
Program Semantics, Verification, and Construction

Maria João Frade

Departamento de Informática

Universidade do Minho

Beyond Pure Type Systems

MAP-i, Braga 2007

1

Part II - Program Verification

• Proof assistants based on type theory

• Type System and Logics

- Pure Type Systems
- The Lambda Cube
- The Logic Cube

• Extensions of Pure Type Systems

- Sigma Systems
- Inductive Types
- The Calculus of Inductive Constructions
- Introduction to the Coq proof assistant

• The Coq proof assistant

• Axiomatic semantics of imperative programs: Hoare Logic

• Tool support for the specification, verification, and certification of programs

2

Bibliography

• Henk Barendregt. Lambda calculi with types. In S. Abramsky, D. Gabbay,
and T. Maibaum, editors, Handbook of Logic in Computer Science, volume 2,
pages 117–309. Oxford Science Publications, 1992.

• Henk Barendregt and Herman Geuvers. Proof-assistants using dependent
type systems. In John Alan Robinson and Andrei Voronkov, editors, Handbook
of Automated Reasoning, pages 1149–1238. Elsevier and MIT Press, 2001.

• Gilles Barthe and Thierry Coquand. An introduction to dependent type
theory. In Gilles Barthe, Peter Dybjer, Luís Pinto, and João Saraiva, editors,
APPSEM, volume 2395 of Lecture Notes in Computer Science, pages 1–41.
Springer, 2000.

• Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program
Development. Coq’Art: The Calculus of Inductive Constructions, volume XXV
of Texts in Theoretical Com- puter Science. An EATCS Series. Springer
Verlag, 2004.

• http://coq.inria.fr/. Documentation of the coq proof assistant (version 8.1).

3

Extensions of Pure Type Systems

4

Extensions of PTS

• It is possible to define data types but one does not get induction over these data
types for free. (It is possible to define functions by recursion, but induction has to
be assumed as an axiom.)

Inductive types are an extra feature which are present in all widely used type-
theoretic theorem provers, like Coq, Lego or Agda.

• Another feature that is not present in PTS, is the notion of (strong) sigma type.
A !-type is a “dependent product type” and therefore a generalization of product
type in the same way that a "-type is a generalization of the arrow type.

!x:A. B represents the type of pairs (a, b) with a : A and b : B[x := a].

(If x ! FV(B) we just end up with A # B.)

Note that products can be defined inside PTS with polymorphism, but !-type cannot.

PTS are minimal languages and lack type-theoretical constructs to carry out practical
programming. Several features are not present in PTS. For example:

5

Sigma types

Note that pairs are labeled with their types, so as to ensure uniqueness of types
and decidability of type checking.

Besides the paring construction to create elements of a !-type, on also has
projections to take a pair apart.

• The set of pseudo-terms is extended as follows:

• !-reduction is defined by the contraction rules

Chapter 3

Extensions of Pure Type Systems

• PTS are minimal languages and lack type-theoretical constructs to carry out practical pro-
gramming.

• Several features are not present in PTS. For example:

– It is possible to define data types but one does not get induction over these data types
for free. (It is possible to define functions by recursion, but induction has to be assumed
as an axiom.)
Inductive types are an extra feature which are present in all widely used type-theoretic
theorem provers, like Coq, Lego or Agda.

– Another feature that is not present in PTS, is the notion of (strong) Σ-type. A Σ-type
is a “dependent product type” and therefore a generalization of product type in the same
way that a Π-type is a generalization of the arrow type.
Σx :A.B represents the type of pairs (a, b) with a : A and b : B[x := a]. (If x !∈ FV(B)
we just end up with A×B.)
Note that products can be defined inside PTS with polymorphism, but Σ-type cannot.

3.1 Sigma Types

A Σ-type is a “dependent product type”. Σx :A.B is the type of pairs 〈a, b〉Σx:A. B such that a : A

and b : B[x := a]. Note that pairs are labeled with their types, so as to ensure uniqueness of types
and decidability of type checking.

Besides the paring construction to create elements of a Σ-type, on also has projections to take
a pair apart.

Extending PTS with Σ-types

• The set of pseudo-terms is extended as follows:

T ::= . . . | ΣV :T . T | 〈T , T 〉T | fst T | snd T

• π-reduction is defined by the contraction rules

fst 〈M,N〉Σx:A. B →π M

snd 〈M,N〉Σx:A. B →π N

23

Chapter 3

Extensions of Pure Type Systems

• PTS are minimal languages and lack type-theoretical constructs to carry out practical pro-
gramming.

