A Taste of
Program Verification

Jorge Sousa Pinto
jsp@di.uminho.pt

Outline

Formal models and the central problem of formal methods
Introduction to Hoare Logic; verification by hand

Specifying the behaviour of C programs

Case study: array partition algorithm

Outline

= Program Annotation and Design by Contract

- JML Tool Demo: ESC/Java2 + Simplify

= Tool Demo: Caduceus + Coq

The Central Problem
of Formal Methods

Models: Tools and Approaches

Abstract State Machines (B)
Automata-based Models

Process Algebra (Esterel)

Set and Category Theory (Z,VDM, Charity)
Algebraic Specifications (OBJ)

Declarative Modeling (FP, LP, TRS)

Preconditions and PostConditions

The Central Problem of FM

Part |: model validation

- How to enforce, at the specification level, the desired

behaviour?

Prove properties about the model

Tools for
Formal Verification

= Proof Systems:

Theorem Provers / Proof Assistants

= Model Checkers

The Central Problem of FM

Part 2: relation between specifications and implementations

- How to obtain, from a specification, an implementation with
the same behaviour? Extraction; Program Derivation

Or alternatively,

= Given an implementation, how can it be checked that it

obeys the specification? Testing; Program Verification

Program Extraction

= From a proof of a logical property (typically concerning
existential quantifications), the Coq system is capable of

extracting a program into a working programming language

Program Derivation

- Stepwise Refinement from Specifications to Programs
(Z,VDM, B, ...)
- Two approaches to correctness:

(i) the refinement steps generate proof obligations that must
be discharged. Derivations are thus formally verified.

(i) the refinement process is itself verified to be correct.The

derived programs are then correct by construction.

Program Verification

- Given a program and a specification, check that the former

conforms to the latter.

= This is the only applicable method in many situations

= THIS LECTURE: an approach to program verification based
on program annotation and Hoare Logic

Hoare Logic

- A formal system that is useful for
- Correct by construction program derivation
extensive bibliography:

Kaldewaij; Gries; Backhouse; Dijkstra

= Our focus: Program Verification

- Formulas assert that if a given precondition
holds prior to program execution, then a
postcondition will hold after execution

A Toy Programming Language

Types (data and expressions):

bool | int
var | exp|7] | com | assert

T

0

Interpreted as expected:

[bool] = {true, false}

el - o gl D

Espressions, commands and assertions are interpreted
in a given state of the program

T =Axy,2,...}
¥ = 17— [int]

lexplr]] = % —[r]L

[com] = ¥ — X,

lassert] = X — {true, false}

Abstract Syntax

ToY, 2y

‘ var, int, exp|bool], exp|int], com, and assert

TyY, 2y

true | false
B&&B|B||B|!'B
F==F|E<F|E<=F|E>FE|E>=FE|FE!=F

..—2,-1,0,1,2...| V| L
_E|E+E|E—E|ExE|EdivE|EmodE

skip | C';C | V := E | if E then C else C' | while (£)do C
true | false

A&GA|A||A|IA|VL.A|IL.A|A = A
FE==E|E<E|E<=FE|E>FE|E>=E|E!=E

Interpretation of Expressions

[true](s) = true
[false](s) = false
[n](s) = n forme{...—2,-1,0,1,2,...}
SO T
true if [e](s) = false
[le](s) = < false if [e](s) = true
1 if [e](s) = L

—le](s) if [e](s) # L
[=el(s) = { TR [e](s) = L

[er @ es](s) = { [e1](s) @ [e2] (s) if [er](s) # L and [es](s) # L

1 otherwise

for @ e { &&, ||,==,<,<=,>,>=, ! =+, —, %, div, mod }

Interpretation of Commands

[skip](s)

[C15Ca](s)

[if £ then E; else Fs](s)

[while (F)do C]

S

(IC2] @ [CA])(s)

1 if [f1(s) =1L
where [g © f](s) = { g(f(s)) otherwise

{ sle — [E)(s)] i [E](s) # L

1 otherwise

cond([E1], [E-], [Es])(s)

f(s) if p(s) = true
and cond(p, f, g)(s) = { q(s) if p(s) = false
1 otherwise

fix F
where F(f) = cond([E], f ® [C], Ax.x)

