Exercises

MAPi

2007

1 Logical Reasoning

1. Prove the following theorem:

Theorem ex4 $: \forall(X:$ Set $)(P: X \rightarrow$ Prop $), \sim(\forall x, \sim(P x)) \rightarrow($ exists $x, P x)$.
2. Assuming the Excluded Middle axiom, prove:
(a) Theorem Pierce: $\forall P Q,((P \rightarrow Q) \rightarrow P) \rightarrow P$.
(b) Theorem NNE: $\forall P, \sim \sim P \rightarrow P$.

2 Reasoning about lists

The following exercises require the library Lists. You can load that library executing the command Require Import Lists.

1. Consider the following inductive relation:

$$
\begin{aligned}
& \text { Inductive last }(A: \text { Set })(x: A): \text { list } A \rightarrow \mathrm{Prop}:= \\
& \mid \text { last_base }: \text { last } x(\text { cons } x \text { nil }) \\
& \mid \text { last_step }: \forall l y \text {, last } x l \rightarrow \text { last } x(\text { cons y } l) .
\end{aligned}
$$

(a) Use inversion to prove that $\forall x, \sim($ last x nil $)$.
(b) (Difficult) Try to avoid using that tactic.
2. Consider the following definition for the Even predicate:

$$
\begin{aligned}
& \text { Inductive Even }: \text { nat } \rightarrow \text { Prop }:= \\
& \mid \text { Even_base }: \text { Even } 0 \\
& \mid \text { Even_step }: \forall n, \text { Even } n \rightarrow \text { Even }(S(S n)) .
\end{aligned}
$$

(a) Define the Odd predicate.
(b) (Difficult) Prove that, for every number n, Even $n \rightarrow$ Odd ($S n$). (Hint: you should strength the property to (Even $n \leftrightarrow O d d(S n)) \wedge($ Odd $n \leftrightarrow$ Even $(S n)))$
(c) Define the function rev that reverses a list.
(d) Prove that, for every list l, rev $($ rev $l)=l$.
(e) Recall the definition for the function app (concatenation of lists). Prove that for every lists l_{1} and l_{2}, rev (appl1 l2) $=\operatorname{app}($ rev l2) (rev l1).
3. Consider the inductive predicate:

```
Inductive InL (A: Type) ( a:A) : list A }->\mathrm{ Prop :=
    |nHead: }\forall\mathrm{ (xs:list A), InL a (cons a xs)
    | InTail: }\forall(x:A)(xs:list A), InL a xs ->InL a (cons x xs).
```

Prove the following properties:
(a) $\forall(A:$ Type $)(a: A)(l 1$ l2 : list $A)$, InL a l1 \vee InL a l2 \rightarrow InL a (appl1 l2).
(b) $\forall(A:$ Type $)(a: A)(l 1$ l2 : list $A)$, InL a $($ app l1 l2 $) \rightarrow$ InL a l1 \vee InL a l2.
4. Define the function elem that checks if an element belongs a list of integers (Hint: we might import the ZArith to use the Z_eq_dec that tests for integer equality).
5. Prove the correctness of elem, that is, $\forall(a: Z)(l 1$ l2 : list Z $)$, elem a (appl1 l2) $=$ orb (elem a l1) (elem a l2) (the function orb is the boolean-or function defined in Library Bool).