• Several features are not present in PTS. For example:

– It is possible to define data types but one does not get induction over these data types
for free. (It is possible to define functions by recursion, but induction has to be assumed
as an axiom.)
Inductive types are an extra feature which are present in all widely used type-theoretic
theorem provers, like Coq, Lego or Agda.

– Another feature that is not present in PTS, is the notion of (strong) Σ-type. A Σ-type
is a “dependent product type” and therefore a generalization of product type in the same
way that a Π-type is a generalization of the arrow type.
Σx :A.B represents the type of pairs (a, b) with a : A and b : B[x := a]. (If x !∈ FV(B)
we just end up with A×B.)
Note that products can be defined inside PTS with polymorphism, but Σ-type cannot.

3.1 Sigma Types

A Σ-type is a “dependent product type”. Σx :A.B is the type of pairs 〈a, b〉Σx:A. B such that a : A

and b : B[x := a]. Note that pairs are labeled with their types, so as to ensure uniqueness of types
and decidability of type checking.

Besides the paring construction to create elements of a Σ-type, on also has projections to take
a pair apart.

Extending PTS with Σ-types

• The set of pseudo-terms is extended as follows:

T ::= . . . | ΣV :T . T | 〈T , T 〉T | fst T | snd T

• π-reduction is defined by the contraction rules

fst 〈M,N〉Σx:A. B →π M

snd 〈M,N〉Σx:A. B →π N

23

Extending PTS with !-types

(cont.)

 is the type of pairs such that and .

Chapter 3

Extensions of Pure Type Systems

• PTS are minimal languages and lack type-theoretical constructs to carry out practical pro-
gramming.

• Several features are not present in PTS. For example:

– It is possible to define data types but one does not get induction over these data types
for free. (It is possible to define functions by recursion, but induction has to be assumed
as an axiom.)
Inductive types are an extra feature which are present in all widely used type-theoretic
theorem provers, like Coq, Lego or Agda.

– Another feature that is not present in PTS, is the notion of (strong) Σ-type. A Σ-type
is a “dependent product type” and therefore a generalization of product type in the same
way that a Π-type is a generalization of the arrow type.
Σx :A.B represents the type of pairs (a, b) with a : A and b : B[x := a]. (If x !∈ FV(B)
we just end up with A×B.)
Note that products can be defined inside PTS with polymorphism, but Σ-type cannot.

3.1 Sigma Types

A Σ-type is a “dependent product type”. Σx :A.B is the type of pairs 〈a, b〉Σx:A. B such that a : A

and b : B[x := a]. Note that pairs are labeled with their types, so as to ensure uniqueness of types
and decidability of type checking.

Besides the paring construction to create elements of a Σ-type, on also has projections to take
a pair apart.

Extending PTS with Σ-types

• The set of pseudo-terms is extended as follows:

T ::= . . . | ΣV :T . T | 〈T , T 〉T | fst T | snd T

• π-reduction is defined by the contraction rules

fst 〈M,N〉Σx:A. B →π M

snd 〈M,N〉Σx:A. B →π N

23

Chapter 3

Extensions of Pure Type Systems

• PTS are minimal languages and lack type-theoretical constructs to carry out practical pro-
gramming.

• Several features are not present in PTS. For example:

– It is possible to define data types but one does not get induction over these data types
for free. (It is possible to define functions by recursion, but induction has to be assumed
as an axiom.)
Inductive types are an extra feature which are present in all widely used type-theoretic
theorem provers, like Coq, Lego or Agda.

– Another feature that is not present in PTS, is the notion of (strong) Σ-type. A Σ-type
is a “dependent product type” and therefore a generalization of product type in the same
way that a Π-type is a generalization of the arrow type.
Σx :A.B represents the type of pairs (a, b) with a : A and b : B[x := a]. (If x !∈ FV(B)
we just end up with A×B.)
Note that products can be defined inside PTS with polymorphism, but Σ-type cannot.

3.1 Sigma Types

A Σ-type is a “dependent product type”. Σx :A.B is the type of pairs 〈a, b〉Σx:A. B such that a : A

and b : B[x := a]. Note that pairs are labeled with their types, so as to ensure uniqueness of types
and decidability of type checking.

