed to tag any set of occurrences
of some proposition with a natural number, which also tags the inference that triggers the
simultaneous discharge of all the occurrences tagged by that number.

� The second solution consists in keeping a record of all undischarged assumptions at every
stage of the deduction. Thus, a deduction is a tree whose nodes are labeled with expressions
of the form Γ � � , called sequents, where

�
is a proposition, and Γ is a record of all

undischarged assumptions at the stage of the deduction associated with this node.

Although the first solution is perhaps more natural from a human’s point of view and more
economical, the second one is mathematically easier to handle. In the sequel, we adopt
the second solution. It is convenient to tag packets of assumptions with labels, in order to
discharge the propositions in these packets in a single step. We use variables for the labels,
and a packet consisting of occurrences of the proposition

�
is written as � :

�
. Thus, in a

sequent Γ � � , the expression Γ is any finite set of the form � 1:
�

1 � . . . � ��� :
� � , where the

� � are pairwise distinct (but the
� � need not be distinct). Given Γ = � 1:

�
1 � . . . � ��� :

� � , the
notation Γ � � :

�
is only well defined when ���= � � for all 	 , 1
�	�
� , in which case it denotes

the set � 1:
�

1 � . . . � ��� :
� � � � :

�
. We have the following axioms and inference rules.

Definition 1 The axioms and inference rules of the system � �� (minimal implicational logic)
are listed below:

Γ � � :
� � �

Γ � � :
� ���

Γ � ��� � (
�

-intro)

May 1991 Digital PRL

Constructive Logics. Part I: A Tutorial on Proof Systems and Typed
�
-Calculi 3

Γ � � � � Γ � �
Γ ��� (

�
-elim)

In an application of the rule (
�

-intro), we say that the proposition
�

which appears as a
hypothesis of the deduction is discharged (or closed). It is important to note that the ability
to label packets consisting of occurrences of the same proposition with different labels is
essential, in order to be able to have control over which groups of packets of assumptions are
discharged simultaneously. Equivalently, we could avoid tagging packets of assumptions with
variables if we assumed that in a sequent Γ � � , the expression Γ, also called a context, is a
multiset of propositions. The following two examples illustrate this point.

Example 2.1 Let
Γ = � :

���
(� ���) ��� :

� � � ��� : ���
Γ � � � (� ���) Γ � �

Γ � � ��� Γ � � � � Γ � �
Γ � �

� :
���

(� ���) ��� :
� � � ��� : � � �

� :
���

(� ���) ��� :
� � � � � ���

� :
� �

(� ���) � (
� � �)

�
(
� ���

)

�
	 � � (� ���) � � 	 (� � �)
�

(
� ���

) �

In the above example, two occurrences of
�

are discharged simultaneously. Compare with
the example below where these occurrences are discharged in two separate steps.

Example 2.2 Let

Γ = � :
���

(� ���) ��� :
� � � ��� 1:

� ��� 2:
���

Γ � � � (� ���) Γ � �

Γ � � ��� Γ � � � � Γ � �
Γ � �

� :
���

(� ��) ��� :
� � � ��� 1:

� ��� 2:
� � �

� :
� �

(� ��) ��� :
� � � ��� 1:

� � � ���
� :
� �

(� ���) ��� 1:
� � (

� � �)
�

(
� ���

)

� 1:
� ��	 � � (� ��) � � 	 (� � �)

�
(
� ���

) �
� ����� 	 � � (� ���) � � 	 (� � �)

�
(
� ���

) ���
Research Report No. 8 May 1991

4 Jean Gallier

For the sake of comparison, we show what these two natural deductions look like in the
system of Gentzen and Prawitz, where packets of assumptions discharged in the same inference
are tagged with a natural number. Example 2.1 corresponds to the following tree:

Example 2.3

(
� �

(� ���))3 � 1

� ��� (
� � �)2 � 1

��
1� ��

2

(
� � �)

�
(
� ���

)
3	 � � (� ���) � � 	 (� � �)

�
(
� ���

) �

and Example 2.2 to the following tree:

Example 2.4

(
� �

(� ���))3 � 1

� ��� (
� � �)2 � 4

��
1� ��

2

(
� � �)

�
(
� ���

)
3	 � � (� ���) � � 	 (� � �)

�
(
� ���

) �
4� � � 	 � � (� ��) � � 	 (� � �)

�
(
� ���

) � �

It is clear that a context (the Γ in a sequent Γ � �) is used to tag packets of assumptions
and to record the time at which they are discharged. From now on, we stick to the presentation
of natural deduction using sequents.

Proofs may contain redundancies, for example when an elimination immediately follows an
introduction, as in the following example:

May 1991 Digital PRL

Constructive Logics. Part I: A Tutorial on Proof Systems and Typed
�
-Calculi 5

�
1

Γ � � :
� � �

Γ � � � �
�

2

Γ � �
Γ � �

Intuitively, it should be possible to construct a deduction for Γ ��� from the two deductions�
1 and

�
2 without using at all the hypothesis � :

�
. This is indeed the case. If we look closely

at the deduction
�

1, from the shape of the inference rules, assumptions are never created, and
the leaves must be labeled with expressions of the form Γ � ∆ � � :

� � � :
� � � or Γ � ∆ � � :

� � � ,
where � �= � . We can form a new deduction for Γ � � as follows: in

�
1, wherever a leaf of the

form Γ � ∆ � � :
� � � occurs, replace it by the deduction obtained from

�
2 by adding ∆ to the

premise of each sequent in
�

2. Actually, one should be careful to first make a fresh copy of
�

2

by renaming all the variables so that clashes with variables in
�

1 are avoided. Finally, delete
the assumption � :

�
from the premise of every sequent in the resulting proof. The resulting

deduction is obtained by a kind of substitution and may be denoted as
�

1[
�

2
� �], with some

minor abuse of notation. Note that the assumptions � :
�

occurring in the leaves of the form
Γ � ∆ � � :

� ��� :
� � � were never used anyway. This illustrates the fact that not all assumptions

are necessarily used. This will not be the case in linear logic [7]. Also, the same assumption
may be used more than once, as we can see in the (

�
-elim) rule. Again, this will not be the

case in linear logic, where every assumption is used exactly once, unless specified otherwise
by an explicit mechanism. The step which consists in transforming the above redundant proof
figure into the deduction

�
1[
�

2
� �] is called a reduction step or normalization step.

We now show that the simply-typed
�

-calculus provides a natural notation for proofs in
natural deduction, and that

�
-conversion corresponds naturally to proof normalization. The

trick is to annotate inference rules with terms corresponding to the deductions being built, by
placing these terms on the righthand side of the sequent, so that the conclusion of a sequent
appears to be the “type of its proof”. This way, inference rules have a reading as “type-
checking rules”. This discovery due to Curry and Howard is known as the Curry/Howard
isomorphism, or formulae-as-types principle [10]. Furthermore, and this is the deepest aspect
of the Curry/Howard isomorphism, proof normalization corresponds to term reduction in the

�
-calculus associated with the proof system.

Definition 2 The type-checking rules of the
�

-calculus
� � (simply-typed

�
-calculus) are listed

below:

Γ � � :
� ��� :

�

Γ � � :
� ��� : �

Γ � (
� � :
���
�):

� � � (abstraction)

Γ ��� :
� � � Γ ��� :

�
Γ � (���): � (application)

Research Report No. 8 May 1991

6 Jean Gallier

Now, sequents are of the form Γ � � :
�

, where � is a simply-typed
�

-term representing
a deduction of

�
from the assumptions in Γ. Such sequents are also called judgements, and Γ

is called a type assignment or context.

The example of redundancy is now written as follows:

Γ � � :
� ��� : �

Γ � (
� � :
���
�):

� � � Γ � � :
�

Γ � (
� � :
���
�) � : �

Now,
�

1 is incorporated in the deduction as the term � , and
�

2 is incorporated in the
deduction as the term � . The great bonus of this representation is that

�
1[
�

2
� �] corresponds

to � [�
� �], the result of performing a

�
-reduction step on (

� � :
���
�) � .

Thus, the simply-typed
�

-calculus arises as a natural way to encode natural deduction proofs,
and

�
-reduction corresponds to proof normalization. The correspondence between proof

normalization and term reduction is the deepest and most fruitful aspect of the Curry/Howard
isomorphism. Indeed, using this correspondence, results about the simply-typed

�
-calculus

can be translated in terms of natural deduction proofs, a very nice property.

When we deal with the calculus
� � , rather than using

�
, we usually use � , and thus, the

calculus is denoted as
� �

. In order to avoid ambiguities, the delimiter used to separate the
lefthand side from the righthand side of a judgement Γ ��� :

�
will be � , so that judgements

are written as Γ � � :
�

.

3 Adding Conjunction, Negation, and Disjunction

First, we present the natural deduction systems, and then the corresponding extensions of
the simply-typed

�
-calculus. As far as proof normalization is concerned, conjunction does

not cause any problem, but as we will see, negation and disjunction are more problematic. In
order to add negation, we add the new constant

�
(false) to the language, and define negation

¬
�

as an abbreviation for
� � �

.

Definition 3 The axioms and inference rules of the system � � �� �� �� (intuitionistic proposi-
tional logic) are listed below:

Γ � � :
� � �

Γ � � :
� ���

Γ � ��� � (
�

-intro)

Γ � � � � Γ � �
Γ ��� (

�
-elim)

May 1991 Digital PRL

Constructive Logics. Part I: A Tutorial on Proof Systems and Typed
�
-Calculi 7

Γ � � Γ � �
Γ � � � � (

�
-intro)

Γ � � � �
Γ � � (

�
-elim)

Γ � � � �
Γ � � (

�
-elim)

Γ � �
Γ � ��� � (

�
-intro)

Γ � �
Γ � ��� � (

�
-intro)

Γ � ��� � Γ � � :
� � � Γ ��� : � � �

Γ � � (
�

-elim)

Γ � �

Γ � � (
�

-elim)

Minimal propositional logic � �� �� �� �� is obtained by dropping the (
�

-elim) rule. In order to
obtain the system of classical propositional logic, denoted � �� �� �� �� , we add to � �� �� �� �� the
following inference rule corresponding to the principle of proof by contradiction (by-contra)
(also called reductio ad absurdum).

Γ � � : ¬
� � �

Γ � � (by-contra)

Several useful remarks should be made.

(1) In classical propositional logic (� � �� �� ��), the rule

Γ � �

Γ � � (
�

-elim)

can be derived, since if we have a deduction of Γ � �
, then for any arbitrary

�
we have a

deduction � : ¬
� � Γ � �

, and thus a deduction of Γ � � by applying the (by-contra) rule.

(2) The proposition
� �

¬¬
�

is derivable in � �� �� �� �� , but the reverse implication
¬¬
� � �

is not derivable, even in � �� �� �� �� . On the other hand, ¬¬
� � �

is derivable in
� �� �� �� �� :

� : ¬¬
� ��� : ¬

� � ¬¬
� � : ¬¬

� ��� : ¬
� � ¬

�

� : ¬¬
� ��� : ¬

� � �

(by-contra)
� : ¬¬

� � �
� ¬¬

� � �

Research Report No. 8 May 1991

8 Jean Gallier

(3) Using the (by-contra) inference rule together with (
�

-elim) and (
�

-intro), we can prove
¬
��� �

(that is, (
� � �

)
� �

). Let

Γ = � : ((
� � �

)
� �

)
� � ��� :

� �
We have the following proof for (

� � �
)
� �

.

� : ((
� � �

)
� �

)
� � � ((

� � �
)
� �

)
� �

Γ � ((
� � �

)
� �

)
� �

Γ � �
Γ � (

� � �
)
� �

� : ((
� � �

)
� �

)
� � ��� :

� � �

� : ((
� � �

)
� �

)
� � � � � �

� : ((
� � �

)
� �

)
� � � (

� � �
)
� �

� : ((
��� �

)
� �

)
� � � �

(by-contra)
� (
� � �

)
� �

The typed
�

-calculus
� �
�
 + � corresponding to � �� �� �� �� is given in the following

definition.

Definition 4 The typed
�

-calculus
� �
�
 + � is defined by the following rules.

Γ � � :
� � � :

�

Γ � � :
� � � : �

Γ � (
� � :
� �
�):

� � � (abstraction)

Γ � � :
� � � Γ � � :

�
Γ � (� �): � (application)

Γ � � :
�

Γ � � : �
Γ ��� � � ��� : ��� � (pairing)

Γ � � :
��� �

Γ �	�
1(�):

� (projection)
Γ � � :

��� �
Γ �
�

2(�): � (projection)

Γ � � :
�

Γ � inl(�):
�

+ � (injection)
Γ � � : �

Γ � inr(�):
�

+ � (injection)

Γ ��� :
�

+ � Γ � � :
� � � :

�
Γ ��� : � � � :

�
Γ � case(� � � � :

���
� � � � : � � �):

� (by-cases)

Γ � � :
�

Γ ���� (�):
� (

�
-elim)

May 1991 Digital PRL

Constructive Logics. Part I: A Tutorial on Proof Systems and Typed
�
-Calculi 9

A syntactic variant of case(� � � � :
� �
� � � � : � � �) often found in the litterature is

case � of inl(� :
�

) � �
�
inr(� : �) � � , or even case � of inl(�) �

�
�
inr(�) � � , and the (by-cases) rule can be written as

Γ ��� :
�

+ � Γ � � :
� � � :

�
Γ ��� : � � � :

�
Γ � (case � of inl(� :

�
) � �

�
inr(� : �) � �):

� (by-cases)

We also have the following reduction rules.

Definition 5 The reduction rules of the system
� �

�
 + � are listed below:

(
� � :
���
�) � � � � [�

� �] ��
1(� � � ���) � � � ��
2(� � � ���) � � � �

case(inl(�) � � � :
���
� � � � : � � �) � � � [� � �] � or

case inl(�) of inl(� :
�

) � �
�
inr(� : �) � � � � � [� � �] �

case(inr(�) � � � :
���
� � � � : � � �) � � � [� � �] � or

case inr(�) of inl(� :
�

) � �
�
inr(� : �) � � � � � [� � �] ��� ��� (�) � � � � (�) ��

1(�� � � (�)) � � �� (�) ��
2(�� � � (�)) � � � (�) �

case(�� + � (�) � � � :
� �
� � � � : � � �) � � �� (�) � � (� (�)) � � � (�)

�

Alternatively, as suggested by Ascánder Súarez, we could replace the rules for case by the
rules

case(inl(�) � � � �) � � � � �
case(inr(�) � � � �) � � � � �

case(� + � (�) � � � �) � � �� (�)
�

A fundamental result about natural deduction is the fact that every proof (term) reduces to a
normal form, which is unique up to � -renaming. This result was first proved by Prawitz [15]
for the system � �� �� �� �� .

Theorem 1 (Church-Rosser property, Prawitz (1971)) Reduction in
� �

�
 + � (specified

in Definition 5) is confluent. Equivalently, conversion in
� �

�
 + � is Church-Rosser.

A proof can be given by adapting the method of Tait and Martin-Löf [13] using a form of
parallel reduction (see also Stenlund [16]).

Research Report No. 8 May 1991

10 Jean Gallier

Theorem 2 (Strong normalization property, Prawitz (1971)) Reduction in
� �

�
 + � (as in

Definition 5) is strongly normalizing.

A proof can be given by adapting Tait’s reducibility method [17], [19], as done in Girard [5]
(1971), [6] (1972) (see also Gallier [2]).

If one looks at the rules of the system � �� �� �� �� (or
� �
�
 + �), one notices a number of

unpleasant features:

(1) There is an asymmetry between the lefthand side and the righthand side of a sequent (or
judgement): the righthand side must consist of a single formula, but the lefthand side
may have any finite number of assumptions. This is typical of intuitionistic logic, but it
is also a defect.

(2) Negation is very badly handled, only in an indirect fashion.

(3) The (
�

-intro) rule and the (
�

-elim) rule are global rules requiring the discharge of
assumptions.

(4) Worse of all, the (
�

-elim) rule contains the parasitic formula
�

which has nothing to do
with the disjunction being eliminated.

Finally, note that it is quite difficult to search for proofs in such a system. Gentzen’s sequent
systems remedy some of these problems.

4 Gentzen’s Sequent Calculi

The main idea is that now, a sequent Γ � ∆ consists of two finite multisets Γ and ∆
of formulae, and that rather than having introduction and elimination rules, we have rules
introducing a connective on the left or on the right of a sequent. A first version of such a
system for classical propositional logic is given next. In these rules Γ and ∆ stand for possibly
empty finite multisets of propositions.

Definition 6 The axioms and inference rules of the system � �� �� ��¬� for classical propositional
logic are given below. � � Γ � ∆ � �

� � � � Γ � ∆� � Γ � ∆
(contrac: left)

Γ � ∆ � � � �
Γ � ∆ � � (contrac: right)

� � � � Γ � ∆� � � � Γ � ∆
(
�

: left)
Γ � ∆ � � Γ � ∆ � �

Γ � ∆ � � � � (
�

: right)

May 1991 Digital PRL

Constructive Logics. Part I: A Tutorial on Proof Systems and Typed
�
-Calculi 11

� � Γ � ∆ � � Γ � ∆��� � � Γ � ∆
(
�

: left)
Γ � ∆ � � � �

Γ � ∆ � � � � (
�

: right)

Γ � ∆ � � � � Γ � ∆� � � � Γ � ∆
(
�

: left)

� � Γ � ∆ � �
Γ � ∆ � � � � (

�
: right)

Γ � ∆ � �
¬
� � Γ � ∆

(¬: left)

� � Γ � ∆
Γ � ∆ � ¬ � (¬: right)

Note the perfect symmetry of the left and right rules. If one wants to deal with the extended
language containing also

�
, one needs to add the axiom

� � Γ � ∆
�

One might be puzzled and even concerned about the presence of the contraction rule.
Indeed, one might wonder whether the presence of this rule will not cause provability to be
undecidable. This would certainly be quite bad, since we are only dealing with propositions!
Fortunately, it can be shown that the contraction rule is redundant for classical propositional
logic. But then, why include it in the first place? The main reason is that it cannot be
dispensed with in intuitionistic logic, or in the case of quantified formulae. (Recent results
of Lincoln, Scedrov, and Shankar [12], show that in the case of propositional intuitionistic
restricted to implications, it is possible to formulate a contraction-free system which easily
yields the decidability of provability). Since we would like to view intuitionistic logic as a
subsystem of classical logic, we cannot eliminate the contraction rule from the presentation of
classical systems. Another important reason is that the contraction rule plays an important role
in cut elimination. Although it is possible to hide it by dealing with sequents viewed as pairs
of sets rather than multisets, we prefer to deal with it explicitly. Finally, the contraction rule
plays a crucial role in linear logic, and in the understanding of the correspondence between
proofs and computations, in particular strict versus lazy evaluation.

In order to obtain a system for intuitionistic logic, we restrict the righthand side of a sequent
to consist of at most one formula. We also modify the (

�
: left) rule and the (

�
: right) rule

which splits into two rules. The (contrac: right) rule disappears, and it is also necessary to add
a rule of weakening on the right, to mimic the (

�
-elim) rule.

Definition 7 The axioms and inference rules of the system � �� �� �� ¬� for intuitionistic proposi-
tional logic are given below. � � Γ � �

Γ �
Γ � � (weakening: right)

� � � � Γ � ∆� � Γ � ∆
(contrac: left)

Research Report No. 8 May 1991

12 Jean Gallier

� � � � Γ � ∆� � � � Γ � ∆
(
�

: left)
Γ � � Γ � �

Γ � � � � (
�

: right)

� � Γ � ∆ � � Γ � ∆��� � � Γ � ∆
(
�

: left)

Γ � �
Γ � ��� � (

�
: right)

Γ � �
Γ � ��� � (

�
: right)

Γ � � � � Γ � ∆� � � � Γ � ∆
(
�

: left)

� � Γ � �
Γ � � � � (

�
: right)

Γ � �
¬
� � Γ � (¬: left)

� � Γ �
Γ � ¬

� (¬: right)

In the above rules, ∆ contains at most one formula. If one wants to deal with the extended
language containing also

�
, one simply needs to add the axiom

� � Γ � ∆ �
where ∆ contains at most one formula. If we choose the language restricted to formulae over
� � � � � , and

�
, then negation ¬

�
is viewed as an abbreviation for

� � �
. Such a system can

be simplified a little bit if we observe that the axiom
� � Γ � ∆ implies that the rule

Γ � �

Γ � �

is derivable. Indeed, assume that we have the axiom
� � Γ � ∆. If Γ � �

is provable, since no
inference rule applies to

�
, the leaf nodes of this proof must be of the form Γ

� � �
. Thus, we

must have
� ∈ Γ

�

, in which case Γ
� � � is an axiom. Thus, we obtain a proof of Γ � � . We

can also prove that the converse almost holds. Since
� � Γ � �

is an axiom, using the rule

� � Γ � �

� � Γ � �

we see that
� � Γ � � is provable. The reason why this is not exactly the converse is that

� � Γ � is not provable in this system. This suggests to consider sequents of the form Γ � �
where

�
consists exactly of a single formula. In this case, the axiom

� � Γ � � is equivalent
to the rule

Γ � �

Γ � � (
�

: right)

We have the following system.