Interpretation of Assertions (1)

[true](s) = true
[false](s) = false
true if [e](s) = false
[tal(s) = { false if [e](s) = true
lar &&as](s) = [ai](s) and [a2](s)
lar [[az)(s) = [ar](s) or [az](s)

[a1 — as](s)

{ led](s) < le2f(s) if [ed](s) # L and [eo](s) # L
false otherwise

[e1 < es](s)

lea](s) == le2l(s) if [ea](s) # L and [ez](s) # L

false otherwise

[er == e2](s) =

Interpretation of Assertions (2)

ler <= 62; (s) = ;(61 < e) || (e ==
len > e2](s) = [Her <=e2)](s)
ler >=e2](s) = [!er <e2)](s)
ler! =ex](s) = [!(ex ==e2)](s)
Vx.a](s) = forevery v € [int
[dz.a](s) = for some v € [int]

[(s)|x — v] = true

(s)|x — v| = true

Hoare Triple Formulas

1Py 10}

P, () : assert are closed with respect to logical variables

C' : com contains no occurrences of logical variables

meaning that if C executes in a state where P holds,

then if C terminates Q will hold upon termination

Semantics of Hoare Triples

Given by the following interpretation in {true, false},
using the semantics of assertions

[{P}C1Q}] = if [P](s) then [Q](s")

for all states s,s’ € 3 such that [C](s) = s’

P, Q may contain occurrences of program variables that
do not occur in C. Such variables are called auxiliary

This is a partial notion of correctness since the
program is not guaranteed to terminate.

If additionally the existence of s’ is required, we are
in the presence of total correctness formulas.

{P}C{Q} and C terminates = [P|C |}

Inference System

An inference system can be defined that derives only
valid Hoare triples: if

1P Q]

is derived then

[{P}C1Q}] = true

Skip and Composition

{P} skip { P}

U O {Q} Co {R}
P} O Ca {177

Assighment

Works backwards

{Qlz — e}z :=e{Q}

Example: {x+1=4} x .= x+1 {x=4}

Conditional

{P && B} C{Q} 1P && 1B} Cp Q]
{P}if B then C; else C; {Q}

Can you spot a minor imprecision here!

Loops

A fundamental notion: a loop invariant is a property that
is preserved by the body of a loop, i.e. if it holds as a
precondition together with the loop condition then it holds

as a post-condition

(1 && BYC{I}

{I} while (B)do C {I && —B}

The identification of loop invariants is a crucial task

Logical Rules

We also need rules that relate assertions with
specifications. Preconditions can be strengthened or
made disjuncts

P — P {P}C{Q}
{P} C{Q}

LAe@ T O ()

1P [B} CHQY

More Logical Rules

Postconditions can be weakened or made conjuncts

1P}y C{Q} Q — @
{P}C{Q'}

G e RN

PO Oh Se oo Soe @))

More Logical Rules

0-ary cases for conjunction and disjunction

{false} C'{Q}

1Q} C {true;}

Example: Verification by Hand

Take the exponentiation function

exp(z,0) = 1

exp(z,n+1) = xx*xexp(x,n)
We intend to write a program calcexp such that

{true} calcexp {w = exp(x,y)}

In fact this needs to be refined with the help of
auxiliary variables, not used by calcexp

z = 1;

w = 1;
while z <= y do
W = W X X;
z =z + 1;

{z=XoAN y=Yy} calcexp {w =exp(z,y) AN z=Xg A y =Yy}

{z=XoA y=Yy} calcexp {w = exp(Xo, Yo)}

while z <= y do
W oi= W ok X;
B = z2z<Zuy z =z + 1;

The loop condition:

The loop invariant P:
P=IANRA w=exp(Xg, 2—1)

I =198 — X /A 7 =0
ST = e R |

P will grant the postcondition upon termination

P=INRAN w=exp(Xy, z—1)
Invariant preservation while z <= y do

{PAB} C{P} Woi= W ok X
z =z + 1;