Besides the paring construction to create elements of a Σ-type, on also has projections to take
a pair apart.

Extending PTS with Σ-types

• The set of pseudo-terms is extended as follows:

T ::= . . . | ΣV :T . T | 〈T , T 〉T | fst T | snd T

• π-reduction is defined by the contraction rules

fst 〈M,N〉Σx:A. B →π M

snd 〈M,N〉Σx:A. B →π N

23

Chapter 3

Extensions of Pure Type Systems

• PTS are minimal languages and lack type-theoretical constructs to carry out practical pro-
gramming.

• Several features are not present in PTS. For example:

– It is possible to define data types but one does not get induction over these data types
for free. (It is possible to define functions by recursion, but induction has to be assumed
as an axiom.)
Inductive types are an extra feature which are present in all widely used type-theoretic
theorem provers, like Coq, Lego or Agda.

– Another feature that is not present in PTS, is the notion of (strong) Σ-type. A Σ-type
is a “dependent product type” and therefore a generalization of product type in the same
way that a Π-type is a generalization of the arrow type.
Σx :A.B represents the type of pairs (a, b) with a : A and b : B[x := a]. (If x !∈ FV(B)
we just end up with A×B.)
Note that products can be defined inside PTS with polymorphism, but Σ-type cannot.

3.1 Sigma Types

A Σ-type is a “dependent product type”. Σx :A.B is the type of pairs 〈a, b〉Σx:A. B such that a : A

and b : B[x := a]. Note that pairs are labeled with their types, so as to ensure uniqueness of types
and decidability of type checking.

Besides the paring construction to create elements of a Σ-type, on also has projections to take
a pair apart.

Extending PTS with Σ-types

• The set of pseudo-terms is extended as follows:

T ::= . . . | ΣV :T . T | 〈T , T 〉T | fst T | snd T

• π-reduction is defined by the contraction rules

fst 〈M,N〉Σx:A. B →π M

snd 〈M,N〉Σx:A. B →π N

23

Chapter 3

Extensions of Pure Type Systems

• PTS are minimal languages and lack type-theoretical constructs to carry out practical pro-
gramming.

• Several features are not present in PTS. For example:

– It is possible to define data types but one does not get induction over these data types
for free. (It is possible to define functions by recursion, but induction has to be assumed
as an axiom.)
Inductive types are an extra feature which are present in all widely used type-theoretic
theorem provers, like Coq, Lego or Agda.

– Another feature that is not present in PTS, is the notion of (strong) Σ-type. A Σ-type
is a “dependent product type” and therefore a generalization of product type in the same
way that a Π-type is a generalization of the arrow type.
Σx :A.B represents the type of pairs (a, b) with a : A and b : B[x := a]. (If x !∈ FV(B)
we just end up with A×B.)
Note that products can be defined inside PTS with polymorphism, but Σ-type cannot.

3.1 Sigma Types

A Σ-type is a “dependent product type”. Σx :A.B is the type of pairs 〈a, b〉Σx:A. B such that a : A

and b : B[x := a]. Note that pairs are labeled with their types, so as to ensure uniqueness of types
and decidability of type checking.

Besides the paring construction to create elements of a Σ-type, on also has projections to take
a pair apart.

Extending PTS with Σ-types

• The set of pseudo-terms is extended as follows:

T ::= . . . | ΣV :T . T | 〈T , T 〉T | fst T | snd T

• π-reduction is defined by the contraction rules

fst 〈M,N〉Σx:A. B →π M

snd 〈M,N〉Σx:A. B →π N

23

6

Sigma types

• The notion of specification is extended with a set U ⊆ S " S " S of rules

for !-types.
As usual, we use (s1,s2) as an abbreviation for (s1,s2,s2).

• The typing system is extended with the rules in the next slide. Moreover,
the conversion rule is modified so as to include $-conversion.

Extending PTS with !-types (cont.)

24 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

(sigma)
Γ ! A : s1 Γ, x :A ! B : s2

Γ ! (Σx :A.B) : s3

if (s1, s2, s3) ∈ U

(pair)
Γ ! M : A Γ ! N : B[x := M] Γ ! (Σx :A.B) : s

Γ ! 〈M,N〉Σx:A. B : (Σx :A.B)

(proj1)
Γ ! M : (Σx :A.B)

Γ ! fst M : A

(proj2)
Γ ! M : (Σx :A.B)

Γ ! sndM : B[x := fst M]

(conversion) Γ ! M : A Γ ! B : s
Γ ! M : B

if A =βπ B

Figure 3.1: Typing rules for Sigam-types

• The notion of specification is extended with a set U ⊆ S × S × S of rules for Σ-types. As
usual, we use (s1, s2) as an abbreviation for (s1, s2, s2).