Definition 8 The axioms and inference rules of the system � �� �� �� �� for intuitionistic proposi-
tional logic are given below. � � Γ � �

May 1991 Digital PRL

Constructive Logics. Part I: A Tutorial on Proof Systems and Typed
�
-Calculi 13

Γ � �

Γ � � (
�

: right)

� � � � Γ � �� � Γ � � (contrac: left)

� � � � Γ � �� � � � Γ � � (
�

: left)
Γ � � Γ � �

Γ � � � � (
�

: right)

� � Γ � � � � Γ � ���� � � Γ � � (
�

: left)

Γ � �
Γ � ��� � (

�
: right)

Γ � �
Γ � ��� � (

�
: right)

Γ � � � � Γ � �� � � � Γ � � (
�

: left)

� � Γ � �
Γ � � � � (

�
: right)

There is a close relationship between the natural deduction system � �� �� �� �� and the Gentzen
system � � �� �� �� . In fact, there is a procedure � for translating every proof in � � �� �� �� into
a deduction in � �� �� �� �� . The procedure � has the remarkable property that � (Π) is a
deduction in normal form for every proof Π. Since there are deductions in � � �� �� �� that are
not in normal form, the function � is not surjective. The situation can be repaired by adding
a new rule to � �� �� �� �� , the cut rule. Then, there is a procedure � mapping every proof in
� � �� �� �� to a deduction in � �� �� �� �� , and a procedure � mapping every deduction in � � �� �� ��
to a proof in � �� �� �� �� ������ .

In order to close the loop, we would need to show that every proof in � �� �� �� �� ������ can be
transformed into a proof in � �� �� �� �� , that is, a cut-free proof. It is an extremely interesting
and deep fact that the system � �� �� �� �� ������ and the system � �� �� �� �� are indeed equivalent.
This fundamental result known as the cut elimination theorem was first proved by Gentzen in
1935 [3]. The proof actually gives an algorithm for converting a proof with cuts into a cut-free
proof. The main difficulty is to prove that this algorithm terminates. Gentzen used a fairly
complex induction measure which was later simplified by Tait [18].

The contraction rule plays a crucial role in the proof of this theorem, and it is therefore natural
to believe that this rule cannot be dispensed with. This is indeed true for the intuitionistic
system � � �� �� �� (but it can be dispensed with in the classical system � �� �� �� ��). If we delete
the contraction rule from the system � �� �� �� �� (or � �� �� �� ¬�), certain formulae are no longer
provable. For example, � ¬¬(� � ¬ �) is provable in � �� �� ��¬� , but it is impossible to build
a cut-free proof for it without using (contrac: left). Indeed, the only way to build a cut-free
proof for � ¬¬(� � ¬ �) without using (contrac: left) is to proceed as follows:

Research Report No. 8 May 1991

14 Jean Gallier

� � � ¬ �
¬(� � ¬ �) �
� ¬¬(� � ¬ �)

Since the only rules that could yield a cut-free proof of � � � ¬ � are the (
�

: right) rules
and neither � � nor � ¬ � is provable, it is clear that there is no cut-free proof of � � � ¬ � .

However, � ¬¬(� � ¬ �) is provable in � �� �� �� ¬� , as shown by the following proof (the
same example can be worked out in � � �� �� ��):

Example 4.1

� � �� � � � ¬ �� � ¬(� � ¬ �) �
¬(� � ¬ �) � ¬ �

¬(� � ¬ �) � � � ¬ �
¬(� � ¬ �) � ¬(� � ¬ �) �

(contrac: left)
¬(� � ¬ �) �
� ¬¬(� � ¬ �)

Nevertheless, it is possible to formulate a cut-free system �
 �� �� �� �� which is equivalent
to � � �� �� �� . Such a system due to Kleene [11] has no contraction rule, and the premise of
every sequent can be interpreted as a set as opposed to a multiset (Recent results of Lincoln,
Scedrov, and Shankar [12], show that in the case of propositional intuitionistic logic restricted
to implications, it is possible to formulate a contraction-free system which easily yields the
decidability of provability).

5 Definition of the Transformation � from � � to � �

The purpose of this section is to give a procedure � mapping every proof in � �� �� �� �� to
a deduction in � �� �� �� �� . The procedure � is defined by induction on the structure of proof
trees and requires some preliminary definitions.

Definition 9 A proof tree Π with root node Γ � � is denoted as

Π
Γ � �

May 1991 Digital PRL

Constructive Logics. Part I: A Tutorial on Proof Systems and Typed
�
-Calculi 15

and similarly a deduction
�

with root node Γ � � is denoted as
�

Γ � �
A proof tree Π whose last inference is

Γ � �
∆ � �

is denoted as

Π1

Γ � �
∆ � �

where Π1 is the immediate subproof of Π whose root is Γ � � , and a proof tree Π whose last
inference is

Γ � � Γ � �
∆ � �

is denoted as

Π1

Γ � �
Π2

Γ � �
∆ � �

where Π1 and Π2 are the immediate subproofs of Π whose roots are Γ � � and Γ � �
respectively. The same notation applies to deductions.

Given a proof tree Π with root node Γ � � ,

Π
Γ � �

� yields a deduction � (Π) of
�

from the set of assumptions Γ+,

� (Π)

Γ+ � �
where Γ+ is obtained from the multiset Γ. However, one has to exercise some care in defining
Γ+ so that � is indeed a function. This can be achieved as follows. We can assume that we
have a fixed total order
�� on the set of all propositions so that they can be enumerated as�

1 � � 2 � . . ., and a fixed total order
�� on the set of all variables so that they can be enumerated
as � 1 � � 2 � . . .

Research Report No. 8 May 1991

16 Jean Gallier

Definition 10 Given a multiset Γ =
�

1 � . . . � � � , since
� �

1 � . . . � � ��� =
� � � 1 � . . . � � ��� � where� � 1
 � � � 2
 � . . .
 � � � � (where � 1 � � 2 � . . ., is the enumeration of all propositions and where

	�� = 	�� +1 is possible since Γ is a multiset), we define Γ+ as Γ+ = � 1: � � 1 � . . . � � � : � ��� .

We will also need the following concepts and notation.

Definition 11 Given a deduction
�

Γ � �
the deduction obtained by adding the additional assumptions ∆ to the lefthand side of every
sequent of

�
is denoted as ∆+

�
, and it is only well defined provided that dom(Γ

�

) 	 dom(∆) = ∅
for every sequent Γ

� � � occurring in
�

. Similarly, given a sequential proof

Π
Γ � ∆

we define the proof Λ + Π by adding Λ to the lefthand side of every sequent of Π, and we define
the proof Π + Θ by adding Θ to the righthand side of every sequent of Π.

We also need a systematic way of renaming the variables in a deduction.

Definition 12 Given a deduction
�

with root node ∆ � � the deduction
� �

obtained from
�

by rectification is defined inductively as follows:

If
�

consists of the single node � 1:
�

1 � . . . ��� � :
� � � � , define the total order
 on the

context ∆ = � 1:
�

1 � . . . ��� � :
� � as follows:

� � : � ��
 � � : � � iff
� � �
 � � � � or� � =

� � and � �
 � � � �
The order
 on � 1:

�
1 � . . . ��� � :

� � defines the permutation � such that

��� (1):
� � (1)
 ��� (2):

� � (2)
 . . .
 ��� (��� 1) :
� � (��� 1)
 ��� (�):

� � (�)
�

Let ∆
�

= � 1:
� � (1) � . . . � � � :

� � (�), and define
� �

as ∆
� � � . The permutation � induces a

bijection between
� � 1 � . . . � � ��� and

� � 1 � . . . ��� ��� , namely � ���� � � (�).

If
�

is of the form

�
1� 1:

�
1 ��� 2:

�
2 � . . . ��� � :

� � ���
� 2:
�

2 � . . . ��� � :
� � � � 1

� �

May 1991 Digital PRL

Constructive Logics. Part I: A Tutorial on Proof Systems and Typed
�
-Calculi 17

by induction, we have the rectified deduction

� �

1

� 1:
� � (1) � . . . � � � � 1:

� � (� � 1) � � � : � 1 � � � +1:
� � (� +1) � . . . � � � :

� � (�) � �

where � � corresponds to � 1 in the bijection between
� � 1 � . . . � � ��� and

� � 1 � . . . ��� � � (in fact,
�

= � � 1(1) since
�

1 =
� � (�)). Then, apply the substitution [� � � � � � � � � � � +1 � . . . � � ��� 1

� ���]
to the deduction

� �

1, and form the deduction

� �

1[� � � � � � � � � � � +1 � . . . � � ��� 1
� � �]

� 1:
� � (1) � . . . � � � � 1:

� � (� � 1) � � � :
�

1 � � � : � � (� +1) � . . . � ����� 1:
� � (�) ���

� 1:
� � (1) � . . . � � � � 1:

� � (� � 1) � � � : � � (� +1) � . . . � � ��� 1:
� � (�) � � 1

� �

The other inference rules do not modify the lefthand side of sequents, and
� �

is obtained by
rectifying the immediate subtree(s) of

�
.

Note that for any deduction
�

with root node � 1:
�

1 � . . . ��� � :
� � � �

, the rectified
deduction

� �

has for its root node the sequent Γ+ � � , where Γ+ is obtained from the multiset
Γ =

�
1 � . . . � � � as in Definition 10.

The procedure � is defined by induction on the structure of the proof tree Π.

� An axiom Γ � � � � is mapped to the deduction (Γ � �)+ � � .

� A proof Π of the form

Π1

Γ � �

Γ � �

is mapped to the deduction

� (Π1)

Γ+ � �

Γ+ � �

� A proof Π of the form

Π1� � � � Γ � �� � Γ � �

Research Report No. 8 May 1991

18 Jean Gallier

is mapped to a deduction as follows. First map Π1 to the deduction � (Π1)

� (Π1)

� :
� ��� :

� � Γ+ � �

Next, replace every occurrence of “ � :
� ��� :

�
” in � (Π1) by “ � : � ” where � is a new variable

not occurring in � (Π1), and finally rectify the resulting tree.

� A proof Π of the form

Π1

Γ � �
Π2

Γ � �
Γ � � � �

is mapped to the deduction

� (Π1)

Γ+ � �
� (Π2)

Γ+ � �
Γ+ � � � �

� A proof Π of the form

Π1� � � � Γ � �� � � � Γ � �
is mapped to a deduction obtained as follows. First, map Π1 to � (Π1)

� (Π1)

� :
� ��� : � � Γ+ � �

Next, replace every leaf of the form � :
� ��� : � � ∆ � Γ+ � � in � (Π1) by the subtree

� : � � � � ∆ � Γ+ � � � �
� : � � � � ∆ � Γ+ � �

and every leaf of the form � :
� ��� : � � ∆ � Γ+ � � in � (Π1) by the subtree

� : � � � � ∆ � Γ+ � � � �
� : � � � � ∆ � Γ+ � �

May 1991 Digital PRL

Constructive Logics. Part I: A Tutorial on Proof Systems and Typed
�
-Calculi 19

where � is new, replace “ � :
� ��� : � ” by “ � : � � � ” in every antecedent of the resulting

deduction, and rectify this last tree.

� A proof Π of the form

Π1� � Γ � �
Γ � � � �

is mapped to the deduction

� (Π1)

� :
� � Γ+ � �

Γ+ � � � �

� A proof Π of the form

Π1

Γ � �
Π2

� � Γ � �� � � � Γ � �
is mapped to a deduction as follows. First map Π1 and Π2 to deductions � (Π1)

� (Π1)

Γ+ � �

and � (Π2)

� (Π2)

� : � � Γ+ � �
Next, form the deduction

�

� : � � � � Γ+ � � � �
� : � � � + � (Π1)

� : ��� � � Γ+ � �

� : � � � � Γ+ � �

and modify � (Π2) as follows: replace every leaf of the form � : � � ∆ � Γ+ � � by the deduction
obtained from ∆ +

�
by replacing “ � : � ” by “ � : � � � ” in the lefthand side of every sequent.

Finally, rectify this last deduction.

Research Report No. 8 May 1991

20 Jean Gallier

� A proof Π of the form

Π1

Γ � �
Γ � � � �

is mapped to the deduction

� (Π1)

Γ+ � �
Γ+ � ��� �

and similarly for the other case of the (
�

: right) rule.

� A proof Π of the form

Π1� � Γ � � Π2

� � Γ � ���� � � Γ � �
is mapped to a deduction as follows. First map Π1 and Π2 to deductions � (Π1)

� (Π1)

� :
� � Γ+ � �

and � (Π2)

� (Π2)

� : � � Γ+ � �
Next, form the deduction

� : ��� � � Γ+ � ��� �
� : ��� � + � (Π1)

� : ��� � � � :
� � Γ+ � � � : ��� � + � (Π2)

� : � � � ��� : � � Γ+ � �
� : ��� � � Γ+ � �

and rectify this last tree.

This concludes the definition of the procedure � . Note that the contraction rule can be
stated in the system of natural deduction as follows:

� :
� ��� :

� � Γ � �� : � � Γ � � [� � � ��� � �]

May 1991 Digital PRL

Constructive Logics. Part I: A Tutorial on Proof Systems and Typed
�
-Calculi 21

where � is a new variable. The following remarkable property of � is easily shown.

Lemma 1 (Gentzen (1935), Prawitz (1965)) For every proof Π in � �� �� �� �� , � (Π) is a
deduction in normal form (in � �� �� �� ��).

Since there are deductions in � � �� �� �� that are not in normal form, the function � is not
surjective. It is interesting to observe that the function � is not injective either. What happens
is that � �� �� �� �� is more sequential than � �� �� �� �� , in the sense that the order of application
of inferences is strictly recorded. Hence, two proofs in � �� �� �� �� of the same sequent may
differ for bureaucratic reasons: independent inferences are applied in different orders. In
� �� �� �� �� , these differences disappear. The following example illustrates this point. The
sequent � (� � � �

)
�

((
� � � �

)
�

(� � �
)) has the following two sequential proofs

� �

� � � � � � � � � � � � �

� � � � � � � � � � � � �

� � � � � � � � � � � � �

� � � � � (
� � � �

)
�

(� � �
)

� (� � � �

)
�

((
� � � �

)
�

(� � �
))

and

� �

� � � � � � � � � � � � �

� � � � � � � � � � � � �

� � � � � � � � � � � � �

� � � � � (
� � � �

)
�

(� � �
)

� (� � � �

)
�

((
� � � �

)
�

(� � �
))

Both proofs are mapped to the deduction

� : � � � � ��� :
� � � � � � � � �

� : � � � � ��� :
� � � � � �

� : � � � � ��� :
� � � � � � � � �

� : � � � � ��� :
� � � � � �

� : � � � �

��� :
� � � � � � � �

� : � � � � � (
� � � �

)
�

(� � �
)

� (� � � �

)
�

((
� � � �

)
�

(� � �
))

Research Report No. 8 May 1991

22 Jean Gallier

6 Definition of the Transformation � from � � to ���

We now show that if we add a new rule, the cut rule, to the system � �� �� �� �� , then we can
define a procedure � mapping every deduction in � �� �� �� �� to a proof in � �� �� �� �� ������ .

Definition 13 The system � �� �� �� �� ������ is obtained from the system � �� �� �� �� by adding the
following rule, known as the cut rule:

Γ � � � � Γ � �
Γ � � (cut)

The system � �� �� �� �� ������ is obtained from � � �� �� �� by adding the following rule, also known
as the cut rule:

Γ � � � ∆ � � Γ � ∆
Γ � ∆

(cut)

Next, we define the procedure � mapping every deduction in � �� �� �� �� to a proof in
� �� �� �� �� ������ . The procedure � is defined by induction on the structure of deduction trees.
Given a deduction tree

�
of
�

from the assumptions Γ,

�

Γ � �
� yields a proof � (

�
) of the sequent Γ � � �

� (
�

)

Γ � � �
where Γ � is the multiset

�
1 � . . . � � � obtained from the context Γ = � 1:

�
1 � . . . � � � :

� � by
erasing � 1 � . . . � � � , where � 1 � . . . � � � are pairwise distinct.

� The deduction Γ � � :
� � � is mapped to the axiom Γ � � � � � .

� A deduction
�

of the form

�
1

Γ � �

Γ � �

is mapped to the proof

May 1991 Digital PRL

Constructive Logics. Part I: A Tutorial on Proof Systems and Typed
�
-Calculi 23

� (
�

1)

Γ � � �

Γ � � �

� A deduction
�

of the form
�

1

Γ � �
�

2

Γ � �
Γ � � � �

is mapped to the proof

� (
�

1)

Γ � � �
� (
�

2)

Γ � ���
Γ � � � � �

� A deduction
�

of the form
�

1

Γ � � � �
Γ � �

is mapped to the proof

� (
�

1)

Γ � � � � �
� � � � Γ � � �� � � � Γ � � �

(cut)
Γ � � �

and similarly for the symmetric rule.

� A deduction
�

of the form
�

1

� :
� � Γ � �

Γ � � � �

is mapped to the proof

� (
�

1)� � Γ � � �
Γ � � � � �

Research Report No. 8 May 1991

24 Jean Gallier

� A deduction
�

of the form
�

1

Γ � � � �
�

2

Γ � �
Γ � �

is mapped to the proof

� (
�

1)

Γ � � ��� �

� (
�

2)

Γ � � � � � Γ � � ���� � � Γ � � �
(cut)

Γ � � �
� A deduction

�
of the form

�
1

Γ � �
Γ � � � �

is mapped to the proof

� (
�

1)

Γ � � �
Γ � � ��� �

and similarly for the symmetric rule.

� A deduction
�

of the form
�

1

Γ � ��� �
�

2

� :
� � Γ � �

�
3� : � � Γ � �

Γ � �
is mapped to the proof

� (
�

1)

Γ � � � � �

� (
�

2)� � Γ � � �
� (
�

3)

� � Γ � � ���� � � Γ � � �
(cut)

Γ � � �
May 1991 Digital PRL

Constructive Logics. Part I: A Tutorial on Proof Systems and Typed
�
-Calculi 25

This concludes the definition of the procedure � .

For the sake of completeness, we also extend the definition of the function � which is
presently defined on the set of sequential proofs of the system � �� �� �� �� to proofs with cuts,
that is, to proofs in the system � � �� �� �� ������ . A proof Π of the form

Π1

Γ � �
Π2� � Γ � �

Γ � �
is mapped to the deduction obtained as follows: First, construct

� (Π1)

Γ+ � �

and � (Π2)

� (Π2)

� :
� � Γ+ � �

Then, replace every leaf � :
� � ∆ � Γ+ � � in � (Π2) by ∆ + � (Π1), delete “ � :

�
” from the

antecedent in every sequent, and rectify this last tree.

7 First-Order Quantifiers

We extend the systems � �� �� �� �� and � �� �� �� �� ������ to deal with the quantifiers.

Definition 14 The axioms and inference rules of the system � �� �� ��∀ ∃ �� for intuitionistic
first-order logic are listed below:

Γ � � :
� � �

Γ � � :
� ���

Γ � � � � (
�

-intro)

Γ � � � � Γ � �
Γ ��� (

�
-elim)

Γ � � Γ � �
Γ � � � � (

�
-intro)

Γ � � � �
Γ � � (

�
-elim)

Γ � � � �
Γ � � (

�
-elim)

Research Report No. 8 May 1991

26 Jean Gallier

Γ � �
Γ � ��� � (

�
-intro)

Γ � �
Γ � ��� � (

�
-intro)

Γ � ��� � Γ � � :
� � � Γ ��� : � � �

Γ � � (
�

-elim)

Γ � �

Γ � � (
�

-elim)

Γ � � [� � �]

Γ � ∀ � � (∀-intro)
Γ � ∀ � �

Γ � � [�
� �]

(∀-elim)

where in (∀-intro), � does not occur free in Γ or ∀ � � ;

Γ � � [�
� �]

Γ � ∃ � � (∃-intro)
Γ � ∃ � � � : � [� � �] � Γ � �

Γ � � (∃-elim)

where in (∃-elim), � does not occur free in Γ, ∃ � � , or
�

.