Start with assignment axioms

{IN1< z241< y+ 1A w=exp(Xo,(2+1)—1)} z := z+1 {P}

(A1)
WA N w = expl X 2 2 = izl R

Invariant preservation while z <= y do

{PAB} C{P} W ok X

z =z + 1;

A second assignment axiom

{INOLS z< yANwx z=exp(Xg, 2)} w := wkxx {IN0< 2z < yA w=exp(Xo, 2)}

Simplifying and strengthening the precondition we get:

{INI< z< yAw=exp(Xg,z— 1)} w := wkxx {IA 2> 0A w=exp(Xo, 2)}

P=IANRA w=-exp(Xg, z—1)

Thus
(A2)

{PANB}w := wxx {IN 2> 0A w=exp(Xo, 2)}

And these can now be sequenced

A, A,
{PAB} C {P}
{P} while B do C {P A B}

Similarly for the initializations, going backwards

(A3)

{IN1T< z<y+1Al=exp(Xg,z— 1)} w := 1 {P}

(As)

{I}z :=1{IN1< z2z<y+1A1l=exp(Xg, z2—1)}

Sequencing: A A
2 1

A4 As {PABYC {P}
{I}z :=1; w := 1{P}’ {P} while B do C {P A B}
{I} z :=1; w := 1; while B do C{P A B}

and the postcondition can be weakened:

PAN-B < IANRAw=exp(Xp,2—1)A—-B
<— IANw=exp(Xg,z2—1)Az=y+1
— N =, 1)
= — el X)

Dealing with Arrays

Arrays can be treated as families of variables indexed by

integers.

Naive axiom:

What'’s wrong!?

{Qlai — €]} a; = e{Q}

Dealing with Arrays

The solution is to substitute arrays monolithically

{Qla— a"]}a; :=e{Q}

e HOIE (6 — 1

o) { arp for k#1

Procedures / Functions

Introduce functional component in the
language (ALGOL-style)

Allows for recursive definitions and an
additional source of non-termination

Two classes of identifiers: assignable variables
and abstraction variables

Quantifiers can be formalized with lambdas

Interference

£(x) {

return x+k

°
4

la=f(b)} k:=k+l {a=f(b)}

}

Pointers

Classic problems...

{*q = x} *p:=*p+1 {*q = x}

Total Correctness

The identification of a decreasing variant expression
is necessary to gurantee that every loop terminates

I && B &&V == n|C [l &&V < n] I &&B = V=

1] while (B) do C [T && —B]

Realistic Languages

The problems that need to be addressed seem
daunting, however:

-all have been studied at the theoretical level
(beyond our scope)

-most importantly, tools exist that support full
languages (including object-oriented features)

Exercise |

void swap(int X[], int a, int b)
{ aux = X[a]; X[a] = X[b]; X[b]

|. Write specification
2. Prove correctness of function

aux; Jr

Exercise 2

Recall the partition function used by the
quicksort algorithm. Verify informally:

|. Write a Specification
2. Examine suggested implementation

3. ldentify loop invariant

4. Check initial conditions and presevation
5. Identify loop variant

6. Check final conditions

int partition (int A[], int p, int r)

x = A[r];
i = p-1;
for (j=p ; j<r ; j++)
if (A[F] <= x) |
P4+

swap(A, i, j);
I;
swap(A, i+l, r);
return,: it

u Analise de Correccao — Invariante u
No inicio de cada iteracao do ciclo for tem-se para qualquer posicao k do vector:
1. Se p <k <ientdo Alk] < x;

2. Sei+1<k<j—1entdo Alk] > x;

3. Se k=1 entdo Alk] = .

p U J
g gdHHdHEg L)
e >z % -

= Verificar as propriedades de inicializagdo (j = p, i = p — 1),
preservacao, e terminagcdo (j = r)

= o0 que fazem as duas ultimas instrucoes?

Algorithms slide

Jump Forward

Something Missing!

= It is still required to check that the elements are the same in

the input and in the output arrays!