• The typing system is extended with the rules of Figure 3.1. Moreover, the convertion rule
is modified so as to include π-convertion.

3.2 Inductive Types

24 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

(sigma)
Γ ! A : s1 Γ, x :A ! B : s2

Γ ! (Σx :A.B) : s3

if (s1, s2, s3) ∈ U

(pair)
Γ ! M : A Γ ! N : B[x := M] Γ ! (Σx :A.B) : s

Γ ! 〈M,N〉Σx:A. B : (Σx :A.B)

(proj1)
Γ ! M : (Σx :A.B)

Γ ! fst M : A

(proj2)
Γ ! M : (Σx :A.B)

Γ ! sndM : B[x := fst M]

(conversion) Γ ! M : A Γ ! B : s
Γ ! M : B

if A =βπ B

Figure 3.1: Typing rules for Sigam-types

• The notion of specification is extended with a set U ⊆ S × S × S of rules for Σ-types. As
usual, we use (s1, s2) as an abbreviation for (s1, s2, s2).

• The typing system is extended with the rules of Figure 3.1. Moreover, the convertion rule
is modified so as to include π-convertion.

3.2 Inductive Types

24 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

(sigma)
Γ ! A : s1 Γ, x :A ! B : s2

Γ ! (Σx :A.B) : s3

if (s1, s2, s3) ∈ U

(pair)
Γ ! M : A Γ ! N : B[x := M] Γ ! (Σx :A.B) : s

Γ ! 〈M,N〉Σx:A. B : (Σx :A.B)

(proj1)
Γ ! M : (Σx :A.B)

Γ ! fst M : A

(proj2)
Γ ! M : (Σx :A.B)

Γ ! sndM : B[x := fst M]

(conversion) Γ ! M : A Γ ! B : s
Γ ! M : B

if A =βπ B

Figure 3.1: Typing rules for Sigam-types

• The notion of specification is extended with a set U ⊆ S × S × S of rules for Σ-types. As
usual, we use (s1, s2) as an abbreviation for (s1, s2, s2).

• The typing system is extended with the rules of Figure 3.1. Moreover, the convertion rule
is modified so as to include π-convertion.

3.2 Inductive Types

(cont.)

7

24 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

(sigma)
Γ ! A : s1 Γ, x :A ! B : s2

Γ ! (Σx :A.B) : s3

if (s1, s2, s3) ∈ U

(pair)
Γ ! M : A Γ ! N : B[x := M] Γ ! (Σx :A.B) : s

Γ ! 〈M,N〉Σx:A. B : (Σx :A.B)

(proj1)
Γ ! M : (Σx :A.B)

Γ ! fst M : A

(proj2)
Γ ! M : (Σx :A.B)

Γ ! sndM : B[x := fst M]

(conversion) Γ ! M : A Γ ! B : s
Γ ! M : B

if A =βπ B

Figure 3.1: Typing rules for Sigam-types

• The notion of specification is extended with a set U ⊆ S × S × S of rules for Σ-types. As
usual, we use (s1, s2) as an abbreviation for (s1, s2, s2).

• The typing system is extended with the rules of Figure 3.1. Moreover, the convertion rule
is modified so as to include π-convertion.

3.2 Inductive Types

24 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

(sigma)
Γ ! A : s1 Γ, x :A ! B : s2

Γ ! (Σx :A.B) : s3

if (s1, s2, s3) ∈ U

(pair)
Γ ! M : A Γ ! N : B[x := M] Γ ! (Σx :A.B) : s

Γ ! 〈M,N〉Σx:A. B : (Σx :A.B)

(proj1)
Γ ! M : (Σx :A.B)

Γ ! fst M : A

(proj2)
Γ ! M : (Σx :A.B)

Γ ! sndM : B[x := fst M]

(conversion) Γ ! M : A Γ ! B : s
Γ ! M : B

if A =βπ B

Figure 3.1: Typing rules for Sigam-types

• The notion of specification is extended with a set U ⊆ S × S × S of rules for Σ-types. As
usual, we use (s1, s2) as an abbreviation for (s1, s2, s2).