The variable � is called the eigenvariable of the inference.

Definition 15 The axioms and inference rules of the system � �� �� ��∀ ∃ �� ������ for intuitionistic
first-order logic are given below. � � Γ � �

Γ � �

Γ � � (
�

: right)

� � � � Γ � �� � Γ � � (contrac: left)

Γ � � � � Γ � �
Γ � � (cut)

� � � � Γ � �� � � � Γ � � (
�

: left)
Γ � � Γ � �

Γ � � � � (
�

: right)

� � Γ � � � � Γ � ���� � � Γ � � (
�

: left)

Γ � �
Γ � ��� � (

�
: right)

Γ � �
Γ � ��� � (

�
: right)

Γ � � � � Γ � �� � � � Γ � � (
�

: left)

� � Γ � �
Γ � � � � (

�
: right)

May 1991 Digital PRL

Constructive Logics. Part I: A Tutorial on Proof Systems and Typed
�
-Calculi 27

�
[�
� �] � Γ � �

∀ � � � Γ � � (∀: left)
Γ � � [� � �]

Γ � ∀ � � (∀: right)

where in (∀: right), � does not occur free in the conclusion;

�
[� � �] � Γ � �
∃ � � � Γ � � (∃: left)

Γ � � [�
� �]

Γ � ∃ � � (∃: right)

where in (∃: left), � does not occur free in the conclusion.

The variable � is called the eigenvariable of the inference.

The typed
�

-calculus
� �
�
 + ∀ ∃ � corresponding to � �� �� ��∀ ∃ �� is given in the following

definition.

Definition 16 The typed
�

-calculus
� �
�
 + ∀ ∃ � is defined by the following rules.

Γ � � :
� � � :

�

Γ � � :
� � � : �

Γ � (
� � :
���
�):

� � � (abstraction)

Γ � � :
� � � Γ � � :

�
Γ � (���): � (application)

Γ � � :
�

Γ � � : �
Γ ��� � � ��� : � � � (pairing)

Γ � � :
� � �

Γ �	�
1(�):

� (projection)
Γ � � :

� � �
Γ �
�

2(�): � (projection)

Γ � � :
�

Γ � inl(�):
�

+ � (injection)
Γ � � : �

Γ � inr(�):
�

+ � (injection)

Γ ��� :
�

+ � Γ � � :
� � � :

�
Γ ��� : � � � :

�
Γ � case(� � � � :

� �
� � � � : � � �):

� (by-cases)

or
Γ ��� :

�
+ � Γ � � :

� � � :
�

Γ ��� : � � � :
�

Γ � (case � of inl(� :
�

) � �
�
inr(� : �) � �):

� (by-cases)

Γ � � :
�

Γ �� � (�):
� (

�
-elim)

Γ � � :
�

[�
���

]

Γ � (
� �

: �
�
�): ∀

� � (∀-intro)

Research Report No. 8 May 1991

28 Jean Gallier

where � does not occur free in Γ or ∀
� �

;

Γ � � : ∀
� �

Γ � � � :
�

[�
���

]
(∀-elim)

Γ � � :
�

[�
���

]

Γ � pair(� � �): ∃
� � (∃-intro)

Γ � � : ∃
� �

Γ � � :
�

[�
� �

] � � :
�

Γ � select(� � � �
: �
� � � :

� �
�):

� (∃-elim)

where � does not occur free in Γ, ∃
� �

, or
�

.

In the term (
� �

: �
�
�), the type � stands for the type of individuals. Note that

Γ � � �
: �
� � � :

���
� : ∀

�
(
� � �

). The term
� �

: �
� � � :

���
� contains the type

�
which is

a dependent type, since it usually contains occurrences of
�
. Observe that (

� �
: �
� � � :

���
�)�

reduces to
� � :
�

[�
���

]
�
� [�
���

], in which the type of � is now
�

[�
� �

]. The term
select(� � � �

: �
� � � :

� �
�) is also denoted as select � of pair(

�
: � � � :

�
) � � ,

or even select � of pair(
� � �) � � , and the (∃-elim) rule as

Γ � � : ∃
� �

Γ � � :
�

[�
� �

] � � :
�

Γ � (select � of pair(
�
: � � � :

�
) � �):

� (∃-elim)

where � does not occur free in Γ, ∃
� �

, or
�

.

Such a formalism can be easily generalized to many sorts (base types), if quantified formulae
are written as ∀

�
: � � � and ∃

�
: � � � , where � is a sort (base type). We also have the following

reduction rules.

Definition 17 The reduction rules of the system
� �

�
 + ∀ ∃ � are listed below:

(
� � :
� �
�) � � � � [�

� �] ��
1(� � � ���) � � � ��
2(� � � ���) � � � �

case(inl(�) � � � �) � � � � � or

case inl(�) of inl(� :
�

) � �
�
inr(� : �) � � � � � [� � �] �

case(inr(�) � � � �) � � � � � or

case inr(�) of inl(� :
�

) � �
�
inr(� : �) � � � � � [� � �] � � ��� (�) � � � � (�) ��

1(� � � (�)) � � � (�) ��
2(� � � (�)) � � � (�) �

(
� �

: �
�
�)� � � � [�

���
] �

May 1991 Digital PRL

Constructive Logics. Part I: A Tutorial on Proof Systems and Typed
�
-Calculi 29

∀ �
� (�)� � � � [��� �](�) �

case(�� + � (�) � � � �) � � �� (�) �
select(pair(� � �) � �) � � (� �) � � or

select pair(� � �) of pair(
�
: � � � :

�
) � � � � � [�

��� � � � �] �
select(∃ �

� (�) � �) � � � (�) �
select(pair(� � �) � ∀ � (

�
�
�

)(�)) � � � [��� �](�) ��� (� (�)) � � �� (�)
�

A fundamental result about natural deduction is the fact that every proof (term) reduces to a
normal form, which is unique up to � -renaming. This result was first proved by Prawitz [15]
for the system � �� �� ��∀ ∃ �� .

Theorem 3 (Church-Rosser property, Prawitz (1971)) Reduction in
� �

�
 + ∀ ∃ � (speci-

fied in Definition 17) is confluent. Equivalently, conversion in
� �

�
 + ∀ ∃ � is Church-Rosser.

A proof can be given by adapting the method of Tait and Martin-Löf [13] using a form of
parallel reduction (see also Stenlund [16]).

Theorem 4 (Strong normalization property, Prawitz (1971)) Reduction in
� �

�
 + ∀ ∃ � is

strongly normalizing.

A proof can be given by adapting Tait’s reducibility method [17], [19], as done in Girard [5]
(1971), [6] (1972) (see also Gallier [2]).

To obtain the system � �� �� ��∀ ∃ �� ������ of classical logic, we add to � �� �� �� �� the cut rule and
the quantifier rules shown in the next definition.

Definition 18 The axioms and inference rules of the system � �� �� �� ∀ ∃ �� ������ for classical
first-order logic are given below. � � Γ � ∆ � �� � � � Γ � ∆� � Γ � ∆

(contrac: left)
Γ � ∆ � � � �

Γ � ∆ � � (contrac: right)

Γ � ∆ � �

Γ � ∆ � � (
�

: right)

Γ � � � ∆ � � Γ � ∆
Γ � ∆

(cut)

� � � � Γ � ∆� � � � Γ � ∆
(
�

: left)
Γ � ∆ � � Γ � ∆ � �

Γ � ∆ � � � � (
�

: right)

Research Report No. 8 May 1991

30 Jean Gallier

� � Γ � ∆ � � Γ � ∆��� � � Γ � ∆
(
�

: left)
Γ � ∆ � � � �

Γ � ∆ � ��� � (
�

: right)

Γ � ∆ � � � � Γ � ∆� � � � Γ � ∆
(
�

: left)

� � Γ � ∆ � �
Γ � ∆ � ��� � (

�
: right)

�
[�
� �] � Γ � ∆

∀ � � � Γ � ∆
(∀: left)

Γ � ∆ � � [� � �]

Γ � ∆ � ∀ � � (∀: right)

where in (∀: right), � does not occur free in the conclusion;

�
[� � �] � Γ � ∆
∃ � � � Γ � ∆

(∃: left)
Γ � ∆ � � [�

� �]

Γ � ∆ � ∃ � � (∃: right)

where in (∃: left), � does not occur free in the conclusion.

We now extend the functions � and � to deal with the quantifier rules. The procedure � is
extended to the quantifier rules as follows.

� A proof Π of the form

Π1�
[�
� �] � Γ � �

∀ � � � Γ � �
is mapped to a deduction obtained as follows. First, map Π1 to � (Π1)

� (Π1)

� :
�

[�
� �] � Γ+ � �

Next, replace every leaf of the form � :
�

[�
� �] � ∆ � Γ+ � � [�

� �] in � (Π1) by the subtree

� : ∀ � � � ∆ � Γ+ � ∀ � �

� : ∀ � � � ∆ � Γ+ � � [�
� �]

and rectify this last tree.

� A proof Π of the form

Π1

Γ � � [� � �]

Γ � ∀ � �

May 1991 Digital PRL

Constructive Logics. Part I: A Tutorial on Proof Systems and Typed
�
-Calculi 31

is mapped to the deduction

� (Π1)

Γ+ � � [� � �]

Γ+ � ∀ � �

� A proof Π of the form

Π1�
[� � �] � Γ � �
∃ � � � Γ � �

is mapped to the deduction

� : ∃ � � � Γ+ � ∃ � �
� : ∃ � � + � (Π1)

� : ∃ � � � � :
�

[� � �] � Γ+ � �
� : ∃ � � � Γ+ � �

and rectify this last tree.

� A proof Π of the form

Π1

Γ � � [�
� �]

Γ � ∃ � �

is mapped to the deduction

� (Π1)

Γ+ � � [�
� �]

Γ+ � ∃ � �

It is easily seen that Lemma 1 generalizes to quantifiers.

Lemma 2 (Gentzen (1935), Prawitz (1965)) For every proof Π in � �� �� �� ∀ ∃ �� , � (Π) is a

deduction in normal form (in � �� �� ��∀ ∃ ��).

Next, we extend the procedure � to deal with the quantifier rules.

Research Report No. 8 May 1991

32 Jean Gallier

� A deduction
�

of the form
�

1

Γ � � [� � �]

Γ � ∀ � �

is mapped to the proof

� (
�

1)

Γ � � � [� � �]

Γ � � ∀ � �

� A deduction
�

of the form
�

1

Γ � ∀ � �
Γ � � [�

� �]

is mapped to the proof

� (
�

1)

Γ � � ∀ � �
�

[�
� �] � Γ � � � [�

� �]

∀ � � � Γ � � � [�
� �]

(cut)
Γ � � � [�

� �]

� A deduction
�

of the form
�

1

Γ � � [�
� �]

Γ � ∃ � �

is mapped to the proof

� (
�

1)

Γ � � � [�
� �]

Γ � � ∃ � �

May 1991 Digital PRL

Constructive Logics. Part I: A Tutorial on Proof Systems and Typed
�
-Calculi 33

� A deduction
�

of the form

�
1

Γ � ∃ � �
�

2� : � [� � �] � Γ � �
Γ � �

is mapped to the proof

� (
�

1)

Γ � � ∃ � �

� (
�

2)�
[� � �] � Γ � � �
∃ � � � Γ � � �

(cut)
Γ � � �

We now turn to cut elimination.

8 Gentzen’s Cut Elimination Theorem

As we said earlier before presenting the function � from � �� �� �� �� to � �� �� �� �� ������ , it is
possible to show that the system � � �� �� �� ������ is equivalent to the seemingly weaker system
� � �� �� �� .

We have the following fundamental result.

Theorem 5 (Cut Elimination Theorem, Gentzen (1935)) There is an algorithm which,
given any proof Π in � �� �� ��∀ ∃ �� ������ produces a cut-free proof Π

�

in � � �� ��∀ ∃ �� . There is
an algorithm which, given any proof Π in � �� �� ��∀ ∃ �� ������ produces a cut-free proof Π

�

in
� � �� ��∀ ∃ �� .

Proof . The proof is quite involved. It consists in pushing up cuts towards the leaves, and in
breaking cuts involving compound formulae into cuts on smaller subformulae. Full details are
given for the system 	�
 in Section 11. Interestingly, the need for the contraction rule arises
when a cut involves an axiom. The typical example is as follows. The proof

� � Γ � �
Π1� � � � Γ � �� � Γ � �

is equivalent to a (contrac: left), and it is eliminated by forming the proof

Research Report No. 8 May 1991

34 Jean Gallier

Π1� � � � Γ � �
(contrac: left)� � Γ � �

If we are interested in cut-free proofs, except in classical propositional logic, the contraction
rules cannot be dispensed with. We already saw in Example 4.1 that ¬¬(� � ¬ �) is
a proposition which is not provable without contractions in � �� �� �� ¬� . Another example
involving quantifiers is the sequent ∀ � ∃ � (� � � ¬ � �) � which is not provable without
contractions in � �� �� ��∀ ∃ ¬� or even in � �� �� �� ∀ ∃ ¬� . This sequent has the following proof in
� �� �� ��∀ ∃ ¬� :

Example 8.1

� � � ¬ � � � � � � � �
� � � ¬ � � � � � � ¬ � � �
� � � ¬ � � � (� � � ¬ � �) �

(� � � ¬ � �) � (� � � ¬ � �) �
(� � � ¬ � �) � ∃ � (� � � ¬ � �) �

(� � � ¬ � �) � ∀ � ∃ � (� � � ¬ � �) �
∃ � (� � � ¬ � �) � ∀ � ∃ � (� � � ¬ � �) �

∀ � ∃ � (� � � ¬ � �) � ∀ � ∃ � (� � � ¬ � �) �
(contrac: left)

∀ � ∃ � (� � � ¬ � �) �

It is an interesting exercise to find a deduction of ∀ � ∃ � (� � � ¬ � �)
� �

in � � �� ��∀ ∃ �� .

For classical logic, it is possible to show that the contraction rules are only needed to permit
an unbounded number of applications of the (∀: left)-rule and the (∃: right)-rule. For example,
the formula ∃ � ∀ � (� � � � �) is provable in � �� �� ��∀ ∃ �� , but not without the rule (contrac:
right). The system � �� �� �� ∀ ∃ �� can be modified to obtain another system �
 �� �� ��∀ ∃ �� in
which the contraction rules are deleted and the quantifier rules are as follows:

∀ � � � � [�
� �] � Γ � ∆

∀ � � � Γ � ∆
(∀: left)

Γ � ∆ � � [� � �]

Γ � ∆ � ∀ � � (∀: right)

where in (∀: right), � does not occur free in the conclusion;
�

[� � �] � Γ � ∆
∃ � � � Γ � ∆

(∃: left)
Γ � ∆ � ∃ � � � � [�

� �]

Γ � ∆ � ∃ � � (∃: right)

May 1991 Digital PRL

Constructive Logics. Part I: A Tutorial on Proof Systems and Typed
�
-Calculi 35

where in (∃: left), � does not occur free in the conclusion.

The above system is inspired from Kleene [11] (see system
�

3, page 481). Note that
contraction steps have been incorporated in the (∀: left)-rule and the (∃: right)-rule. The
equivalence of the systems � � �� ��∀ ∃ �� and �
 �� �� �� ∀ ∃ �� is shown using two lemmas inspired
from Kleene [11] (1952). Given an inference other than (

�
: right), note that the inference

creates a new occurrence of a formula called the principal formula.

Lemma 3 Given a proof Π in � �� �� ��∀ ∃ ¬� of a sequent Γ � ∆, for every selected occurrence
of a formula of the form

� � � ,
��� � ,

� � � , ¬
�

, in Γ or ∆, or ∃ � � , in Γ, or ∀ � � in ∆,
there is another proof Π

�

whose last inference has the specified occurrence of the formula as
its principal formula, and uses no more contractions than Π does.

Proof . The proof is by induction on the structure of the proof tree. There are a number of
cases depending on what the last inference is.

Lemma 3 does not hold for an occurrence of a formula ∀ � � in Γ or for a formula ∃ � �
in ∆, because the inference that creates it involves a term � , and moving this inference down
in the proof may cause a conflict with the side condition on the eigenvariable � involved in
the rules (∀: right) or (∃: left). As shown by the following example, Lemma 3 also fails for
intuitionistic logic. The sequent � � (� � �

) � (� ���) � �
has the following proof:

� � (� ���) � � � � (� ���) � � � �

� � (� � �
) � (� ���) � �

On the other hand, the following tree is not a proof:

� � � � � � ���
� � (� � �

) ���
� � � � � � � � � � � �

� � (� � �
) � � � �

� � (� � �
) � (� ���) � �

This shows that in searching for a proof, one has to be careful not to stop after the first
failure. Since the contraction rule cannot be dispensed with, it is not obvious at all that
provability of an intuitionistic propositional sequent is a decidable property. In fact, it is, but
proving it requires a fairly subtle argument. We will present an argument due to Kleene. For
the time being, we return to classical logic.

Lemma 4 Given any formula
�

, any terms �

1, �

2, any proof Π in � �� �� �� ∀ ∃ ¬� of a sequent�
[�

1
� �] � � [�

2
� �] � Γ � ∆ (resp. of a sequent Γ � ∆ � � [�

1
� �] � � [�

2
� �]), either there is a

proof of the sequent
�

[�

1
� �] � Γ � ∆, or there is a proof of the sequent

�
[�

2
� �] � Γ � ∆ (resp.

either there is a proof of the sequent Γ � ∆ � � [�

1
� �], or there is a proof of the sequent

Γ � ∆ � � [�

2
� �]). Furthermore, this new proof does not use more contractions than Π does.

Research Report No. 8 May 1991

36 Jean Gallier

Proof . The proof is by induction on the structure of the proof tree. Lemma 3 is used in the
proof.

We can now prove that in classical logic, the contraction rules are only needed for the
quantifier-rules.

Lemma 5 (Contraction elimination) Every proof in � �� �� �� ∀ ∃ ¬� can be transformed to a
proof in �
 � �� ��∀ ∃ ¬� .

Proof . The proof is by lexicographic induction on the pair � � � � , where is the number
of contractions in the proof tree Π, and � is the size of Π. We use Lemma 4 when the last
inference is a contraction, with �

1 = �

2 = � . Since at least one contraction goes away, we can
apply the induction hypothesis.

We now present a cut-free system for intuitionistic logic which does not include any explicit
contraction rule and in which the premise of every sequent can be interpreted as a set. Using
this system �
�� due to Kleene (see system

�
3 � , page 481, in [11]), we can give a very nice

proof of the decidability of provability in intuitionistic propositional logic. The idea behind
this system is to systematically keep a copy of the principal formula in the premise(s) of every
left-rule. Since Lemma 5 fails for intuitionistic logic, such a system is of interest.

Definition 19 The axioms and inference rules of the system �
 �� �� �� ∀ ∃ �� for intuitionistic
first-order logic are given below. � � Γ � �

Γ � �

Γ � � (
�

: right)

� � � � � � � � Γ � �� � � � Γ � � (
�

: left)
Γ � � Γ � �

Γ � � � � (
�

: right)

� � � � � � Γ � � ��� � � � � Γ � ���� � � Γ � � (
�

: left)

Γ � �
Γ � ��� � (

�
: right)

Γ � �
Γ � ��� � (

�
: right)

� � � � Γ � � � � � � � � Γ � �� � � � Γ � � (
�

: left)

� � Γ ���
Γ � ��� � (

�
: right)

∀ � � � � [�
� �] � Γ � �

∀ � � � Γ � � (∀: left)
Γ � � [� � �]

Γ � ∀ � � (∀: right)

where in (∀: right), � does not occur free in the conclusion;

∃ � � � � [� � �] � Γ � �
∃ � � � Γ � � (∃: left)

Γ � � [�
� �]

Γ � ∃ � � (∃: right)

May 1991 Digital PRL

Constructive Logics. Part I: A Tutorial on Proof Systems and Typed
�
-Calculi 37

where in (∃: left), � does not occur free in the conclusion.

