Exercises

MAPi

2007

1 Logical Reasoning

1. Prove the following theorem:

Theorem *ex4* : \forall (X : Set) (P : X \rightarrow Prop), \sim (\forall x, \sim (P x)) \rightarrow (*exists* x, P x).

- 2. Assuming the Excluded Middle axiom, prove:
 - (a) **Theorem** Pierce : $\forall P \ Q, ((P \to Q) \to P) \to P.$
 - (b) **Theorem** *NNE* : $\forall P, \sim \sim P \rightarrow P$.

2 Reasoning about lists

The following exercises require the library Lists. You can load that library executing the command Require Import *Lists*.

1. Consider the following inductive relation:

Inductive *last* (A : Set) $(x : A) : list A \to Prop :=$ | *last_base* : *last* x (*cons* x nil) | *last_step* : $\forall l y$, *last* x $l \to last$ x (*cons* y l).

- (a) Use inversion to prove that $\forall x, \sim (last \ x \ nil)$.
- (b) (Difficult) Try to avoid using that tactic.
- 2. Consider the following definition for the Even predicate:

Inductive Even : $nat \rightarrow \mathsf{Prop} :=$ | Even_base : Even 0 | Even_step : $\forall n, Even \ n \rightarrow Even \ (S \ (S \ n)).$

- (a) Define the Odd predicate.
- (b) (Difficult) Prove that, for every number n, Even $n \to Odd$ (S n). (Hint: you should strength the property to (Even $n \leftrightarrow Odd$ (S n)) \wedge (Odd $n \leftrightarrow$ Even (S n)))
- (c) Define the function rev that reverses a list.
- (d) Prove that, for every list l, rev (rev l) = l.
- (e) Recall the definition for the function app (concatenation of lists). Prove that for every lists l_1 and l_2 , rev (app l1 l2) = app (rev l2) (rev l1).

3. Consider the inductive predicate:

Inductive InL (A : Type) $(a : A) : list A \rightarrow Prop :=$ | InHead : \forall (xs : list A), InL a (cons a xs) | InTail : \forall (x : A) (xs : list A), InL a xs \rightarrow InL a (cons x xs).

Prove the following properties:

- (a) \forall (A: Type) (a: A) (l1 l2: list A), InL a l1 \lor InL a l2 \rightarrow InL a (app l1 l2).
- (b) \forall (A: Type) (a: A) (l1 l2: list A), InL a (app l1 l2) \rightarrow InL a l1 \vee InL a l2.
- 4. Define the function elem that checks if an element belongs a list of integers (*Hint: we might import the ZArith to use the Z_eq_dec that tests for integer equality*).
- 5. Prove the correctness of elem, that is, $\forall (a:Z) (l1 \ l2 : list \ Z), elem \ a (app \ l1 \ l2) = orb (elem \ a \ l1) (elem \ a \ l2)$ (the function orb is the boolean-or function defined in Library Bool).