• The typing system is extended with the rules of Figure 3.1. Moreover, the convertion rule
is modified so as to include π-convertion.

3.2 Inductive Types

24 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

(sigma)
Γ ! A : s1 Γ, x :A ! B : s2

Γ ! (Σx :A.B) : s3

if (s1, s2, s3) ∈ U

(pair)
Γ ! M : A Γ ! N : B[x := M] Γ ! (Σx :A.B) : s

Γ ! 〈M,N〉Σx:A. B : (Σx :A.B)

(proj1)
Γ ! M : (Σx :A.B)

Γ ! fst M : A

(proj2)
Γ ! M : (Σx :A.B)

Γ ! sndM : B[x := fst M]

(conversion) Γ ! M : A Γ ! B : s
Γ ! M : B

if A =βπ B

Figure 3.1: Typing rules for Sigam-types

• The notion of specification is extended with a set U ⊆ S × S × S of rules for Σ-types. As
usual, we use (s1, s2) as an abbreviation for (s1, s2, s2).

• The typing system is extended with the rules of Figure 3.1. Moreover, the convertion rule
is modified so as to include π-convertion.

3.2 Inductive Types

Sigma types

Extending PTS with !-types (cont.)

8

A !-type as an existential quantification

Let us consider an extension of !PRED" with !-types.

This rule captures a form of existential quantification:

We can extract from a proof p of ! n:N. Prime n, read as “there exists a
prime number n”, both a witness (fst p) of type N and a proof (snd p) that
(fst p) is prime.

Assume we have the rule (Set, Prop, Prop) for !-types.
One can have

24 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

(sigma)
Γ ! A : s1 Γ, x :A ! B : s2

Γ ! (Σx :A.B) : s3

if (s1, s2, s3) ∈ U

(pair)
Γ ! M : A Γ ! N : B[x := M] Γ ! (Σx :A.B) : s

Γ ! 〈M,N〉Σx:A. B : (Σx :A.B)

(proj1)
Γ ! M : (Σx :A.B)

Γ ! fst M : A

(proj2)
Γ ! M : (Σx :A.B)

Γ ! sndM : B[x := fst M]

(conversion) Γ ! M : A Γ ! B : s
Γ ! M : B

if A =βπ B

Figure 3.1: Typing rules for Sigam-types

• The notion of specification is extended with a set U ⊆ S × S × S of rules for Σ-types. As
usual, we use (s1, s2) as an abbreviation for (s1, s2, s2).

• The typing system is extended with the rules of Figure 3.1. Moreover, the conversion rule
is modified so as to include π-conversion.

3.1.1 Examples

Let us consider an extension of λPREDω with Σ-types.

• Assume we have the rule (Set,Prop,Prop) for Σ-types (i.e (Set,Prop,Prop) ∈ U). So, one
can have

N : Set,Prime : N→Prop ! (Σn :N.Prime n) : Prop

This rule captures a form of existential quantification:

We can extract from a proof p of Σ n :N.Primen, read as “there exists a prime
number n”, both a witness (fst p) of type N and a proof (snd p) that (fst p) is
prime.

• Assume we have the rule (Set,Prop,Typep) for Σ-types. This rule allows to form “subsets”
of kinds. Combined with the rule (Set,Typep,Typep) this rule allows to introduce types of
algebraic structures. For example, given a set A : Set, a monoid over A is a tuple consisting
of
◦ : A→A→A , a binary operator
e : A , the neutral element

such that the following types are inhabited

Π x, y, z : A. (x ◦ y) ◦ z =L x ◦ (y ◦ z)
Π x : A. e ◦ x =L x

Example:

9

This rule allows to form “subsets” of kinds. Combined with the rule (Set,Type#,Type#)

this rule allows to introduce types of algebraic structures.

24 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

(sigma)
Γ ! A : s1 Γ, x :A ! B : s2

Γ ! (Σx :A.B) : s3

if (s1, s2, s3) ∈ U

(pair)
Γ ! M : A Γ ! N : B[x := M] Γ ! (Σx :A.B) : s

Γ ! 〈M,N〉Σx:A. B : (Σx :A.B)

(proj1)
Γ ! M : (Σx :A.B)

Γ ! fst M : A

(proj2)
Γ ! M : (Σx :A.B)

Γ ! sndM : B[x := fst M]

(conversion) Γ ! M : A Γ ! B : s
Γ ! M : B

if A =βπ B

Figure 3.1: Typing rules for Sigam-types

• The notion of specification is extended with a set U ⊆ S × S × S of rules for Σ-types. As
usual, we use (s1, s2) as an abbreviation for (s1, s2, s2).