The variable � is called the eigenvariable of the inference.

The following lemma shows that �
 �� �� ��∀ ∃ �� is equivalent to � �� �� ��∀ ∃ �� , and also that
the premise of every sequent of �
 �� �� ��∀ ∃ �� can be viewed as a set.

Lemma 6 For every sequent Γ � � , every proof Π in � �� �� �� ∀ ∃ �� can be transformed into

a proof Π
�

of Γ � � in �
 � �� ��∀ ∃ �� . Furthermore, a proof Π
�

can be found such that every
formula occurring on the left of any sequent in Π

�

occurs exactly once. In other words, for
every sequent Γ � � in Π

�

, the premise Γ can be viewed as a set.

Proof . The proof is by induction on the structure of Π. The case where the last inference
(at the root of the tree) is a contraction follows by induction. Otherwise, the sequent to be
proved is either of the form Γ � � where Γ is a set, or it is of the form ∆ � � � � � � . The first
case reduces to the second since Γ can be written as ∆ � � , and from a proof of ∆ � � � � , we
easily obtain a proof of ∆ � � � � � � . If the last inference applies to a formula in ∆ or

�
, the

induction hypothesis yields the desired result. If the last inference applies to one of the two�
’s, we apply the induction hypothesis and observe that the rules of �
�� have been designed to

automatically contract the two occurrences of
�

that would normally be created. For example,
if
�

= � � � , the induction hypothesis would yield a proof of ∆ � � � � � � � � � � considered
as a set, and the (

�
: left)-rule of �
	� yields ∆ � � � � � � considered as a set.

As a corollary of Lemma 6 we obtain the fact that provability is decidable for intuitionistic
propositional logic. Similarly, Lemma 5 implies that provability is decidable for classical
propositional logic.

Theorem 6 It is decidable whether a proposition is provable in � �� �� �� �� . It is decidable
whether a proposition is provable in � �� �� �� �� ������ .

Proof . By the existence of the functions � and � , there is a proof of a proposition
�

in
� �� �� �� �� iff there is a proof of the sequent � � in � �� �� �� �� ������ . By the cut elimination theorem
(Theorem 5), there is a proof in � �� �� �� �� ������ iff there is a proof in � �� �� �� �� . By Lemma 6,
there is a proof in � �� �� �� �� iff there is a proof in �
 �� �� �� �� . Call a proof irredundant if
for every sequent Γ � � in this proof, Γ is a set, and no sequent occurs twice on any path.
If a proof contains a redundant sequent Γ � � occurring at two locations on a path, it is
clear that this proof can be shortened by replacing the subproof rooted at the lower (closest
to the root) location of the repeating sequent Γ � � by the smaller subproof rooted at the
higher location of the sequent Γ � � . Thus, a redundant proof can always be converted to an
irredundant proof of the same sequent. Since premises of sequents can be viewed as sets and
we are considering cut-free proofs, only subformulae of the formulae occurring in the original
sequent to be proved can occur in any proof of that sequent. Therefore, there is a fixed bound

Research Report No. 8 May 1991

38 Jean Gallier

on the size of every irredundant proof of a given sequent. Thus, one simply has to search for
an irredundant proof of the given sequent.

By the cut elimination theorem (Theorem 5), there is a proof in � �� �� �� �� ������ iff there is a
proof in � �� �� �� �� . By Lemma 5, there is a proof in � �� �� �� �� iff there is a proof in �
 �� �� �� �� .
To conclude, note that every inference of �
 �� �� �� �� decreases the total number of connectives
in the sequent. Thus, given a sequent, there are only finitely many proofs for it.

As an exercise, the reader can show that the proposition

	 (� � �
)
� � � � � �

known as Pierce’s law, is not provable in � �� �� �� �� , but is provable classically in � � �� �� �� .

The fact that in any cut-free proof (intuitionistic or classical) of a propositional sequent only
subformulae of the formulae occurring in that sequent can occur in the proof is an important
property called the subformula property. The subformula property is not preserved by the
quantifier rules, and this suggests that provability in first-order intuitionistic logic or classical
logic is undecidable. This can indeed be shown.

One of the major differences between Gentzen systems for intuitionistic and classical logic
presented so far, is that in intuitionistic systems, sequents are restricted to have at most one
formula on the righthand side of � . This assymetry causes the (

�
: left) and (

�
: right) rules of

intuitionistic logic to be different from their counterpart in classical logic, and in particular, the
intuitionistic rules cause some loss of information. For instance, the intuitionistic (

�
: left)-rule

is
Γ � � � � Γ � �� � � � Γ � � (

�
: left)

whereas its classical version is

Γ � � � � � � Γ � �� � � � Γ � � (
�

: left)

Note that
�

is dropped in the left premise of the intuitionistic version of the rule. Similarly,
the intuitionistic (

�
: right)-rules are

Γ � �
Γ � ��� � (

�
: right)

Γ � �
Γ � ��� � (

�
: right)

whereas the classical version is

Γ � � � �
Γ � ��� � (

�
: right)

Again, either
�

or � is dropped in the premise of the intuitionistic version of the rule. This
loss of information is responsible for the fact that in searching for a proof of a sequent in

May 1991 Digital PRL

Constructive Logics. Part I: A Tutorial on Proof Systems and Typed
�
-Calculi 39

� � �� ��∀ ∃ �� , one cannot stop after having found a deduction tree which is not a proof (i.e. a
deduction tree in which some leaf is not labeled with an axiom). The rules may have been tried
in the wrong order, and it is necessary to make sure that all attempts have failed to be sure that
a sequent is not provable (in fact, this search should be conducted in the system �
 �� �� ��∀ ∃ ��
to ensure termination in the propositional case).

Takeuti [20] has made an interesting observation about intuitionistic cut-free sequent calculi,
but before discussing this observation, we shall briefly discuss some recent results of Lincoln,
Scedrov, and Shankar [12], about propositional intuitionistic logic based on the connective

�
.

The system of Definition 19 restricted to propositions built up only from
�

is shown below:

� � Γ � �
� � � � Γ � � � � � � � � Γ � �� � � � Γ � � (

�
: left)

� � Γ ���
Γ � � � � (

�
: right)

This system is contraction-free, but it is not immediately obvious that provability is decidable,
since

��� � is recopied in the premises of the (
�

: left)-rule. First, it is easy to see that we can
require

�
in an axiom to be atomic, and to see that we can drop

��� � from the right premise
and obtain an equivalent system. The new rule is

� � � � Γ � � � � Γ � �� � � � Γ � � (
�

: left)

Indeed, if we have a proof of
� � � � � � Γ � � , since � � Γ � � � � is provable, by a cut we

obtain that the sequent � � Γ � � is provable. Now, the difficulty is to weaken the hypothesis� � � in the left premise. What is remarkable is that when
�

itself is an implication, that is
when

� � � is of the form (
� � � � �

)
� � , then ((

� � � � �

)
� �)

�
(� � � �) is provable,

and � � � � does indeed work. Also, when
�

is atomic, then it can be shown that recopying� � � is redundant. The new system introduced by Lincoln, Scedrov, and Shankar, is the
following:

� � Γ � �
Γ � � � � Γ � �� � � � Γ � � (

�
: left)

� ��� � Γ � � � � � � Γ � �
(
� � �)

�� � Γ � � (
�

: left)

� � Γ ���
Γ � � � � (

�
: right)

where � is atomic.

The equivalence of this new system and of the previous one is nontrivial. One of the steps
involved is “depth-reduction”. This means that we can restrict ourselves to propositions which
when viewed as trees have depth at most 2 (thus, such a formula is of the form � , (� � �

),

Research Report No. 8 May 1991

40 Jean Gallier

� � (
� �

�), or (� � �
)
�
� , where � � � � � are atomic). A nice feature of this new system

is that it yields easily the decidability of provability. Note that under the multiset ordering,
the complexity of the premises of each rule decreases strictly (we consider the multiset of the
number of connectives in the formulae occurring in each sequent). For example, (

� � �)
���

is replaced by � ��� and
� � � , both of (strictly) smaller complexity.

We now come back to Takeuti’s observation [20]. The crucial fact about intuitionistic
systems is not so much the fact that sequents are restricted so that righthand sides have at
most one formula, but that the application of the rules (

�
: right) and (∀: right) should be

restricted so that the righthand side of the conclusion of such a rule consists of a single formula
(and similarly for (¬: right) if ¬ is not treated as an abbreviation). The intuitive reason
is that the rule (

�
: right) moves some formula from the lefthand side to the righthand side

of a sequent (and similarly for (¬: right)), and (∀: right) involves a side condition. Now,
we can view a classical sequent Γ � � 1 � . . . � � � as the corresponding intuitionistic sequent
Γ ��� 1

�
. . .
� � � . With this in mind, we can show the following result.

Lemma 7 Let � � �� �� ��∀ ∃ �� be the system � �� �� ��∀ ∃ �� where the application of the rules
(
�

: right) and (∀: right) is restricted to situations in which the conclusion of the inference is
a sequent whose righthand side has a single formula. Then, Γ � � 1 � . . . � � � is provable in
� � � �� ��∀ ∃ �� iff Γ ��� 1

�
. . .
� � � is provable in � �� �� �� ∀ ∃ �� .

Proof. The proof is by induction on the structure of proofs. In the case of an axiom� � Γ � ∆ � � , letting
�

be the disjunction of the formulae in ∆, we easily obtain a proof of� � Γ � � � � in � �� �� ��∀ ∃ �� by applications of (
�

: right) to the axiom
� � Γ � � . It is also

necessary to show that a number of intuitionistic sequents are provable. For example, we need
to show that the following sequents are intuitionistically provable:

� � � � (��� �)
�

(� � �) � � �
(
��� �

)
�

(� � �) � (
� � �)

� � ��
[
� � �]

� � � ∃ � ��� � �
� � � � � � � �� � � � � � � � � ���� � � ¬ � � � �

Going from � � �� �� �� ∀ ∃ �� to � � �� ��∀ ∃ �� , it is much easier to assume that the cut rule can be
used in ��� , and then use cut elimination. For example, if the last inference is

Γ � � � ∆ � � Γ � ∆� � � � Γ � ∆
(
�

: left)

letting
�

be the disjunction of the formulae in ∆, by the induction hypothesis, we have proofs
in � �� �� ��∀ ∃ �� of Γ � � � � and � � Γ � � . It is obvious that we also have proofs of

� �
� � Γ � � � � and

� � � � Γ ��� � � , and thus a proof of
��� � � Γ � (

� � �
)
�

(� � �).

May 1991 Digital PRL

Constructive Logics. Part I: A Tutorial on Proof Systems and Typed
�
-Calculi 41

Since the sequent
� � � � Γ � (� � �)

�
(� � �) � � is provable, using a cut, we obtain that� � � � Γ � � is provable, as desired. The other cases are similar.

We can also adapt the system �
 �� �� ��∀ ∃ �� to form a system �
 � � �� ��∀ ∃ �� having the
same property as � � �� �� ��∀ ∃ �� . In this system, it is also necessary to recopy the principal
formula of every right-rule on the righthand side. Such a system can be shown to be complete
w.r.t. Kripke semantics, and can be used to show the existence of a finite counter-model in the
case of a refutable proposition. This system is given in the next definition.

Definition 20 The axioms and inference rules of the system �
 � �� �� ��∀ ∃ �� are given below.

� � Γ � ∆ � �

Γ � ∆ � �

Γ � ∆ � � (
�

: right)

� � � � � � � � Γ � ∆� � � � Γ � ∆
(
�

: left)
Γ � ∆ � � � � � � Γ � ∆ � � � � � �

Γ � ∆ � � � � (
�

: right)

��� � � � � Γ � ∆
��� � � � � Γ � ∆� � � � Γ � ∆

(
�

: left)
Γ � ∆ � � � � � � � �

Γ � ∆ � � � � (
�

: right)

� � � � Γ � � � ∆ � � � � � � Γ � ∆� � � � Γ � ∆
(
�

: left)

� � Γ � ∆ � � � � � �
Γ � ∆ � � � � (

�
: right)

∀ � � � � [�
� �] � Γ � ∆

∀ � � � Γ � ∆
(∀: left)

Γ � ∆ � � [� � �] � ∀ � �
Γ � ∆ � ∀ � � (∀: right)

where in (∀: right), � does not occur free in the conclusion;

∃ � � � � [� � �] � Γ � ∆
∃ � � � Γ � ∆

(∃: left)
Γ � ∆ � � [�

� �] � ∃ � �
Γ � ∆ � ∃ � � (∃: right)

where in (∃: left), � does not occur free in the conclusion.

In the system �
 � � �� ��∀ ∃ �� , the application of the rules (
�

: right) and (∀: right) is
restricted to situations in which the conclusion of the inference is a sequent whose righthand
side has a single formula.

We now consider some equivalent Gentzen systems.

Research Report No. 8 May 1991

42 Jean Gallier

9 The Gentzen Systems ��� and ��

Axioms of the form
� � Γ � ∆ � � are very convenient for searching for proofs backwards, but

for logical purity, it may be desirable to consider axioms of the form
� � � . We can redefine

axioms to be of this simpler form, but to preserve exactly the same notion of provability, we
need to add the following rules of weakening (also called thinning).

Definition 21 The rules of weakening (or thinning) are

Γ � ∆� � Γ � ∆
(weakening: left)

Γ � ∆
Γ � ∆ � � (weakening: right)

In the case of intuitionistic logic, we require that ∆ be empty in (weakening: right).

In view of the previous section, it is easy to see that the quantifier rule

�
[�
� �] � ∀ � � � Γ � ∆
∀ � � � Γ � ∆

(∀: left)
Γ � ∆ � ∃ � � � � [�

� �]

Γ � ∆ � ∃ � � (∃: right)

of �
 �� �� ��∀ ∃ �� are equivalent to the weaker rules

�
[�
� �] � Γ � ∆

∀ � � � Γ � ∆
(∀: left)

Γ � ∆ � � [�
� �]

Γ � ∆ � ∃ � � (∃: right)

of � �� �� ��∀ ∃ �� , provided that we add (contrac: left), (contrac: right), (weakening: left) and
(weakening: right). Similarly, in order to make the (

�
: left) rule and the (

�
: right) rule

analogous to the corresponding introduction rules in natural deduction, we can introduce the
rules � � Γ � ∆� � � � Γ � ∆

(
�

: left)
� � Γ � ∆� � � � Γ � ∆

(
�

: left)

and
Γ � ∆ � �

Γ � ∆ � � � � (
�

: right)
Γ � ∆ � �

Γ � ∆ � ��� � (
�

: right)

They are equivalent to the old rules provided that we add (contrac: left), (contrac: right),
(weakening: left) and (weakening: right). This leads us to the systems 	 �

and 	�
 defined
and studied by Gentzen [3] (except that Gentzen also had an explicit exchange rule, but we
assume that we are dealing with multisets).

Definition 22 The axioms and inference rules of the system 	 �
for intuitionistic first-order

logic are given below.

Axioms: � � �

May 1991 Digital PRL

Constructive Logics. Part I: A Tutorial on Proof Systems and Typed
�
-Calculi 43

Structural Rules:

Γ � ∆� � Γ � ∆
(weakening: left)

Γ �
Γ � � (weakening: right)

� � � � Γ � ∆� � Γ � ∆
(contrac: left)

Γ � � � � Λ � Θ
Γ � Λ � Θ

(cut)

Logical Rules:
� � Γ � ∆� � � � Γ � ∆

(
�

: left)
� � Γ � ∆� � � � Γ � ∆

(
�

: left)

Γ � � Γ ���
Γ � � � � (

�
: right)

� � Γ � ∆ � � Γ � ∆��� � � Γ � ∆
(
�

: left)

Γ � �
Γ � ��� � (

�
: right)

Γ � �
Γ � ��� � (

�
: right)

Γ � � � � Γ � ∆� � � � Γ � ∆
(
�

: left)

� � Γ � �
Γ � � � � (

�
: right)

Γ � �
¬
� � Γ � (¬: left)

� � Γ �
Γ � ¬

� (¬: right)

In the rules above,
��� � ,

� � � ,
� � � , and ¬

�
are called the principal formulae and

�
,

� the side formulae of the inference.
�

[�
� �] � Γ � ∆

∀ � � � Γ � ∆
(∀: left)

Γ � � [� � �]

Γ � ∀ � � (∀: right)

where in (∀: right), � does not occur free in the conclusion;
�

[� � �] � Γ � ∆
∃ � � � Γ � ∆

(∃: left)
Γ � � [�

� �]

Γ � ∃ � � (∃: right)

where in (∃: left), � does not occur free in the conclusion.

In the above rules, ∆ and Θ consist of at most one formula. The variable � is called the
eigenvariable of the inference. The condition that the eigenvariable does not occur free in
the conclusion of the rule is called the eigenvariable condition. The formula ∀ � � (or ∃ � �)
is called the principal formula of the inference, and the formula

�
[�
� �] (or

�
[� � �]) the side

formula of the inference.

Research Report No. 8 May 1991

44 Jean Gallier

Definition 23 The axioms and inference rules of the system 	�
 for classical first-order logic
are given below.

Axioms: � � �

Structural Rules:

Γ � ∆� � Γ � ∆
(weakening: left)

Γ � ∆
Γ � ∆ � � (weakening: right)

� � � � Γ � ∆� � Γ � ∆
(contrac: left)

Γ � ∆ � � � �
Γ � ∆ � � (contrac: right)

Γ � � � ∆ � � Λ � Θ
Γ � Λ � ∆ � Θ (cut)

Logical Rules:
� � Γ � ∆� � � � Γ � ∆

(
�

: left)
� � Γ � ∆� � � � Γ � ∆

(
�

: left)

Γ � ∆ � � Γ � ∆ � �
Γ � ∆ � � � � (

�
: right)

� � Γ � ∆ � � Γ � ∆��� � � Γ � ∆
(
�

: left)

Γ � ∆ � �
Γ � ∆ � � � � (

�
: right)

Γ � ∆ � �
Γ � ∆ � ��� � (

�
: right)

Γ � ∆ � � � � Γ � ∆� � � � Γ � ∆
(
�

: left)

� � Γ � ∆ � �
Γ � ∆ � ��� � (

�
: right)

Γ � ∆ � �
¬
� � Γ � ∆

(¬: left)

� � Γ � ∆
Γ � ∆ � ¬ � (¬: right)

In the rules above,
��� � ,

� � � ,
� � � , and ¬

�
are called the principal formulae and

�
,

� the side formulae of the inference.
�

[�
� �] � Γ � ∆

∀ � � � Γ � ∆
(∀: left)

Γ � ∆ � � [� � �]

Γ � ∆ � ∀ � � (∀: right)

where in (∀: right), � does not occur free in the conclusion;
�

[� � �] � Γ � ∆
∃ � � � Γ � ∆

(∃: left)
Γ � ∆ � � [�

� �]

Γ � ∆ � ∃ � � (∃: right)

May 1991 Digital PRL

Constructive Logics. Part I: A Tutorial on Proof Systems and Typed
�
-Calculi 45

where in (∃: left), � does not occur free in the conclusion.

The variable � is called the eigenvariable of the inference. The condition that the
eigenvariable does not occur free in the conclusion of the rule is called the eigenvariable
condition. The formula ∀ � � (or ∃ � �) is called the principal formula of the inference, and the
formula

�
[�
� �] (or

�
[� � �]) the side formula of the inference.

One will note that the cut rule

Γ � � � ∆ � � Λ � Θ
Γ � Λ � ∆ � Θ (cut)

(with ∆ empty in the intuitionistic case and Θ at most one formula) differs from the cut rule

Γ � � � ∆ � � Γ � ∆
Γ � ∆

(cut)

used in � �� �� ��∀ ∃ ¬ ������ or in � �� �� �� ∀ ∃ �� ������ , in that the premises do not require the contexts
Γ, Λ to coincide, and the contexts ∆, Θ to coincide. The rules are equivalent using contraction
and weakening. Similarly, the other logical rules of 	�
 (resp. 	 �

) and � � �� ��∀ ∃ ¬ ������ (resp.
� � �� ��∀ ∃ �� ������) are equivalent using contraction and weakening.