- A particular case of the problem of specifying that two

arrays contain the same elements

= And same number of occurences: multiset equality, rather than

set equality

A first attempt

VE:p<k<r:(A:p<Il<r:Alk]= B[l NA|l] = Blk])

What'’s wrong with it?

Second attempt

Vk:p<k<r:(3:p<i<r:Alk] =DBJ])

/AN
VE:p<Ek<r:(Al:p<l<r:Blk]=A[])

What'’s wrong with it?

Third attempt

Use a logical theory for multi-sets and a function mset
that abstracts an array into the multiset of its elements

mset (A) = mset (B)

This requires a prover with support for theories
like sets, multisets, sequences... or else user-defined
theories

Program Annotation
and
Automated Static
Checking

Why Annotate Programs!?

A practical and accessible interface specification method
Specify the semantics together with the syntax

Do not worry about following a prescribed design method,
as is the case with most formal methodologies

“Light” formal methods for everyday programmers!?

Applications

Dynamic checking
Test-case generation
Static Checking

Documentation: register design decisions and

implementation steps

Design by Contract

Design by Contract

- A software development method, initiated with Eiffel, based
on contracts between clients and classes
(dynamically-checked)

= Client guarantees certain (pre-)conditions before invoking

methods and may then assume other (post-)conditions after
invocation

Design by Contract

= Class must ensure certain (post-)conditions hold after
methods have been called and may for this effect assume

given (pre-)conditions

= Advantages: reasoning/modularity; blame assignment;
eliminate defensive checking (practical and efficient!!!)

JML
(Java Modelling Language)

= A standard annotation language for JML
- Is itself very close to Java (easy to learn)
= Many tools have adhered to the standard and are now

JML-compliant

- Imperative subset has been adapted to other languages (C)

JML Assertions

* preconditions: keyword requires
* postconditions: keyword ensures
* (class and loop) invariants:

keywords invariant

and loop invariant

JML Assertions

* Added as special comments in Java files
/*@ ... @x/
/e

* Properties written as Java boolean expressions

* With extra operators...

JML Operators

 Quantification:

(\Mforall ... ; ... ; ...)
(\exists ... 5 cov 57 ous)

* variable value at entry: \old(...)

* method return value: \result

Class Invariants

* Universal properties of class and instance
variables (valid all the time)

* Must be preserved by all the methods in a
class

* Implicitly, it is as if they were part of every pre-
and postcondition

Other JML Stuff

* exceptions (keyword signals)
* frame conditions
* pure methods: pure

* non null annotations

e ad hoc assertions: \assert

Static Checking

Dynamic checking verifies only the execution paths followed

in one run of the program
Static checking examines all possible execution paths

The location of the warnings that are issued is not where
they occur (as in run-time) but where they are created

Typically unsound and incomplete to increase cost-

effectiveness (automatic theorem prover, not interactive)

Underlying Architecture
(general) _
Hoare Logic

{VCGen |

Annotated
Program

Counter
Examples

Proof

Obligations
First Order Logic

ESC/Java and ESC/Java2

Development Story: DEC / Compaq / HP research labs
ESC/Java2: Kodak and UC Dublin researchers
(update to cover full JML and recent versions of Java)

JML-based; attempts to check consistency of code with
annotations automatically

Current versions use the Simplify theorem prover

ESC/Java and ESC/Java2

= Typical successful checks: null dereferencing; out-of-bounds
array indexes (run-time exceptions). Safety checking

- Annotations may both suppress warnings (pre-condition

prevents warning) and generate new warnings (pre-

conditions may possibly not be met)

Jump back

DEMO

ESC/Java2 eclipse plugin

swap / partition example

Limitations Highlighted by
Partition Example!

VE:p<k<r:(A:p<Ii<r:Alk]= B[l NA|l] = Blk|)

What'’s wrong with it?
Too Strong! However, ESC/Java proves this
(an example of unsoundness)

Second attempt

VE:p<k<r:(dl:p<i<r:Alk]= B|l])
/AN
VE:p<Ek<r:(Al:p<l<r:Blk]=A[])

What'’s wrong with it?
Too weak! However, ESC/Java fails to prove it
(an example of incompleteness)