• The typing system is extended with the rules of Figure 3.1. Moreover, the conversion rule
is modified so as to include π-conversion.

3.1.1 Examples

Let us consider an extension of λPREDω with Σ-types.

• Assume we have the rule (Set,Prop,Prop) for Σ-types (i.e (Set,Prop,Prop) ∈ U). So, one
can have

N : Set,Prime : N→Prop ! (Σn :N.Prime n) : Prop

This rule captures a form of existential quantification:

We can extract from a proof p of Σ n :N.Primen, read as “there exists a prime
number n”, both a witness (fst p) of type N and a proof (snd p) that (fst p) is
prime.

• Assume we have the rule (Set,Prop,Typep) for Σ-types. This rule allows to form “subsets”
of kinds. Combined with the rule (Set,Typep,Typep) this rule allows to introduce types of
algebraic structures. For example, given a set A : Set, a monoid over A is a tuple consisting
of
◦ : A→A→A , a binary operator
e : A , the neutral element

such that the following types are inhabited

Π x, y, z : A. (x ◦ y) ◦ z =L x ◦ (y ◦ z)
Π x : A. e ◦ x =L x

, a binary operator

, the neutral element

24 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

(sigma)
Γ ! A : s1 Γ, x :A ! B : s2

Γ ! (Σx :A.B) : s3

if (s1, s2, s3) ∈ U

(pair)
Γ ! M : A Γ ! N : B[x := M] Γ ! (Σx :A.B) : s

Γ ! 〈M,N〉Σx:A. B : (Σx :A.B)

(proj1)
Γ ! M : (Σx :A.B)

Γ ! fst M : A

(proj2)
Γ ! M : (Σx :A.B)

Γ ! sndM : B[x := fst M]

(conversion) Γ ! M : A Γ ! B : s
Γ ! M : B

if A =βπ B

Figure 3.1: Typing rules for Sigam-types

• The notion of specification is extended with a set U ⊆ S × S × S of rules for Σ-types. As
usual, we use (s1, s2) as an abbreviation for (s1, s2, s2).

• The typing system is extended with the rules of Figure 3.1. Moreover, the conversion rule
is modified so as to include π-conversion.

3.1.1 Examples

Let us consider an extension of λPREDω with Σ-types.

• Assume we have the rule (Set,Prop,Prop) for Σ-types (i.e (Set,Prop,Prop) ∈ U). So, one
can have

N : Set,Prime : N→Prop ! (Σn :N.Prime n) : Prop

This rule captures a form of existential quantification:

We can extract from a proof p of Σ n :N.Primen, read as “there exists a prime
number n”, both a witness (fst p) of type N and a proof (snd p) that (fst p) is
prime.

• Assume we have the rule (Set,Prop,Typep) for Σ-types. This rule allows to form “subsets”
of kinds. Combined with the rule (Set,Typep,Typep) this rule allows to introduce types of
algebraic structures. For example, given a set A : Set, a monoid over A is a tuple consisting
of
◦ : A→A→A , a binary operator
e : A , the neutral element

such that the following types are inhabited

Π x, y, z : A. (x ◦ y) ◦ z =L x ◦ (y ◦ z)
Π x : A. e ◦ x =L x

A !-type as a “subset”

Example: Given a set A : Set, a monoid over A is a tuple consisting of

Assume we have the rule (Set, Prop, Type#) for !-types.

such that the following types are inhabited

10

Conjunction and equality are define as described before.

A !-type as a “subset” (cont.)

assuming

The type of monoids over A, Monoid(A), can be defined by

If m : Monoid(A), we can extract the elements of the monoid structure by
projections

3.2. INDUCTIVE TYPES 25

The type of monoids over A, Monoid(A), can be defined by

Monoid(A) := Σ ◦ :A→A→A.Σe : A.

(Πx, y, z :A. (x ◦ y) ◦ z =L x ◦ (y ◦ z)) ∧
(Πx :A. e ◦ x =L x)

Conjunction and equality are define as described before.