10 A Proof-Term Calculus for � �� �� ��∀ ∃ �� ������

Before we move on to cut elimination in 	�
 (and 	 �
), it is worth describing a term calculus

corresponding to the sequent calculus � �� �� ��∀ ∃ �� ������ . A sequent Γ � � becomes a judgement
Γ

� � � :
�

, such that, if Γ =
�

1 � . . . � � � then Γ
�

= � 1:
�

1 � . . . � � � :
� � is a context in which

the � � are distinct variables and � is a proof term. Since the sequent calculus has rules for
introducing formulae on the left of a sequent as well as on the right of a sequent, we will have
to create new variables to tag the newly created formulae, and some new term constructors.

Definition 24 The term calculus associated with � � �� ��∀ ∃ �� ������ is defined as follows.

Γ � � :
� � � :

�

� :
� ��� :

� � Γ � � : �� : � � Γ � let � be � :
�

@ � :
�
in � : � (contrac: left)

Γ � � :
� � :

� � Γ � � :
�

Γ � � [�
� �]:

� (cut)

Γ � � :
�

Γ �� � (�):
� (weakening: right)

Research Report No. 8 May 1991

46 Jean Gallier

� :
� ��� : � � Γ � � :

�
� : � � � � Γ � let � be � � :

� ��� : � � in � :
� (

�
: left)

Γ � � :
�

Γ � � : �
Γ ��� � � ��� : � � � (

�
: right)

� :
� � Γ � � :

� � : � � Γ � � :
�

� : ��� � � Γ � case � of inl(� :
�

) � �
�
inr(� : �) � � :

� (
�

: left)

Γ � � :
�

Γ � inl(�):
��� � (

�
: right)

Γ � � : �
Γ � inr(�):

��� � (
�

: right)

Γ � � :
� � : � � Γ � � :

�
� : � � � � Γ � � [(� �)

� �]:
� (

�
: left)

� :
� � Γ � � : �

Γ � (
� � :
� �
�):

� � � (
�

: right)

� :
�

[�
���

] � Γ � � :
�

� : ∀
� � � Γ � � [(� �)

� �]:
� (∀: left)

Γ � � :
�

[�
���

]

Γ � (
� �

: �
�
�): ∀

� � (∀: right)

where � does not occur free in Γ or ∀
� �

;

� :
�

[�
� �

] � Γ � � :
�

� : ∃
� � � Γ � select � of pair(

�
: � � � :

�
) � � :

� (∃: left)

where � does not occur free in Γ, ∃
� �

, or
�

;

Γ � � :
�

[�
���

]

Γ � pair(� � �): ∃
� � (∃: right)

It is possible to write reduction rules that correspond to cut-elimination steps. For example,

let � � � ��� be � � :
� ��� : � � in � � � � [�

� � � � � �]
�

It is also possible to specify reduction rules imposing a certain strategy, for example, eager or
lazy evaluation. Such reduction strategies have been considered in this setting by Abramsky [1].

The above proof-term assignment has the property that if Γ � � :
�

is derivable and Γ � ∆,
then ∆ � � :

�
is also derivable. This is because the axioms are of the form Γ � � :

� � � :
�

. We
can design a term assignment system for an 	 �

-style system. In such a system, the axioms
are of the form

� :
� � � :

�

and the proof-term assignment for weakening is as follows:

Γ � � : �
� : � � Γ � let � be in � : � (weakening: left)

Note that the above proof-term assignment has the property that if Γ � � :
�

is provable and
Γ � ∆, then ∆ � � :

�
is also derivable for some � easily obtainable from � .

May 1991 Digital PRL

Constructive Logics. Part I: A Tutorial on Proof Systems and Typed
�
-Calculi 47

If instead of the above (
�

: left) rule, we use the two 	 �
-style rules

� � Γ � �� � � � Γ � � (
�

: left)
� � Γ � �� � � � Γ � � (

�
: left)

then we have the following proof-term assignment:

� :
� � Γ � � :

�
� : � � � � Γ � let � be � � :

� � � in � :
� (

�
: left)

� : � � Γ � � :
�

� : � � � � Γ � let � be � ��� : � � in � :
� (

�
: left)

It is then natural to write the normalization rules as

let � � � ��� be � � :
� � � in � � � � [�

� �] �
let � � � � � be � ��� : � � in � � � � [�

� �]
�

We note that in the second case, the reduction is lazy, in the sense that it is unnecessary to
normalize � (or �) since it is discarded. In the first case, the reduction is generally eager
since both � and � will have to be normalized, unless � or � do not appear in � . Such
aspects of lazy or eager evaluation become even more obvious in linear logic, as stressed by
Abramsky [1].

11 Cut Elimination in ��
 (and �	�)

The cut elimination theorem also applies to 	�
 and 	 �
. Historically, this is the version

of the cut elimination theorem proved by Gentzen [3] (1935). Gentzen’s proof was later
simplified by Tait [18] and Girard [8] (especially the induction measure). The proof given
here combines ideas from Tait and Girard. The induction measure used is due to Tait [18] (the
cut-rank), but the explicit transformations are adapted from Girard [8], [4]. We need to define
the cut-rank of a formula and the logical depth of a proof.

Definition 25 The degree
� � �

of a formula
�

is the number of logical connectives in
�

. Let
�

be an 	�
 -proof. The cut-rank � (
�

) of
�

is defined inductively as follows. If
�

is an axiom, then
� (

�
) = 0. If

�
is not an axiom, the last inference has either one or two premises. In the first

case, the premise of that inference is the root of a subtree
�

1. In the second case, the left premise
is the root of a subtree

�
1, and the right premise is the root of a subtree

�
2. If the last inference

is not a cut, then if it has a single premise, � (
�

) = � (
�

1), else � (
�

) = ��� (� (
�

1) � � (
�

2)). If the
last inference is a cut with cut formula

�
, then � (

�
) = � � (

� � � �
+ 1 � � (

�
1) � � (

�
2) �). We also

define the logical depth of a proof tree
�

, denoted as � (
�

), inductively as follows: � (
�

) = 0,
when

�
is an axiom. If the root of

�
is a single-premise rule, then if the lowest rule is

structural, � (
�

) = � (
�

1), else � (
�

) = � (
�

1) + 1. If the root of
�

is a two-premise rule, then
� (

�
) = � � (� (

�
1) � � (

�
2)) + 1.

Research Report No. 8 May 1991

48 Jean Gallier

Thus, for an atomic formula,
� � �

= 0. Note that � (
�

) = 0 iff
�

is cut free, and that if
�

contains cuts, then � (
�

) is 1 + the maximum of the degrees of cut formulae in
�

. We also need
the definition of the function � ��� (� � � �).

� ��� (� 0 � �) = � ;
� ��� (� � + 1 � �) = ���� � (� � �) �

This function grows extremely fast in the argument � . Indeed, � ��� (� 1 � �) = � ,� ��� (� 2 � �) = ��� , and in general, � �	� (� � � �) is an iterated stack of exponentials of height
� , topped with a � :

� �	� (� � � �) = ��
� �
�
 ��� �

The main idea is to move the cuts “upward”, until one of the two premises involved is an
axiom. In attempting to design transformations for converting an 	�
 -proof into a cut-free
	�
 -proof, we have to deal with the case in which the cut formula

�
is contracted in some

premise. A transformation to handle this case is given below.

�
1

Γ � ∆ � � � �

Γ � ∆ � �
�

2� � Λ � Θ

Γ � Λ � ∆ � Θ
=�

�
1

Γ � ∆ � � � �
�

2� � Λ � Θ
Γ � Λ � ∆ � Θ � �

�
2� � Λ � Θ

Γ � Λ � Λ � ∆ � Θ � Θ
Γ � Λ � ∆ � Θ

The symmetric rule in which a contraction takes place in the right subtree is not shown.
However, there is a problem with this transformation. The problem is that it yields infinite
reduction sequences. Consider the following two transformation steps:

�
1

Γ � ∆ � � � �
Γ � ∆ � �

�
2� � � � Λ � Θ� � Λ � Θ

(cut)
Γ � Λ � ∆ � Θ

=�

May 1991 Digital PRL

Constructive Logics. Part I: A Tutorial on Proof Systems and Typed
�
-Calculi 49

�
1

Γ � ∆ � � � �
�

2� � � � Λ � Θ� � Λ � Θ
Γ � Λ � ∆ � Θ � �

�
2� � � � Λ � Θ� � Λ � Θ

Γ � Λ � Λ � ∆ � Θ � Θ
Γ � Λ � ∆ � Θ

=�

�
1

Γ � ∆ � � � �
�

1

Γ � ∆ � � � �
�

2� � � � Λ � Θ� � Γ � Λ � ∆ � Θ � �
Γ � Γ � Λ � ∆ � ∆ � Θ � � � �

Γ � Λ � ∆ � Θ � � � �
Γ � Λ � ∆ � Θ � �

�
2� � � � Λ � Θ� � Λ � Θ

Γ � Λ � Λ � ∆ � Θ � Θ
Γ � Λ � ∆ � Θ

The pattern with contractions on the left and on the right is repeated.

One solution is to consider a more powerful kind of cut rule. In the sequel, the multiset
Γ � � � denotes the multiset consisting of all occurrences of � �= � in Γ and of + � occurrences
of
�

where is the number of occurrences of
�

in Γ.

Definition 26 (Extended cut rule)

Γ � ∆ � � � � � Λ � Θ
Γ � Λ � ∆ � Θ

where � � �
0.

This rule coincides with the standard cut rule when = � = 1, and it is immediately verified
that it can be simulated by an application of the standard cut rule and some applications of
the contraction rules. Thus, the system 	�
 + obtained from 	�
 by replacing the cut rule by
the extended cut rule is equivalent to 	�
 . From now on, we will be working with 	�
 +. The
problem with contraction is then resolved, since we have the following transformation:

�
1

Γ � ∆ � (� 1)
� � � � �

Γ � ∆ � �
�

2
� � � Λ � Θ

Γ � Λ � ∆ � Θ

Research Report No. 8 May 1991

50 Jean Gallier

=��
1

Γ � ∆ � (+ 1)
�

�
2

� � � Λ � Θ

Γ � Λ � ∆ � Θ

We now prove the main lemma, for which a set of transformations will be needed.

Lemma 8 (Reduction Lemma, Tait, Girard) Let Π1 be an 	�
 +-proof of Γ � ∆ � � , and
Π2 an 	�
 +-proof of � � � Λ � Θ, where � � � 0, and assume that � (Π1) � � (Π2)
 � � � .
An 	�
 +-proof Π of Γ � Λ � ∆ � Θ can be constructed, such that � (Π)
 � � � . We also have

� (Π)
 2(� (Π1) + � (Π2)), and if the rules for
�

are omitted, then � (Π)
 � (Π1) + � (Π2).

Proof . It proceeds by induction on � (Π1) + � (Π2), where Π1 and Π2 are the immediate
subtrees of the proof tree

Π1

Γ � ∆ � �
Π2

� � � Λ � Θ

Γ � Λ � ∆ � Θ

There are several (non-mutually exclusive) cases depending on the structure of the immediate
subtrees Π1 and Π2.

(1) The root of Π1 and the root of Π2 is the conclusion of some logical inference having
some occurrence of the cut formula

�
as principal formula. We say that

�
is active.

Every transformation comes in two versions. The first version corresponds to the case of an
application of the standard cut rule. The other version, called the “cross-cuts” version, applies
when the extended cut rule is involved.

(i) (
�

: right) and (
�

: left)

�
1

Γ � ∆ � �
�

2

Γ � ∆ � �
Γ � ∆ � � � �

�
3

� � Λ � Θ
� � � � Λ � Θ

Γ � Λ � ∆ � Θ
=��

1

Γ � ∆ � �
�

3

� � Λ � Θ

Γ � Λ � ∆ � Θ

By the hypothesis � (Π1) � � (Π2)
 � � � , and it is clear that for the new proof Π we have
� (Π)
 � � � , since � (Π) = � � (

� � � � + 1 � � (� 1) � � (� 3) �),
� � � + 1
 � � � (since

�
= � � �),

May 1991 Digital PRL

Constructive Logics. Part I: A Tutorial on Proof Systems and Typed
�
-Calculi 51

� (� 1)
 � (Π1), � (� 2)
 � (Π1), and � (� 3)
 � (Π2). It is also easy to establish the upper bound
on � (Π).

Cross-cuts version. Some obvious simplifications apply when either = 0 or � = 0, and
we only show the main case where � � �

0. Let
�

= � � � .

�
1

Γ � ∆ � � � �
�

2

Γ � ∆ � � � �
Γ � ∆ � (+ 1)

�

�
3

� � � � � Λ � Θ

(� + 1)
� � Λ � Θ

Γ � Λ � ∆ � Θ

Let Π
�

1 be the proof tree obtained by applying the induction hypothesis to

�
1

Γ � ∆ � � � �

�
3

� � � � � Λ � Θ
(� + 1)

� � Λ � Θ

Γ � Λ � ∆ � Θ � �

and Π
�

2 the proof tree obtained by applying the induction hypothesis to
�

1

Γ � ∆ � � � �
�

2

Γ � ∆ � � � �
Γ � ∆ � (+ 1)

�
�

3

� � � � � Λ � Θ

� � Γ � Λ � ∆ � Θ

and finally let Π be

Π
�

1

Γ � Λ � ∆ � Θ � �
Π

�

2

� � Γ � Λ � ∆ � Θ
Γ � Γ � Λ � Λ � ∆ � ∆ � Θ � Θ

Γ � Λ � ∆ � Θ

Since � (� 1)
 � (Π1), � (� 2)
 � (Π1), and � (� 3)
 � (Π2), by the induction hypothesis,
� (Π

�

1) � � (Π
�

2)
 � � � , and it is clear that for the new proof Π we have � (Π)
 � � � , since
� (Π) = ��� (

� � � � + 1 � � (Π
�

1) � � (Π
�

2) �), and
� � � + 1
 � � � (since

�
= � � �). It is also easy to

establish the upper bound on � (Π).

(ii) (
�

: right) and (
�

: left)

�
1

Γ � ∆ � �
Γ � ∆ � � � �

�
2

� � Λ � Θ

�
3� � Λ � Θ

� � � � Λ � Θ

Γ � Λ � ∆ � Θ

Research Report No. 8 May 1991

52 Jean Gallier

=��
1

Γ � ∆ � �
�

2

� � Λ � Θ

Γ � Λ � ∆ � Θ

By the hypothesis � (Π1) � � (Π2)
 � � �
, it is clear that for the new proof Π we have

� (Π)
 � � � , since � (Π) = � � (
� � � � + 1 � � (� 1) � � (� 2) �),

� � � + 1
 � � � (since
�

= � � �),
� (� 1)
 � (Π1), � (� 2)
 � (Π2), and � (� 3)
 � (Π2). It is also easy to establish the upper bound
on � (Π).

Cross-cuts version: Similar to (i) (Some obvious simplifications apply when either = 0
or � = 0).

(iii) (
�

: right) and (
�

: left)

Left as an exercise.

(iv) (¬: right) and (¬: left)

�
1� � Γ � ∆

Γ � ∆ � ¬ �

�
2

Λ � Θ � �

¬
� � Λ � Θ

Γ � Λ � ∆ � Θ
=��

2

Λ � Θ � �
�

1� � Γ � ∆

Γ � Λ � ∆ � Θ

By the hypothesis � (Π1) � � (Π2)
 �¬ � � , it is clear that for the new proof Π we have
� (Π)
 �¬ � � , since � (Π) = � � (

� � � �
+ 1 � � (� 1) � � (� 2) �), � (� 1)
 � (Π1), � (� 2)
 � (Π2). It is

also easy to establish the upper bound on � (Π).

Cross-cuts version (Some obvious simplifications apply when either = 0 or � = 0).

�
1� � Γ � ∆ � (¬

�
)

Γ � ∆ � (+ 1)(¬
�

)

�
2

� (¬
�

) � Λ � Θ � �

(� + 1)(¬
�

) � Λ � Θ
Γ � Λ � ∆ � Θ

Let Π
�

1 be the proof tree obtained by applying the induction hypothesis to

May 1991 Digital PRL

Constructive Logics. Part I: A Tutorial on Proof Systems and Typed
�
-Calculi 53

�
1� � Γ � ∆ � (¬

�
)

Γ � ∆ � (+ 1)(¬
�

)

�
2

� (¬
�

) � Λ � Θ � �

Γ � Λ � ∆ � Θ � �

and Π
�

2 the proof tree obtained by applying the induction hypothesis to

�
1� � Γ � ∆ � (¬

�
)

�
2

� (¬
�

) � Λ � Θ � �

(� + 1)(¬
�

) � Λ � Θ� � Γ � Λ � ∆ � Θ

and finally let Π be

Π
�

1

Γ � Λ � ∆ � Θ � �
Π

�

2� � Γ � Λ � ∆ � Θ
Γ � Γ � Λ � Λ � ∆ � ∆ � Θ � Θ

Γ � Λ � ∆ � Θ

Since � (� 1)
 � (Π1), � (� 2)
 � (Π2), by the induction hypothesis � (Π
�

1) � � (Π
�

2)
 �¬ � � ,
and it is clear that for the new proof Π we have � (Π)
 �¬ � � , since � (Π) = ��� (

� � � �
+

1 � � (Π
�

1) � � (Π
�

2) �). It is also easy to establish the upper bound on � (Π).

(v) (∀: right) and (∀: left)

�
1

Γ � ∆ � � [� � �]

Γ � ∆ � ∀ � �

�
2

� [
� � �] � Λ � Θ

∀ � � � Λ � Θ
Γ � Λ � ∆ � Θ

=�

�
1[
� � �]

Γ � ∆ � � [
� � �]

�
2

� [
� � �] � Λ � Θ

Γ � Λ � ∆ � Θ

In the above, it may be necessary to rename � so that it is distinct from all eigenvariables and
distinct from all variables in

�
.

By the hypothesis � (Π1) � � (Π2)
 �∀ � � � , it is clear that for the new proof Π we have
� (Π)
 �

∀ � � � , since � (Π) = ��� (
� � � [

� � �]
�

+ 1 � � (� 1[
� � �]) � � (� 2) �), � (� 1[

� � �]) = � (� 1),
� (� 1)
 � (Π1), and � (� 2)
 � (Π2). It is also easy to establish the upper bound on � (Π).

Research Report No. 8 May 1991

54 Jean Gallier

Cross-cuts version (Some obvious simplifications apply when either = 0 or � = 0).

�
1

Γ � ∆ � (∀ � �) � � [� � �]

Γ � ∆ � (+ 1)(∀ � �)

�
2

� [
� � �] � � (∀ � �) � Λ � Θ

(� + 1)(∀ � �) � Λ � Θ
Γ � Λ � ∆ � Θ

Let Π
�

1 be the proof tree obtained by applying the induction hypothesis to

�
1

Γ � ∆ � (∀ � �) � � [� � �]

�
2

� [
� � �] � � (∀ � �) � Λ � Θ

(� + 1)(∀ � �) � Λ � Θ

Γ � Λ � ∆ � Θ � � [� � �]

and Π
�

2 the proof tree obtained by applying the induction hypothesis to
�

1

Γ � ∆ � (∀ � �) � � [� � �]

Γ � ∆ � (+ 1)(∀ � �)

�
2

� [
� � �] � � (∀ � �) � Λ � Θ

� [
� � �] � Γ � Λ � ∆ � Θ

and finally let Π be

Π
�

1[
� � �]

Γ � Λ � ∆ � Θ � � [
� � �]

Π
�

2

� [
� � �] � Γ � Λ � ∆ � Θ

Γ � Γ � Λ � Λ � ∆ � ∆ � Θ � Θ
Γ � Λ � ∆ � Θ

In the above, it may be necessary to rename � so that it is distinct from all eigenvariables and
distinct from all variables in

�
.

Since � (� 1)
 � (Π1), and � (� 2)
 � (Π2), by the induction hypothesis, � (Π
�

1) � � (Π
�

2)
 �∀ � � � ,
and it is clear that for the new proof Π we have � (Π)
 �∀ � � � , since � (Π) = ��� (

� � � [
� � �]

�
+

1 � � (Π
�

1[
� � �]) � � (Π

�

2) �) and � (Π
�

1[
� � �]) = � (Π

�

1). It is also easy to establish the upper bound on
� (Π).

(vi) (∃: right) and (∃: left)

�
1

Γ � ∆ � � [
� � �]

Γ � ∆ � ∃ � �

�
2

� [� � �] � Λ � Θ

∃ � � � Λ � Θ

Γ � Λ � ∆ � Θ

May 1991 Digital PRL

Constructive Logics. Part I: A Tutorial on Proof Systems and Typed
�
-Calculi 55

=�

�
1

Γ � ∆ � � [
� � �]

�
2[
� � �]

� [
� � �] � Λ � Θ

Γ � Λ � ∆ � Θ

In the above, it may be necessary to rename � so that it is distinct from all eigenvariables and
distinct from all variables in

�
.

By the hypothesis, � (Π1) � � (Π2)
 � ∃ � � � , and it is clear that for the new proof Π we
have � (Π)
 � ∃ � � � , since � (Π) = ��� (

� � � [
� � �]

�
+ 1 � � (� 1) � � (� 2[

� � �]) �), � (� 2[
� � �]) = � (� 2),

� (� 1)
 � (Π1), and � (� 2)
 � (Π2). It is also easy to establish the upper bound on � (Π).

Cross-cuts version (Some obvious simplifications apply when either = 0 or � = 0).
Similar to (v) and left as an exercise.

(2) Either the root of Π1 or the root of Π2 is the conclusion of some logical rule, the cut rule,
or some structural rule having some occurrence of a formula

� �= � as principal formula. We
say that

�
is passive.

We only show the transformations corresponding to the case where
�

is passive on the
left, the case in which it is passive on the right being symmetric. For this case (where

�
is

passive on the left), we only show the transformation where the last inference applied to the
left subtree is a right-rule, the others being symmetric.

(i) (
�

: right)

�
1

Γ � ∆ � � � �
Γ � ∆ � � � � � �

�
2

� � � Λ � Θ

Γ � Λ � ∆ � Θ � � � �
=��

1

Γ � ∆ � � � �
�

2
� � � Λ � Θ

Γ � Λ � ∆ � Θ � �
Γ � Λ � ∆ � Θ � � � �

Note that � (� 1)
 � (Π1) and � (� 2)
 � (Π2). We conclude by applying the induction
hypothesis to the subtree rooted with Γ � Λ � ∆ � Θ � � . It is also easy to establish the upper
bound on � (Π).

(ii) (
�

: right)

Research Report No. 8 May 1991

56 Jean Gallier

�
1

Γ � ∆ � � � �
�

2

Γ � ∆ � � � �
Γ � ∆ � � � � � �

�
3

� � � Λ � Θ

Γ � Λ � ∆ � Θ � � � �
=��

1

Γ � ∆ � � � �
�

3
� � � Λ � Θ

Γ � Λ � ∆ � Θ � �

�
2

Γ � ∆ � � � �
�

3
� � � Λ � Θ

Γ � Λ � ∆ � Θ � �
Γ � Λ � ∆ � Θ � � � �

Note that � (� 1)
 � (Π1), � (� 2)
 � (Π1), and � (� 3)
 � (Π2). We conclude by applying the
induction hypothesis to the subtrees rooted with Γ � Λ � ∆ � Θ � � and Γ � Λ � ∆ � Θ � � . It is also
easy to establish the upper bound on � (Π).

(iii) (
�

: right)

Left as an exercise.

(iv) (¬: right)

�
1

� � Γ � ∆ � �

Γ � ∆ � � � ¬ �
�

2
� � � Λ � Θ

Γ � Λ � ∆ � Θ � ¬ �
=��

1

� � Γ � ∆ � �
�

2
� � � Λ � Θ

� � Γ � Λ � ∆ � Θ
Γ � Λ � ∆ � Θ � ¬ �

Note that � (� 1)
 � (Π1), and � (� 2)
 � (Π2). We conclude by applying the induction
hypothesis to the subtree rooted with � � Γ � Λ � ∆ � Θ. It is also easy to establish the upper
bound on � (Π).

(v) (∀: right)

�
1

Γ � ∆ � � � � [� � �]

Γ � ∆ � � � ∀ � �
�

2
� � � Λ � Θ

Γ � Λ � ∆ � Θ � ∀ � �

May 1991 Digital PRL

Constructive Logics. Part I: A Tutorial on Proof Systems and Typed
�
-Calculi 57

=�

�
1[� � �]

Γ � ∆ � � � � [� � �]

�
2

� � � Λ � Θ

Γ � Λ � ∆ � Θ � � [� � �]

Γ � Λ � ∆ � Θ � ∀ � �

In the above, some renaming may be necessary to ensure the eigenvariable condition.

Note that � (� 1[� � �]) = � (� 1), � (� 1)
 � (Π1), and � (� 2)
 � (Π2). We conclude by applying
the induction hypothesis to the subtree rooted with Γ � Λ � ∆ � Θ � � [� � �]. It is also easy to
establish the upper bound on � (Π).

(vi) (∃: right)

�
1

Γ � ∆ � � � � [
� � �]

Γ � ∆ � � � ∃ � �
�

2
� � � Λ � Θ

Γ � Λ � ∆ � Θ
=��

1

Γ � ∆ � � � � [
� � �]

�
2

� � � Λ � Θ

Γ � Λ � ∆ � Θ � � [
� � �]

Γ � Λ � ∆ � Θ � ∃ � �

Note that � (� 1)
 � (Π1), and � (� 2)
 � (Π2). We conclude by applying the induction
hypothesis to the subtree rooted with Γ � Λ � ∆ � Θ � � [

� � �]. It is also easy to establish the upper
bound on � (Π).

(vii) (cut)

�
1

Γ1 � ∆1 � 1
� � � �

�
2

� � � Λ1 � Θ1 � 2
�

Γ � ∆ � �
�

3
� � � Λ � Θ

Γ � Λ � ∆ � Θ

where in the above proof � , 1 + 2 = , Γ = Γ1 � Λ1, and ∆ = ∆1 � Θ1. Since by the
hypothesis, � (Π1) � � (Π2)
 � � � , and � (Π1) = ��� (

� � � � + 1 � � (� 1) � � (� 2) �), we must have� � �
 � � � , � (� 1)
 � � � , � (� 2)
 � � � , and � (� 3)
 � � � . Thus in particular, � �= � . We show
the transformation in the case where 1

� 0 and 2
� 0, the cases where either 1 = 0 or

 2 = 0 being special cases.

Research Report No. 8 May 1991

58 Jean Gallier

Let Π
�

1 be the result of applying the induction hypothesis to

�
1

Γ1 � ∆1 � � � � 1
�

�
3

� � � Λ � Θ
Γ1 � Λ � ∆1 � Θ � � �

let Π
�

2 be the result of applying the induction hypothesis to

�
2

� � � Λ1 � Θ1 � 2
�

�
3

� � � Λ � Θ
� � � Λ1 � Λ � Θ1 � Θ

and let Π be the proof

Π
�

1

Γ1 � Λ � ∆1 � Θ � � �
Π

�

2
� � � Λ1 � Λ � Θ1 � Θ

Γ � Γ � Λ � ∆ � ∆ � Θ
Γ � Λ � ∆ � Θ

Since by the induction hypothesis, � (Π
�

1) � � (Π
�

2)
 � � � , and since
� � �
 � � �

, we have
� (Π)
 � � � . It is also easy to establish the upper bound on � (Π).

(viii) (contrac: right)

�
1

Γ � ∆ � � � � � �

Γ � ∆ � � � �
�

2
� � � Λ � Θ

Γ � Λ � ∆ � Θ � �
=�

�
1

Γ � ∆ � � � � � �
�

2
� � � Λ � Θ

Γ � Λ � ∆ � Θ � � � �
Γ � Λ � ∆ � Θ � �

Note that � (� 1)
 � (Π1), and � (� 2)
 � (Π2). We conclude by applying the induction
hypothesis to the subtree rooted with Γ � Λ � ∆ � Θ � � � � . It is also easy to establish the upper
bound on � (Π).

(ix) (weakening: right)

May 1991 Digital PRL

Constructive Logics. Part I: A Tutorial on Proof Systems and Typed
�
-Calculi 59

�
1

Γ � ∆ � �

Γ � ∆ � � � �
�

2
� � � Λ � Θ

Γ � Λ � ∆ � Θ � �
=��

1

Γ � ∆ � �
�

2
� � � Λ � Θ

Γ � Λ � ∆ � Θ
Γ � Λ � ∆ � Θ � �

Note that � (� 1)
 � (Π1), and � (� 2)
 � (Π2). We conclude by applying the induction
hypothesis to the subtrees rooted with Γ � Λ � ∆ � Θ. It is also easy to establish the upper bound
on � (Π).

(3) Either Π1 or Π2 is an axiom. We consider the case in which the left subtree is an axiom,
the other case being symmetric. If

�
∉ Θ, then

� � �
�

2
� � � Λ � Θ

� � Λ � Θ

=��
2

� � � Λ � Θ
� � Λ � Θ

else

� � �
�

2
� � � Λ � Θ � �� � Λ � Θ � �

=�� � �
� � Λ � Θ � �

Note that � (� 2)
 � (Π2). In the first case, since by hypothesis � (Π1) � � (Π2)
 � � � , it is clear
that � (Π)
 � � � . The second case is obvious.

(4) Either the root of Π1 or the root of Π2 is the conclusion of some thinning or contraction
resulting in an occurrence of the cut formula

�
. We consider the case in which this happens in

the succedent of the left subtree, the other case being symmetric.

Research Report No. 8 May 1991

60 Jean Gallier

(i) (weakening: right)

�
1

Γ � ∆
Γ � ∆ � �

�
2� � Λ � Θ

Γ � Λ � ∆ � Θ
=��

1

Γ � ∆

Γ � Λ � ∆ � Θ

and when � � �
0,

�
1

Γ � ∆ � �

Γ � ∆ � (+ 1)
�

�
2

� � � Λ � Θ

Γ � Λ � ∆ � Θ
=��

1

Γ � ∆ � �
�

2
� � � Λ � Θ

Γ � Λ � ∆ � Θ

Since by the hypothesis we have � (Π1) � � (Π2)
 � � � , it is clear that � (Π)
 � � � in the first
case. In the second case, since � (� 1)
 � (Π1) and � (� 2)
 � (Π2), we conclude by applying the
induction hypothesis.

(ii) (contrac: right)

�
1

Γ � ∆ � (� 1)
� � � � �

Γ � ∆ � �
�

2
� � � Λ � Θ

Γ � Λ � ∆ � Θ
=��

1

Γ � ∆ � (+ 1)
�

�
2

� � � Λ � Θ

Γ � Λ � ∆ � Θ

Since by the hypothesis we have � (Π1) � � (Π2)
 � � � , and we have � (� 1)
 � (Π1) and
� (� 2)
 � (Π2), we conclude by applying the induction hypothesis.

May 1991 Digital PRL

Constructive Logics. Part I: A Tutorial on Proof Systems and Typed
�
-Calculi 61

The symmetric rule in which a contraction takes place in the right subtree is not shown.

We can now prove the following major result (essentially due to Tait [18], 1968), showing
not only that every proof can be transformed into a cut-free proof, but also giving an upper
bound on the size of the resulting cut-free proof.

Theorem 7 Let
�

be a proof with cut-rank � (
�

) of a sequent Γ � ∆. A cut-free proof
� �

for
Γ � ∆ can be constructed such that � (

� �

)
 � �	� (4 � � (
�

) � � (
�

)).

Proof . We prove the following claim by induction on the depth of proof trees.

Claim: Let
�

be a proof with cut-rank � (
�

) for a sequent Γ � ∆. If � (
�

) � 0 then we can
construct a proof

� �

for Γ � ∆ such that

� (
� �

)
 � (
�

) and � (
� �

)
 4
�

(�) �

Proof of Claim: If either the last inference of
�

is not a cut, or it is a cut and � (
�

) � � � �
+ 1,

we apply the induction hypothesis to the immediate subtrees
�

1 or
�

2 (or
�

1) of
�

. We are left
with the case in which the last inference is a cut and � (

�
) =
� � �

+ 1. The proof is of the form

�
1

Γ � ∆ � �
�

2
� � � Γ � ∆

Γ � ∆

By the induction hypothesis, we can construct a proof
� �

1 for Γ � ∆ � � and a proof
� �

2
for � � � Γ � ∆, such that � (

� ��)
 � � � and � (
� ��)
 4

�
(���), for 	 = 1 � 2. Applying the reduction

lemma (Lemma 8), we obtain a proof
� �

such that, � (
� �

)
 � � � and � (
� �

)
 2(� (
� �

1) + � (
� �

2)).
But

2(� (
� �

1) + � (
� �

2))
 2(4
�

(� 1) + 4
�

(� 2))
 4
��� � (

�
(� 1)

�
(� 2))+1 = 4

�
(�) �

The proof of Theorem 7 follows by induction on � (
�

), and by the definition of � ��� (4 � � �).

It is easily verified that the above argument also goes through for the system 	 �
. Thus, we

obtain Gentzen’s original cut elimination theorem.

Theorem 8 (Cut Elimination Theorem, Gentzen (1935)) There is an algorithm which,
given any proof Π in 	�
 produces a cut-free proof Π

�

in 	�
 . There is an algorithm which,
given any proof Π in 	 �

produces a cut-free proof Π
�

in 	 �
.

Research Report No. 8 May 1991

62 Jean Gallier

A few more remarks about the role of contraction and weakening will be useful before
moving on to linear logic. We already noticed with the cut rule that contexts (the Γ, ∆ occurring
in the premise(s) of inference rules) can be treated in two different ways: (1) either they are
merged (which implies that they are identical), or (2) they are concatenated.

In order to search for proof backwards, it is more convenient to treat contexts in mode (1),
but this hides some subtleties. For example, the (

�
: right) rule can be written either as

Γ � ∆ � � Γ � ∆ � �
Γ � ∆ � � � �

where the contexts are merged, or as

Γ � ∆ � � Λ � Θ � �
Γ � Λ � ∆ � Θ � � � �

where the contexts are just concatenated but not merged. Following Girard, let’s call the first
version additive, and the second version multiplicative. Under contraction and weakening,
the two versions are equivalent: the first rule can be simulated by the second rule using
contractions:

Γ � ∆ � � Γ � ∆ � �
Γ � Γ � ∆ � ∆ � � � �

Γ � ∆ � � � �

and the second rule can be simulated by the first rule using weakenings:

Γ � ∆ � �

Γ � Λ � ∆ � Θ � �
Λ � Θ � �

Γ � Λ � ∆ � Θ � �
Γ � Λ � ∆ � Θ � � � �

Similarly, the (
�

: left) rules can be written either as

� � Γ � ∆� � � � Γ � ∆
� � Γ � ∆� � � � Γ � ∆

or as � � � � Γ � ∆� � � � Γ � ∆

Again, let’s call the first version additive, and the second version multiplicative. These
versions are equivalent under contraction and weakening. The first version can be simulated
by the second rule using weakening:

May 1991 Digital PRL

Constructive Logics. Part I: A Tutorial on Proof Systems and Typed
�
-Calculi 63

� � Γ � ∆
(weakening: left)� � � � Γ � ∆

� � � � Γ � ∆

and the second version can be simulated by the first rule and contraction:

� � � � Γ � ∆
� � � � � � Γ � ∆� � � � � � � � Γ � ∆

(contrac: left)� � � � Γ � ∆

If we take away contraction and weakening, the additive and multiplicative versions are no
longer equivalent. This suggests, and this path was followed by Girard, to split the connectives
�

and
�

into two versions: the multiplicative version of
�

and
�

, denoted as
�

and ℘, and
the additive version of

�
and
�

, denoted as & and � . In linear logic, due to Girard [7],
the connectives

�
and
�

are split into multiplicative and additive versions, contraction and
weakening are dropped, negation denoted

� � is involutive, and in order to regain the loss of
expressiveness due to the absence of contraction and weakening, some new connectives (the
exponentials ! and ?) are introduced. The main role of these connectives is to have better
control over contraction and weakening. Thus, at the heart of linear logic lies the notion that
resources are taken into account.

12 Reductions of Classical to Intuitionistic Logic

Although there exist formulae that are provable classically but not intuitionistically, there
are several ways of embedding classical logic into intuitionistic logic. More specifically, there
are functions

�

from formulae to formulae such that for every formula
�

, its translation
� �

is
equivalent to

�
classically, and

�
is provable classically iff

� �

is provable intuitionistically.
Stronger results can be obtained in the propositional case. Since ¬¬

� � �
is provable

classically but not intuitionistically, whereas
� �

¬¬
�

is provable both classically and
intuitionistically, we can expect that double-negation will play a crucial role, and this is indeed
the case. One of the crucial properties is that triple negation is equivalent to a single negation.
This is easily shown as follows:

� � �� � ¬ � �� � ¬¬
�

� � ¬¬¬
� �

¬¬¬
� � ¬

�

Research Report No. 8 May 1991

64 Jean Gallier

Since we also have the following proof

¬
� � ¬

�
¬
� � ¬¬

� �
¬
� � ¬¬¬

�

it is clear that ¬¬¬
�

≡ ¬
�

is provable intuitionistically.

The possibility of embedding classical logic into intuitionistic logic is due to four crucial
facts:

(1) ¬¬¬
�

≡ ¬
�

is provable intuitionistically;

(2) If a formula
�

is provable classically without using the (∀: right)-rule, then ¬¬
�

is
provable intuitionistically;

(3) For a class of formulae for which ¬¬
� � � is provable intuitionistically, (2) holds

unrestricted. This means that if a formula
�

in this class is provable classically then ¬¬
�

is provable intuitionistically;

(4) For every formula
�

built only from
� � � � ¬ and ∀, if ∆ = ¬¬ � 1

� �
1 � . . . � ¬¬ � � � � �

where � 1 � . . . � � � are all the atoms occurring in
�

, then ∆ � ¬¬
� � � is provable

intuitionistically.

The “trick” of the double-negation translation (often attributed to Gödel (1933), although
it was introduced independently by Kolmogorov (1925) and Gentzen (1933)) is that if we
consider a formula

�
only built from

� � � � ¬ � ∀, and replace every atomic subformula � by
¬¬ � obtaining

���
, we get a subclass of formulae for which (4) holds without the ∆, and thus

(3) also holds. For this class,
�

is provable classically iff
� �

is provable intuitionistically.

Our first result will concern propositions. Given Γ =
�

1 � . . . � � � , we let ¬¬Γ =
¬¬
�

1 � . . . � ¬¬
� � .

Lemma 9 Given a sequent Γ ��� 1 � . . . � � � of propositions, if Γ ��� 1 � . . . � � � is provable in
� �� �� ��¬� , then ¬¬Γ � ¬(¬ � 1

�
. . .
� ¬ � �) is provable in � �� �� ��¬� .

Proof. We proceed by induction on proofs. In fact, it is easier to work in � �� �� ��¬ ������
and use cut elimination. It is necessary to prove that a number of propositions are provable
intuitionistically. First, observe that if

�
1 � . . . � � � � � is provable in � �� �� ��¬ ������ , then

¬¬
�

1 � . . . � ¬¬
� � � ¬¬ � is also provable in � �� �� ��¬ ������ . The following sequents are

provable in � �� �� ��¬ ������ :

¬¬
� � ¬(¬

� � �
) �

May 1991 Digital PRL

Constructive Logics. Part I: A Tutorial on Proof Systems and Typed
�
-Calculi 65

¬(¬
� � �

) � ¬(¬ � � �) � ¬(¬(
� � �)

� �
) �

¬¬
� � ¬¬ � � ¬¬(

� � �) �
¬(¬

� � ¬ � � �) � ¬(¬(
��� �)

� �
) �

¬¬
� �

¬¬ � � ¬¬(
� � �) �

(¬¬
���

¬(¬ � � �)) � ¬(¬(
� � �)

� �
) �

¬¬(
� � �) � ¬(¬

� � �
) � (¬¬ � � ¬

�
) � ¬

� �
(¬¬

���
¬
�

) � ¬(¬¬
� � �

) �
¬(¬

� � �
) � ¬¬¬

� � ¬
� �

¬(¬
� � ¬

� � �
) � ¬(¬

� � �
)
�

We now consider the axioms and each inference rule. Given ∆ = � 1 � . . . � � � , we let
�

= ¬ � 1
�

. . .
� ¬ � � . This way, observe that ¬(¬

� � ¬ � 1
�

. . .
� ¬ � �) = ¬(¬

� � �
).