If m : Monoid(A), we can extract the elements of the monoid structure by projections

fst m : A→A→A

fst (sndm) : A

snd (sndm) : MLaws A (fst m) (fst (sndm))

assuming

MLaws := λA :Set.λ◦ :A→A→A.λ e :A. (Π x, y, z :A.(x◦y)◦z =L x◦(y◦z)) ∧ (Πx :A. e◦x =L x)

MLaws := λ A :Set.λ ◦ :A→A→A.λ e :A.

(Πx, y, z :A. (x ◦ y) ◦ z =L x ◦ (y ◦ z)) ∧ (Π x :A. e ◦ x =L x)

3.1.2 Extended Calculus of Constructions

Extended Calculus of Constructions (ECC) is the type theory supporting the Lego proof assistant.
ECC can be described by the following specification:

S = Prop, Typei , i ∈ N
A = (Prop : Type), (Typei : Typei+1) , i ∈ N
R = (Prop,Prop), (Prop,Typei), (Typei,Prop), (Typei,Typej ,Typemax(i,j)) , i, j ∈ N
U = (Prop,Prop,Prop), (Typei,Typej ,Typemax(i,j)) , i, j ∈ N

Cumulativity: Prop ⊆ Type0 ⊆ Type1 ⊆ . . .

ECC

S = Prop, Typei , i ∈ N
A = (Prop : Type), (Typei : Typei+1) , i ∈ N
R = (Prop,Prop), (Prop,Typei), (Typei,Prop), (Typei,Typej ,Typemax(i,j)) , i, j ∈ N
U = (Prop,Prop,Prop), (Typei,Typej ,Typemax(i,j)) , i, j ∈ N

In the current version of the Coq proof assistant, based on the Calculus of Inductive Construc-
tions (CIC), the notion of Σ-type is implemented as an inductive type.

3.2 Inductive Types

Induction is a basic notion in logic and set theory.

• When a set is defined inductively we understand it as being “built up from the bottom” by
a set of basic constructors.

• Elements of such a set can be decomposed in “smaller elements” in a well-founded manner.

3.2. INDUCTIVE TYPES 25

The type of monoids over A, Monoid(A), can be defined by

Monoid(A) := Σ ◦ :A→A→A.Σe : A.

(Πx, y, z :A. (x ◦ y) ◦ z =L x ◦ (y ◦ z)) ∧
(Πx :A. e ◦ x =L x)

Conjunction and equality are define as described before.

If m : Monoid(A), we can extract the elements of the monoid structure by projections

fst m : A→A→A

fst (sndm) : A

snd (sndm) : MLaws A (fst m) (fst (sndm))

assuming

MLaws := λA :Set.λ◦ :A→A→A.λ e :A. (Π x, y, z :A.(x◦y)◦z =L x◦(y◦z)) ∧ (Πx :A. e◦x =L x)

MLaws := λ A :Set.λ ◦ :A→A→A.λ e :A.

(Πx, y, z :A. (x ◦ y) ◦ z =L x ◦ (y ◦ z)) ∧ (Π x :A. e ◦ x =L x)

3.1.2 Extended Calculus of Constructions

Extended Calculus of Constructions (ECC) is the type theory supporting the Lego proof assistant.
ECC can be described by the following specification:

S = Prop, Typei , i ∈ N
A = (Prop : Type), (Typei : Typei+1) , i ∈ N
R = (Prop,Prop), (Prop,Typei), (Typei,Prop), (Typei,Typej ,Typemax(i,j)) , i, j ∈ N
U = (Prop,Prop,Prop), (Typei,Typej ,Typemax(i,j)) , i, j ∈ N

Cumulativity: Prop ⊆ Type0 ⊆ Type1 ⊆ . . .

ECC

S = Prop, Typei , i ∈ N
A = (Prop : Type), (Typei : Typei+1) , i ∈ N
R = (Prop,Prop), (Prop,Typei), (Typei,Prop), (Typei,Typej ,Typemax(i,j)) , i, j ∈ N
U = (Prop,Prop,Prop), (Typei,Typej ,Typemax(i,j)) , i, j ∈ N

In the current version of the Coq proof assistant, based on the Calculus of Inductive Construc-
tions (CIC), the notion of Σ-type is implemented as an inductive type.

3.2 Inductive Types

Induction is a basic notion in logic and set theory.