An axiom Γ � � � � � ∆ becomes ¬¬Γ � ¬¬
� � ¬(¬

� � �
), which is provable in � � �� ��¬ ������

since ¬¬
� � ¬(¬

� � �
) is. Let us also consider the case of the (

�
: right)-rule, leaving the

others as exercises.
Γ � � � � � ∆

Γ � � � � � ∆
By the induction hypothesis, ¬¬Γ � ¬¬

� � ¬(¬ � � �) is provable in � �� �� ��¬ ������ , and so is

¬¬Γ � (¬¬
� �

¬(¬ � � �))
�

Since
(¬¬

� �
¬(¬ � � �)) � ¬(¬(

��� �)
� �

)

is also provable in � � �� ��¬ ������ , by a cut, we obtain that

¬¬Γ � ¬(¬(
� � �)

� �
)

is provable in � � �� ��¬ ������ , as desired.

Since ¬¬¬
�

≡ ¬
�

is provable intuitionistically, we obtain the following lemma known
as Glivenko’s Lemma.

Lemma 10 (Glivenko, 1929) Given a sequent ¬Γ � ∆ � ¬ � 1 � . . . � ¬ � � made of propositions,
if ¬Γ � ∆ � ¬ � 1 � . . . � ¬ � � is provable in � �� �� �� ¬� , then ¬Γ � ¬¬∆ � ¬(� 1

�
. . .
� � �) is

provable in � � �� ��¬� . In particular, if ¬Γ � ¬ � is a propositional sequent provable in
� � �� ��¬� , then it is also provable in � �� �� ��¬� .

Proof. By Lemma 9, using the fact that ¬¬¬
�

≡ ¬
�

is provable intuitionistically, and
that the sequent

¬(¬¬ � 1
�

. . .
� ¬¬ � �) � ¬(� 1

�
. . .
� � �)

is provable in � � �� ��¬� .

Research Report No. 8 May 1991

66 Jean Gallier

As a consequence of Lemma 9, if a proposition
�

is provable classically, then ¬¬
�

is
provable intuitionistically, and as a consequence of Lemma 10, if a proposition ¬

�
is provable

classically, then it is also provable intuitionistically. It should be noted that Lemma 9 fails
for quantified formulae. For example, ∀ � (� (�)

�
¬ � (�)) is provable classically, but we

can show that ¬¬∀ � (� (�)
�

¬ � (�)) is not provable intuitionistically, for instance using the
system of Lemma 6. Similarly, ∀ � ¬¬ � (�)

�
¬¬∀ � � (�) is provable classically, but it is

not provable intuitionistically, and neither is ¬¬(∀ � ¬¬ � (�)
�

¬¬∀ � � (�)). As observed by
Gödel, Lemma 10 has the following remarkable corollary.

Lemma 11 (Gödel, 1933) For every proposition
�

built only from
�

and ¬, if
�

is provable
classically, then

�
is also provable intuitionistically.

Proof. By induction on
�

. If
�

= ¬ � , then this follows by Glivenko’s Lemma. Otherwise,
it must be possible to write

�
= � 1

�
. . .
� � � where each � � is not a conjunct and where each

� � is provable classically. Thus, each � � must be of the form ¬
� � , since if � � is an atom it is

not provable. Again, each � � is provable intuitionistically by Glivenko’s Lemma, and thus so
is
�

.

Lemma 9 indicates that double-negation plays an important role in linking classical logic
to intuitionistic logic. The following lemma shows that double-negation distributes over the
connectives

�
and

�
.

Lemma 12 The following formulae are provable in � �� �� ��¬� :

¬¬(
� � �) ≡ ¬¬

� � ¬¬ � �
¬¬(

� � �) ≡ ¬¬
� �

¬¬ � �
Proof. We give a proof for

¬¬(
� � �) � ¬¬

� �
¬¬ � �

leaving the others as exercises.

� � ¬ � � �
� � � ���� � � � ¬ � �� � � � � � ¬ � �� � ¬ � � ¬(

� � �)
� � ¬¬(

� � �) � ¬ � �
¬¬(

� � �) � ¬ � � ¬
�

¬¬(
� � �) � ¬¬

� � ¬ � �
¬¬(

� � �) � ¬¬
� � ¬¬ �

¬¬(
� � �) � ¬¬

���
¬¬ �

May 1991 Digital PRL

Constructive Logics. Part I: A Tutorial on Proof Systems and Typed
�
-Calculi 67

Lemma 12 fails for disjunctions. For example,

¬¬(� � ¬ �) � (¬¬ � � ¬¬¬ �)

is not provable in � �� �� �� ¬� , since ¬¬(� � ¬ �) is provable but (¬¬ � � ¬¬¬ �) is not provable
in � �� �� ��¬� (this is easily shown using the system �
	�). Lemma 12 also fails for the quantifiers.
For example, using the system of Lemma 6, we can show that ∀ � ¬¬ � (�)

�
¬¬∀ � � (�) and

¬¬∃ � � (�)
�

∃ � ¬¬ � (�) are not provable intuitionistically.

Even though Lemma 9 fails in general, in particular for universal formulae, Kleene has made
the remarkable observation that the culprit is precisely the (∀: right)-rule [11] (see Theorem
59, page 492). Indeed, the lemma still holds for arbitrary sequents Γ � � 1 � . . . � � � , provided
that their proofs in � � �� ��¬ ∀ ∃� do not use the rule (∀: right).

Lemma 13 Given a first-order sequent Γ � � 1 � . . . � � � , if Γ � � 1 � . . . � � � is provable in
� � �� ��¬ ∀ ∃� without using the rule (∀: right), then ¬¬Γ � ¬(¬ � 1

�
. . .
� ¬ � �) is provable

in � �� �� �� ¬ ∀ ∃� .

Proof. As in the proof of Lemma 9, we proceed by induction on proofs. It is necessary to
prove that the following sequents are provable in � �� �� ��¬ ∀ ∃� :

¬(¬
�

[
� � �]

� �
) � ¬(¬∃ � � � �) �

∀ � (¬¬
� �

¬
�

) � ¬¬∃ � � � ¬
� �

(¬¬
�

[
� � �]

�
¬
�

) � ¬¬∀ � � � ¬
� �

where � does not occur in
�

in the second sequent. Proofs for the above sequents follow:

�
[
� � �] � � � � [

� � �]
�

[
� � �] � � � ∃ � �

�
[
� � �] � ¬∃ � � � � �

¬∃ � � � � � ¬
�

[
� � �] ¬∃ � � � � � �

¬∃ � � � � � ¬
�

[
� � �]

� �

¬(¬
�

[
� � �]

� �
) � ¬∃ � � � � �

¬(¬
�

[
� � �]

� �
) � ¬∃ � � � � �

¬(¬
�

[
� � �]

� �
) � ¬(¬∃ � � � �)

Research Report No. 8 May 1991

68 Jean Gallier

� � � [� � �] � � [� � �]
� � � [� � �] � ¬ � [� � �] �
� � � [� � �] � ¬¬

�
[� � �]

� � � [� � �] � �

¬
� � � � � [� � �] �

¬¬
�

[� � �]
�

¬
� � � � � [� � �] �

∀ � (¬¬
� �

¬
�

) � � � � [� � �] �
∀ � (¬¬

���
¬
�

) � � � ∃ � � �
∀ � (¬¬

� �
¬
�

) � � � ¬∃ � �

∀ � (¬¬
� �

¬
�

) � ¬¬∃ � � � � �
∀ � (¬¬

���
¬
�

) � ¬¬∃ � � � ¬
�

where � does not occur in
�

, and � is a new variable.

� � � [
� � �] � � [

� � �]
� � � [

� � �] � ¬ � [
� � �] �

� � � [
� � �] � ¬¬

�
[
� � �]

� � � [
� � �] � �

¬
� � � � � [

� � �] �
(¬¬

�
[
� � �]

�
¬
�

) � � � � [
� � �] �

(¬¬
�

[
� � �]

�
¬
�

) � � � ∀ � � �
(¬¬

�
[
� � �]

�
¬
�

) � � � ¬∀ � �

(¬¬
�

[
� � �]

�
¬
�

) � ¬¬∀ � � � � �
(¬¬

�
[
� � �]

�
¬
�

) � ¬¬∀ � � � ¬
�

We now have to consider the cases where the last inference is one of (∀: left), (∃: left), or
(∃: right). We treat the case of the rule (∃: right), leaving the others as exercises.

Γ � � [
� � �] � ∆

Γ � ∃ � � � ∆
Given ∆ = � 1 � . . . � � � , we let

�
= ¬ � 1

�
. . .
� ¬ � � . By the induction hypothesis,

¬¬Γ � ¬(¬
�

[
� � �]

� �
) is provable in � �� �� �� ¬ ∀ ∃� . On the other hand, since the sequent

¬(¬
�

[
� � �]

� �
) � ¬(¬∃ � � � �)

is provable in � �� �� ��¬ ∀ ∃� , using a cut, we obtain that the sequent

¬¬Γ � ¬(¬∃ � � � �)

is provable in � �� �� ��¬ ∀ ∃� , as desired.

May 1991 Digital PRL

Constructive Logics. Part I: A Tutorial on Proof Systems and Typed
�
-Calculi 69

Technically, the problem with Lemma 13, is that the sequent

∀ � ¬(¬
� � �

) � ¬(¬∀ � � � �)

(where � does not occur in
�

) is not provable in � �� �� �� ¬ ∀ ∃� . In order to see where the
problem really lies, we attempt to construct a proof of this sequent.

¬(¬
�

[� � �]
� �

) � � � � [� � �]

∀ � ¬(¬
� � �

) � � � � [� � �]

∀ � ¬(¬
� � �

) � � � ∀ � �

∀ � ¬(¬
� � �

) � ¬∀ � � � � �
∀ � ¬(¬

� � �
) � ¬∀ � � � � �

∀ � ¬(¬
� � �

) � ¬(¬∀ � � � �)

where � does not occur in
�

, and � is a new variable. The problem is that we cannot
apply the (∀: left)-rule before ¬∀ � � has been transferred to the righthand side of the
sequent (as ∀ � �) and before the (∀: right)-rule has been applied to ∀ � � , since this
would violate the eigenvariable condition. Unfortunately, we are stuck with the sequent
¬(¬

�
[� � �]

� �
) � � � � [� � �] which is unprovable in � � �� ��¬ ∀ ∃� . However, note that the

sequent ¬(¬
�

[� � �]
� �

) � � � ¬¬
�

[� � �] in which
�

[� � �] has been replaced with ¬¬
�

[� � �]
is provable in � � �� ��¬ ∀ ∃� :

� � ¬ � [� � �] � ¬
�

[� � �]
� � ¬ � [� � �] � �

� � ¬ � [� � �] � ¬
�

[� � �]
� �

¬(¬
�

[� � �]
� �

) � � � ¬ � [� � �] �
¬(¬

�
[� � �]

� �
) � � � ¬¬

�
[� � �]

Thus, if the sequent ¬¬
� � � was provable in � �� �� �� ¬ ∀ ∃� , the sequent

∀ � ¬(¬
� � �

) � ¬(¬∀ � � � �)

would also be provable in � � �� ��¬ ∀ ∃� . It is therefore important to identify a subclass of
first-order formulae for which ¬¬

� � � is provable in � � �� ��¬ ∀ ∃� , since for such a class,
Lemma 13 holds without restrictions. The following lemma showing the importance of the
axiom ¬¬ � � � where � is atomic, leads us to such a class of formulae. It is at the heart of
the many so-called “double-negation translations”.

Lemma 14 For every formula
�

built only from
� � � � ¬ � ∀, the sequent ¬¬

� � � is provable
in the system � �� ��¬ ∀� + obtained from � �� �� ¬ ∀� by adding all sequents of the form ¬¬ � � �
where � is atomic as axioms. Equivalently, if ∆ = ¬¬ � 1

� �
1 � . . . � ¬¬ � � � � � where�

1 � . . . � � � are all the atoms occurring in
�

, then ∆ � ¬¬
� � � is provable in � �� ��¬ ∀� .

Research Report No. 8 May 1991

70 Jean Gallier

Proof. It proceeds by induction on the structure of
�

. If
�

is an atom � , this is obvious
since ¬¬ � � � is an axiom. If

�
= � � � , by the induction hypothesis, both ¬¬ � � �

and ¬¬
� � � are provable in � �� �� ¬ ∀� + , and so is ¬¬

� � ¬¬
� � � � � . We just have

to prove that ¬¬(
� � �) � ¬¬

� � ¬¬ � is provable in � � ��¬ ∀� , which is easily done. If�
= ¬ � , since we have shown that ¬¬¬ � � ¬ � is provable in � � ��¬ ∀� , so is ¬¬

� � � . If�
= � � � , then by the induction hypothesis, ¬¬

� � � is provable in � �� ��¬ ∀� + (and so is
¬¬ � ��� , but we won’t need it). Observe that the sequent ¬¬

� ��� � ¬¬(� ��) � � ���
is provable in � �� ��¬ ∀� :

� ��� � � � � �
� � (� ��) � �
� � ¬ � � (� ���) �
� � ¬ � � ¬(� ���)

¬¬(� ���) � � � ¬ � �
¬¬(� ��) � � � ¬¬

�
¬¬(� ���) � � � � � �

¬¬
� ��� � ¬¬(� ��) � � � �

¬¬
� ��� � ¬¬(� ���) ��� ���

Using the fact that ¬¬
� � � is provable in � � ��¬ ∀� + and a suitable cut, ¬¬(� � �) �

� ��� is provable in � �� ��¬ ∀� + . If
�

= ∀ � � , we can show easily that ¬¬∀ � � � ¬¬ � [
� � �] is

provable in � �� �� ¬ ∀� . Since by the induction hypothesis, ¬¬ � ��� is provable in � �� ��¬ ∀� + , for
any new variable � , ¬¬ � [� � �] � � [� � �] is also provable in � �� ��¬ ∀� + , and thus by choosing�

= � , the sequent ¬¬∀ � � � � [� � �] is provable where � is new, so that ¬¬∀ � � � ∀ � � is
provable in � �� ��¬ ∀� + .

In order to appreciate the value of Lemma 14, the reader should find a direct proof of
¬¬(¬¬ � � �) in � � ��¬ ∀� . Unfortunately, Lemma 14 fails for disjunctions and existential
quantifiers. For example,

¬¬ � � � � ¬¬(� � ¬ �)
�

(� � ¬ �)

is not provable in � �� �� �� ¬ ∀ ∃� . This can be shown as follows. Since � � ¬ � is provable
in � �� �� ��¬ ∀ ∃� , by Lemma 9, ¬¬(� � ¬ �) is provable in � �� �� ��¬ ∀ ∃� . Thus, ¬¬ � � � �
(� � ¬ �) would be provable in � � �� ��¬ ∀ ∃� , but we can show using the system of Lemma 6
that this is not so.

The sequent

¬¬ � � � � ¬¬(¬¬∃ � � (�)
�

∃ � ¬¬ � (�))
�

(¬¬∃ � � (�)
�

∃ � ¬¬ � (�))

is also not provable in � �� �� �� ¬ ∀ ∃� . This is because (¬¬∃ � � (�)
�

∃ � ¬¬ � (�)) is provable
in � �� �� ��¬ ∀ ∃� without using the (∀: right)-rule, and so, by Lemma 13, ¬¬(¬¬∃ � � (�)

�

May 1991 Digital PRL

Constructive Logics. Part I: A Tutorial on Proof Systems and Typed
�
-Calculi 71

∃ � ¬¬ � (�)) is provable in � � �� ��¬ ∀ ∃� . Then,

¬¬ � � � � (¬¬∃ � � (�)
�

∃ � ¬¬ � (�))

would be provable in � �� �� �� ¬ ∀ ∃� , but we can show using the system of Lemma 6 that this is
not so.

Since the sequent
� �

¬
� � ¬¬

� � �
is easily shown to be provable in � �� �� ��¬ ∀ ∃� ,

Lemma 14 also holds with the axioms � � � ¬ � substituted for ¬¬ � � � (for all atoms �).
In fact, with such axioms, we can even show that Lemma 14 holds for disjunctions (but not for
existential formulae).

In view of Lemma 14 we can define the following function
�

on formulae built from� � � � ¬ � ∀:

� �
= ¬¬

� � if
�

is atomic �
(¬
�

)
�

= ¬
� � �

(
�

� �)
�

= (
� �

� � �) � if � ∈
� � � � � �

(∀ � �)
�

= ∀ � � � �
Given a formula built only from

� � � � ¬ � ∀, the function
�

simply replaces every atom � by
¬¬ � . It is easy to show that

�
and

� �
are classically equivalent. The following lemma shows

the significance of this function.

Lemma 15 For every formula
�

built only from
� � � � ¬ � ∀, the sequent ¬¬

� � � � � is
provable in the system � � ��¬ ∀� .

Proof. Since ¬¬¬
�

≡ ¬
�

is provable in � �� �� ¬ ∀� , the sequent ¬¬¬¬ � ≡ ¬¬ � is
provable in � �� ��¬ ∀� for every atom � , and thus the result follows from the definition of

� �
and Lemma 14.

Actually, we can state a slightly more general version of Lemma 15, based on the observation
that ¬¬¬

�
≡ ¬

�
is provable in � �� �� ¬ ∀� .

Lemma 16 For every formula
�

built only from
� � � � ¬ � ∀ and where every atomic sub-

formula occurs negated (except
�

), the sequent ¬¬
� � � � � is provable in the system

� � ��¬ ∀� .

The formulae of the kind mentioned in Lemma 16 are called negative formulae. The follow-
ing lemma shows that if we use double-negation, then

�
and ∃ are definable intuitionistically

from the connectives
� � ¬ � ∀.

Research Report No. 8 May 1991

72 Jean Gallier

Lemma 17 The following formulae are provable in � �� ��¬ ∀� :

¬¬(
� � �) ≡ ¬(¬

� � ¬ �)

¬¬∃ � � ≡ ¬∀ � ¬
���

Proof. We give a proof of the sequent ¬¬∃ � � � ¬∀ � ¬
�

, leaving the others as exercises.

�
[� � �] � � [� � �]

¬
�

[� � �] � � [� � �] �
∀ � ¬

� � � [� � �] �
∀ � ¬

� � ∃ � � �
∀ � ¬

� � ¬∃ � �
¬¬∃ � � � ∀ � ¬

� �
¬¬∃ � � � ¬∀ � ¬

�

where � is a new variable.

We are now ready to prove the main lemma about the double-negation translation. The
correctness of many embeddings of classical logic into intuitionistic logic follows from this
lemma, including those due to Kolmogorov, Gödel, and Gentzen.

Lemma 18 Let Γ � � 1 � . . . � � � be any first-order sequent containing formulae made only
from

� � � � ¬, and ∀. If Γ � � 1 � . . . � � � is provable in � � �� ��¬ ∀ ∃� then its translation
Γ
� � ¬(¬ � �1 � . . .

� ¬ � ��) is provable in � �� ��¬ ∀� . In particular, if � is provable in

� �� �� ��¬ ∀ ∃� , then � � is provable in � � ��¬ ∀� .

Proof. First, we prove that if Γ � � 1 � . . . � � � is provable in � �� �� �� ¬ ∀ ∃� then Γ
� �

� �1 � . . . � � �� is also provable in � �� �� ��¬ ∀ ∃� . This is done by a simple induction on proofs.
Next, we prove that ¬¬Γ

� � ¬(¬ � �1 � . . .
� ¬ � ��) is provable in � � ��¬ ∀� . The only obstacle

to Lemma 13 is the use of the (∀: right)-rule. However, we have seen in the discussion
following Lemma 13 that the problem is overcome for formulae such that ¬¬

� � � is
provable in � � ��¬ ∀� . But this is the case by Lemma 15 (which itself is a direct consequence
of Lemma 14), since we are now considering formulae of the form

� �
. Since � � ¬¬ � is

provable in � �� �� ¬ ∀� for any � , using cuts on the premises in ¬¬Γ
�
, we obtain a proof of

Γ
� � ¬(¬ � �1 � . . .

� ¬ � ��) in � � ��¬ ∀� . In the special case where � = 1 and Γ is empty, we

have shown that � ¬¬ � � is provable in � �� �� ¬ ∀� , and using Lemma 15, we obtain that
� �

is
provable in � �� ��¬ ∀� .

It is trivial that the converse of Lemma 18 holds (since � �� ��¬ ∀� is a subsystem of
� �� �� ��¬ ∀ ∃�). As a corollary of Lemma 18, observe that for negative formulae (defined in

May 1991 Digital PRL

Constructive Logics. Part I: A Tutorial on Proof Systems and Typed
�
-Calculi 73

Lemma 16),
�

is provable in � �� �� ¬ ∀� iff
�

is provable in � �� �� ¬ ∀� . This is because for a
negative formula

�
, all atoms appears negated, and thus

�
≡
� �

is provable in � � ��¬ ∀� .

We now define several translations of classical logic into intuitionistic logic.

Definition 27 The function
�

(due to Gentzen) is defined as follows:

� �
= ¬¬

� � if
�

is atomic �
(¬
�

)
�

= ¬
� � �

(
� � �)

�

= (
� � � � �) �

(
� � �)

�

= (
� � � � �) �

(
� � �)

�

= ¬(¬
� � � ¬ � �) �

(∀ � �)
�

= ∀ � � � �
(∃ � �)

�

= ¬∀ � ¬
� � �

The function
�

(due to Gödel) is defined as follows:

� �

= ¬¬
� � if

�
is atomic �

(¬
�

)
�

= ¬
� � �

(
� � �)

�

= (
� � � � �

) �
(
� � �)

�

= ¬(
� � � ¬ � �

) �
(
� � �)

�

= ¬(¬
� � � ¬ � �

) �
(∀ � �)

�

= ∀ � � � �
(∃ � �)

�

= ¬∀ � ¬
� � �

The function
�

(due to Kolmogorov) is defined as follows:

� �
= ¬¬

� � if
�

is atomic �
(¬
�

)
�

= ¬
��� �

(
� � �)

�

= ¬¬(
��� � � �) �

(
� � �)

�

= ¬¬(
� � � � �) �

(
��� �)

�

= ¬¬(
� � � � �) �

(∀ � �)
�

= ¬¬∀ � � � �
(∃ � �)

�

= ¬¬∃ � � � �
By Lemma 17 and Lemma 14, it is easy to show that for any sequent Γ � � 1 � . . . � � � , the

sequent
Γ
� � ¬(¬ � �1 � . . .

� ¬ � ��)

is provable in � � ��¬ ∀� iff
Γ

� � ¬(¬ � �

1
�

. . .
� ¬ � ��)

Research Report No. 8 May 1991

74 Jean Gallier

is provable iff
Γ
� � ¬(¬ � �1 � . . .

� ¬ � ��)

is provable. Furthermore, it is easily shown that
�

≡
� �

,
�

≡
� �

, and
�

≡
� �

, are
provable classically.

Theorem 9 For any sequent Γ � � 1 � . . . � � � , if Γ � � 1 � . . . � � � is provable in � � �� ��¬ ∀ ∃� ,
then the sequents Γ

� � ¬(¬ � �1 � . . .
� ¬ � ��), Γ

� � ¬(¬ � �

1
�

. . .
� ¬ � ��), and Γ

� �
¬(¬ � �1 � . . .

� ¬ � ��), are provable in � �� �� ¬ ∀� . In particular, if
�

is provable in � � �� ��¬ ∀ ∃� ,

then
� �

,
� �

, and
� �

, are provable in � �� ��¬ ∀� .

Proof. We simply have to observe that the translation
�

is in fact the composition of two
functions: the first one

�

is defined as in Definition 27, except that atoms remain unchanged,
and the second function is just

�
. This translation has the property that

� �

only contains the
connectives

� � � � ¬, and ∀. Furthermore, it is easily shown that Γ � � 1 � . . . � � � is provable
in � � �� ��¬ ∀ ∃� iff Γ

� � � �

1 � . . . � � �� is. Therefore, Lemma 18 applies to Γ
� � � �

1 � . . . � � �� ,
and we obtain the desired result.

It is trivial that the converse of Theorem 9 holds.

We shall now discuss another translation of classical logic into intuitionistic logic due to
Girard [9]. Girard has pointed out that the usual double-negation translations have some rather
undesirable properties:

(1) They are not compatible with substitution. Indeed, the translation
�

[� � �]
�

of
�

[� � �]
is not equal to

� �

[� � � �] in general, due to the application of double negations to atoms.

(2) Negation is not involutive. For instance,
�

[� � �]
�

and
� �

[� � � �] are related through
the erasing of certain double negations (passing from ¬¬¬ � to ¬ �), but this erasing is not
harmless.

(3) Disjunction is not associative. For example, if
� � � is translated as ¬(¬

� � ¬ �),
then (

� � �)
� �

is translated as ¬(¬(¬(¬
� � ¬ �))

� ¬
�

), and
� �

(� � �) is translated as
¬(¬

� � ¬(¬(¬ � � ¬
�

))).

Girard has discovered a translation which does not suffer from these defects, and this
translation also turns out to be quite economical in the number of negation signs introduced [9].
The main idea is assign a sign or polarity (+ or �) to every formula. Roughly speaking, a
positive literal � (where � is an atom) is a formula of polarity +, a negative literal ¬ � is
a formula of polarity � , and to determine the polarity of a compound formula, we combine
its polarities as if they were truth values, except that + corresponds to false, � corresponds
to true, existential formulae are always positive, and universal formulae are always negative.
Given a sequent Γ � ∆, the idea is that right-rules have to be converted to left-rules, and in
order to do this we need to move formulae in ∆ to the lefthand side of the sequent. The new

May 1991 Digital PRL

Constructive Logics. Part I: A Tutorial on Proof Systems and Typed
�
-Calculi 75

twist is that formulae in ∆ will be treated differently according to their polarity. Every formula�
of polarity � in ∆ is in fact of the form ¬ � , and it will be transferred to the lefthand side as

� (and not as ¬¬ �), and every formula
�

of polarity + in ∆ will be transferred to the lefthand
side as ¬

�
. The translation is then completely determined if we add the obvious requirement

that the translation of a classically provable sequent should be intuitionistically provable. Let
us consider some typical cases.

Case 1. The last inference is
Γ � ¬

� � ¬ �
Γ � ¬

� �
¬
�

where
�

and
�

are positive. The sequent Γ � ¬
� � ¬ � is translated as Γ � � � � � , and we

have the inference
Γ � � � � �

Γ � � � � �
It is thus natural to translate ¬

� �
¬
�

as ¬(
� � �

), since then
� � �

will be placed on the
lefthand side (because ¬(

� � �
) is negative).

Case 2. The last inference is
Γ � � � �

Γ � � � �
where

�
and

�
are positive. The sequent Γ � � � � is translated as Γ � ¬ � � ¬ � � , and we

have the inference
Γ � ¬ � � ¬ � �

Γ � ¬ � � ¬
� �

This time, we would like to translate
� � �

as
� � �

(since
� � �

is positive), so that
¬(
� � �

) is placed on the lefthand side of the sequent. This is indeed legitimate because
¬(
� � �

) ≡ ¬
� � ¬

�
is provable intuitionistically.

Case 3. The last inference is
Γ � �

Γ � ∀ � �
where

�
is positive. The sequent Γ � � is translated as Γ � ¬ � � , and we have the inference

Γ � ¬ � �
Γ � ∃ � ¬

� �
We translate ∀ � � as ¬∃ � ¬

�
, so that ∃ � ¬

�
is placed on the lefthand side of the sequent.

Case 4. The last inference is
Γ � ¬

�
Γ � ∀ � ¬

�
Research Report No. 8 May 1991

76 Jean Gallier

where
�

is positive. The sequent Γ � ¬
�

is translated as Γ � � � , and we have the inference

Γ � � �
Γ � ∃ � � �

We translate ∀ � ¬
�

as ¬∃ � � , so that ∃ � � is placed on the lefthand side of the sequent.

Case 5. The last inference is
Γ � � [

� � �]

Γ � ∃ � �
where

�
is positive. The sequent Γ � � [

� � �] is translated as Γ � ¬ � [
� � �] � , and we have the

inference
Γ � ¬ � [

� � �] �
Γ � ∀ � ¬

� �
We would like to translate ∃ � � as ∃ � � , so that ¬∃ � � is placed on the lefthand side of the
sequent. This is possible because ¬∃ � � ≡ ∀ � ¬

�
is provable intuitionistically.

Case 6. The last inference is
Γ � ¬

�
[
� � �]

Γ � ∃ � ¬
�

where
�

is positive. The sequent Γ � ¬
�

[
� � �] is translated as Γ � � [

� � �] � . We would like
to translate ∃ � ¬

�
as ∃ � ¬

�
, so that ¬∃ � ¬

�
is placed on the lefthand side of the sequent.

This is possible because ¬∃ � ¬
�

≡ ∀ � ¬¬
�

is provable intuitionistically, and we have the
sequence of inferences

Γ � � [
� � �] �

Γ � ¬
�

[
� � �]

Γ � ¬¬
�

[
� � �] �

Γ � ∀ � ¬¬
�

[
� � �] �

Note that it was necessary to first double-negate
�

[
� � �]. This is because ¬∃ � ¬

�
≡

∀ � ¬¬
�

is provable intuitionistically, but ¬∃ � ¬
�

≡ ∀ � � is not.

Case 7. The last inference is
Γ � � Γ � �

Γ � � � �
where

�
,
�

are positive. The sequents Γ � � and Γ � �
are translated as Γ � ¬ � �

and Γ � ¬ � � . Since
� � �

is positive, we would like to translate
� � �

as
� � �

,
so that ¬(

� � �
) is placed on the lefthand side of the sequent. This is possible because

¬(¬¬
� � ¬¬

�
) ≡ ¬(

� � �
) is provable intuitionistically, and we have the sequence of

inferences

May 1991 Digital PRL

Constructive Logics. Part I: A Tutorial on Proof Systems and Typed
�
-Calculi 77

Γ � ¬ � �
Γ � ¬¬

� Γ � ¬ � �
Γ � ¬¬

�

Γ � ¬¬
� � ¬¬

�

Γ � ¬(¬¬
� � ¬¬

�
) �

Case 8. The last inference is
Γ � ¬

�
Γ � �

Γ � ¬
� � �

where
�

,
�

are positive. The sequents Γ � ¬
�

and Γ � �
are translated as Γ � � � and

Γ � ¬ � � . Since ¬
� � �

is positive, we would like to translate ¬
� � �

as ¬
� � �

, so
that ¬(¬

� � �
) is placed on the lefthand side of the sequent. This is possible because

¬(¬
� � ¬¬

�
) ≡ ¬(¬

� � �
) is provable intuitionistically, and we have the sequence of

inferences

Γ � � �
Γ � ¬

� Γ � ¬ � �
Γ � ¬¬

�

Γ � ¬
� � ¬¬

�

Γ � ¬(¬
� � ¬¬

�
) �

Case 9. The last inference is
Γ � ¬

�
Γ � ¬

�

Γ � ¬
� � ¬

�

where
�

,
�

are positive. The sequents Γ � ¬
�

and Γ � ¬
�

are translated as Γ � � � and
Γ � � � , and we have the inference

Γ � � � Γ � � �
Γ � � � � �

We translate ¬
� � ¬

�
as ¬(

� � �
), so that

� � �
is placed on the lefthand side of the

sequent.

Considering all the cases, we arrive at the following tables defining the Girard translation
��

of a formula.

Definition 28 Given any formula
�

, its sign (polarity) and its Girard-translation
��

are given
by the following tables:

If
�

= � where � is an atom, including the constants
�

(true) and
�

(false), then
� 	�� � (

�
) = + and

��
=
�

, and if
�

is a compound formula then

Research Report No. 8 May 1991

78 Jean Gallier

Girard’s ¬¬-Translation� � � � � ��� � � � �
+ � � + � � + � � � � + � � � � � � ¬(

� � ¬
�

)
+ � � � � ¬ � + � � � ¬

� � � ¬(¬
� � �

) � � ¬(
� � �

)
� � ¬ � + � � + � ¬ � � � � � ¬(

� � ¬
�

) + � � � �
� � ¬ � � � ¬ � � � ¬(

� � �
) � � ¬(

� � �
) � � ¬(¬

� � �
)

Girard’s ¬¬-Translation�
∀ � � ∃ � � ¬

�

+ � � � � ¬∃ � ¬
�

+ � ∃ � � � � ¬ �
� � ¬ � � � ¬∃ � � + � ∃ � ¬

�
+ � �

Given a formula
�

, we define its translation
�

as follows:

�
=
�

¬
��

if � 	�� � (
�

) = +,
� if � 	�� � (

�
) = � and

��
= ¬ � .

Then, a sequent Γ � ∆ is translated into the sequent Γ � ∆ � .

We have the following theorem.

Theorem 10 Given any classical sequent Γ � ∆, if Γ � ∆ is provable classically, then its
translation Γ � ∆ � is provable intuitionistically.

Proof. By induction on the structure of proofs. We have already considered a number of
cases in the discussion leading to the tables of Definition 28. As an auxiliary result, we need
to show that the following formulae are provable intuitionistically:

¬(
� � �

) ≡ ¬
� � ¬

� �
¬(¬¬

� � ¬¬
�

) ≡ ¬(
� � �

) �
¬(¬

� � ¬¬
�

) ≡ ¬(¬
� � �

) �
¬(¬¬

� � ¬
�

) ≡ ¬(
� � ¬

�
) �

¬∃ � � ≡ ∀ � ¬
� �

¬∃ � ¬
�

≡ ∀ � ¬¬
� �

We leave the remaining cases as an exercise.

May 1991 Digital PRL

Constructive Logics. Part I: A Tutorial on Proof Systems and Typed
�
-Calculi 79

Observe that a formula
�

of any polarity can be made into an equivalent formula of polarity
+, namely

� + =
� � �

, or an equivalent formula of polarity � , namely
� � =

� �
¬ �

. The
Girard-translation has some nice properties, and the following lemma lists some of them [9].

Lemma 19 The translation
� �� ��

given in Definition 28 is compatible with substitutions
respecting polarities. Furthermore, it satisfies a number of remarkable identities:

(i) Negation is involutive: ¬¬
�

≡
�

.

(ii) De Morgan identities: ¬(
� � �) ≡ ¬

� �
¬ � ; ¬(

� � �) ≡ ¬
� � ¬ � ;

� � � ≡
¬
��� � ; ¬∀ � � ≡ ∃ � ¬

�
; ¬∃ � � ≡ ∀ � ¬

�
.

(iii) Associativity of
�

and
�

; as a consequence, (
� � �)

� �
≡
� �

(� ���
), and� �

(� � �) ≡ (
� � �)

� �
.

(iv) Neutrality identities:
� � � ≡

�
;
� � ¬ � ≡

�
.

(v) Commutativity of
�

and
�

(as a consequence,
� � � ≡ ¬ � � ¬

�
).

(vi) Distributivity identities with restriction on polarities:
� �

(� � �
) ≡ (

� � �)
�

(
� � �

);���
(

� � �) ≡ (
� � �

)
�

(
���
�) (where � � �

are positive, and
� � � negative).

(vii) Idempotency identities: � + ≡ � where � is positive; � � ≡ � where � is negative;
as a consequence,

� ++ ≡
� + and

� � � ≡
� � .

(viii) Quantifier isomophisms:
� � ∃ � � ≡ ∃ � (

� � �) if � is not free in
�

and � is positive;;���
∀ � � ≡ ∀ � (

���
�) if � is not free in

�
and � is negative;

Proof. The proof is quite straightforward, but somewhat tedious. Because of the polarities,
many cases have to be considered. Some cases are checked in Girard [9], and the others can
be easily verified.

Research Report No. 8 May 1991

80 Jean Gallier

References

1. S. Abramsky. Computational interpretation of linear logic. Technical Report DOC 90/20,
Imperial College, London SW7 2BZ (October 1990).

2. Jean Gallier. On Girard’s “candidats de reductibilités”. In P. Odifreddi, editor, Logic And
Computer Science, pages 123–203. Academic Press, London, New York (May 1990).

3. G. Gentzen. Investigations into logical deduction. In M.E. Szabo, editor, The Collected
Papers of Gerhard Gentzen. North-Holland (1969).

4. J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7 of Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press (1989).

5. Jean-Yves Girard. Une extension de l’interprétation de gödel à l’analyse, et son application
à l’élimination des coupures dans l’analyse et la théorie des types. In J.E. Fenstad, editor,
Proc. 2nd Scand. Log. Symp., pages 63–92. North-Holland (1971).

6. Jean-Yves Girard. Interprétation functionelle et élimination des coupures de l’arithmétique
d’ordre supérieur. PhD thesis, Université de Paris VII (June 1972). Thèse de Doctorat
d’Etat.

7. Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102 (1987).

8. Jean-Yves Girard. Proof Theory and Logical Complexity. Bibliopolis (1987).

9. Jean-Yves Girard. A new constructive logic: classical logic. Logic and Computation
(April 1991). To appear.

10. W. A. Howard. The formulae-as-types notion of construction. In J. P. Seldin and J. R.
Hindley, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and
Formalism, pages 479–490. Academic Press, London (1980). Reprint of manuscript first
published in 1969.

11. S. Kleene. Introduction to Metamathematics. North-Holland, seventh edition (1952).

12. P. Lincoln, A. Scedrov, and N. Shankar. Linearizing ituitionistic implication. In G. Kahn,
editor, Sixth IEEE LICS Symposium, Vrije University, Amsterdam (July 1991). IEEE. to
appear.

13. P. Martin-Löf. An intuitionistic theory of types. Technical report, University of Stokholm,
Stockholm, Sweden (1972). Privately circulated manuscript.

14. D. Prawitz. Natural deduction, a proof-theoretical study. Almquist & Wiksell, Stockholm
(1965).

May 1991 Digital PRL

Constructive Logics. Part I: A Tutorial on Proof Systems and Typed
�
-Calculi 81

15. D. Prawitz. Ideas and results in proof theory. In J.E. Fenstad, editor, Proc. 2nd Scand.
Log. Symp., pages 235–307. North-Holland (1971).

16. S. Stenlund. Combinators, Lambda Terms, and Proof Theory. D. Reidel, Dordrecht,
Holland (1972).

17. W.W. Tait. Intensional interpretation of functionals of finite type i. J. Symbolic Logic,
pages 198–212 (1967).

18. W.W. Tait. Normal derivability in classical logic. In J. Barwise, editor, The Syntax and
Semantics of Infinitary Languages. Springer Verlag (1968).

19. W.W. Tait. A realizability interpretation of the theory of species. In R. Parikh, editor,
Logic Colloquium, pages 240–251. Springer Verlag (1975).

20. G. Takeuti. Proof Theory, volume 81 of Studies in Logic. North-Holland (1975).

Research Report No. 8 May 1991

PRL Research Reports

The following documents may be ordered by regular mail from:

Librarian – Research Reports
Digital Equipment Corporation
Paris Research Laboratory
85, avenue Victor Hugo
92563 Rueil-Malmaison Cedex
France.

It is also possible to obtain them by electronic mail. For more information, send a
message whose subject line is help to doc-server@prl.dec.com or, from
within Digital, to decprl::doc-server.

Research Report 1: Incremental Computation of Planar Maps. Michel Gangnet, Jean-
Claude Hervé, Thierry Pudet, and Jean-Manuel Van Thong. May 1989.

Research Report 2: BigNum: A Portable and Efficient Package for Arbitrary-Precision
Arithmetic. Bernard Serpette, Jean Vuillemin, and Jean-Claude Hervé. May 1989.

Research Report 3: Introduction to Programmable Active Memories. Patrice Bertin, Didier
Roncin, and Jean Vuillemin. June 1989.

Research Report 4: Compiling Pattern Matching by Term Decomposition. Laurence Puel
and Ascánder Suárez. January 1990.

Research Report 5: The WAM: A (Real) Tutorial. Hassan Aı̈t-Kaci. January 1990.

Research Report 6: Binary Periodic Synchronizing Sequences. Marcin Skubiszewski. May
1991.

Research Report 7: The Siphon: Managing Distant Replicated Repositories. Francis J.
Prusker and Edward P. Wobber. May 91.

Research Report 8: Constructive Logics. Part I: A Tutorial on Proof Systems and Typed�
-Calculi. Jean Gallier. May 1991.

Research Report 9: Constructive Logics. Part II: Linear Logic and Proof Nets. Jean Gallier.
May 1991.

Research Report 10: Pattern Matching in Order-Sorted Languages. Delia Kesner. May
1991.

Research Report 11: Towards a Meaning of LIFE. Hassan Aı̈t-Kaci and Andreas Podelski.
June 1991.

Research Report 12: Residuation and Guarded Rules for Constraint Logic Programming.
Gert Smolka. May 1991.

Research Report 13: Functions as Passive Constraints in LIFE. Hassan Aı̈t-Kaci and Andreas
Podelski. June 1991.

Research Report 14: Automatic Motion Planning for Complex Articulated Bodies. Jérôme
Barraquand. June 1991.