• When a set is defined inductively we understand it as being “built up from the bottom” by
a set of basic constructors.

• Elements of such a set can be decomposed in “smaller elements” in a well-founded manner.

3.2. INDUCTIVE TYPES 25

The type of monoids over A, Monoid(A), can be defined by

Monoid(A) := Σ ◦ :A→A→A.Σe : A.

(Πx, y, z :A. (x ◦ y) ◦ z =L x ◦ (y ◦ z)) ∧
(Πx :A. e ◦ x =L x)

Conjunction and equality are define as described before.

If m : Monoid(A), we can extract the elements of the monoid structure by projections

fst m : A→A→A

fst (sndm) : A

snd (sndm) : MLaws A (fst m) (fst (sndm))

assuming

MLaws := λA :Set.λ◦ :A→A→A.λ e :A. (Π x, y, z :A.(x◦y)◦z =L x◦(y◦z)) ∧ (Πx :A. e◦x =L x)

MLaws := λ A :Set.λ ◦ :A→A→A.λ e :A.

(Πx, y, z :A. (x ◦ y) ◦ z =L x ◦ (y ◦ z)) ∧ (Π x :A. e ◦ x =L x)

3.1.2 Extended Calculus of Constructions

Extended Calculus of Constructions (ECC) is the type theory supporting the Lego proof assistant.
ECC can be described by the following specification:

S = Prop, Typei , i ∈ N
A = (Prop : Type), (Typei : Typei+1) , i ∈ N
R = (Prop,Prop), (Prop,Typei), (Typei,Prop), (Typei,Typej ,Typemax(i,j)) , i, j ∈ N
U = (Prop,Prop,Prop), (Typei,Typej ,Typemax(i,j)) , i, j ∈ N

Cumulativity: Prop ⊆ Type0 ⊆ Type1 ⊆ . . .

ECC

S = Prop, Typei , i ∈ N
A = (Prop : Type), (Typei : Typei+1) , i ∈ N
R = (Prop,Prop), (Prop,Typei), (Typei,Prop), (Typei,Typej ,Typemax(i,j)) , i, j ∈ N
U = (Prop,Prop,Prop), (Typei,Typej ,Typemax(i,j)) , i, j ∈ N

In the current version of the Coq proof assistant, based on the Calculus of Inductive Construc-
tions (CIC), the notion of Σ-type is implemented as an inductive type.

3.2 Inductive Types

Induction is a basic notion in logic and set theory.

• When a set is defined inductively we understand it as being “built up from the bottom” by
a set of basic constructors.

• Elements of such a set can be decomposed in “smaller elements” in a well-founded manner.

11

Extended Calculus of Constructions

Extended Calculus of Constructions (ECC) is the underlying type theory of Lego proof
assistant. It can be described by the follows

In the current version of the Coq proof assistant, based on the Calculus of Inductive
Constructions (CIC), the notion of !-type is implemented as an inductive type.

Extended Calculus of Constructions

3.2. INDUCTIVE TYPES 25

The type of monoids over A, Monoid(A), can be defined by

Monoid(A) := Σ ◦ :A→A→A.Σe : A.

(Πx, y, z :A. (x ◦ y) ◦ z =L x ◦ (y ◦ z)) ∧
(Πx :A. e ◦ x =L x)

Conjunction and equality are define as described before.

If m : Monoid(A), we can extract the elements of the monoid structure by projections

fst m : A→A→A

fst (sndm) : A

snd (sndm) : MLaws A (fst m) (fst (sndm))

assuming

MLaws := λA :Set.λ◦ :A→A→A.λ e :A. (Π x, y, z :A.(x◦y)◦z =L x◦(y◦z)) ∧ (Πx :A. e◦x =L x)

MLaws := λ A :Set.λ ◦ :A→A→A.λ e :A.

(Πx, y, z :A. (x ◦ y) ◦ z =L x ◦ (y ◦ z)) ∧ (Π x :A. e ◦ x =L x)

3.1.2 Extended Calculus of Constructions

Extended Calculus of Constructions (ECC) is the type theory supporting the Lego proof assistant.
ECC can be described by the following specification:

S = Prop, Typei , i ∈ N
A = (Prop : Type), (Typei : Typei+1) , i ∈ N
R = (Prop,Prop), (Prop,Typei), (Typei,Prop), (Typei,Typej ,Typemax(i,j)) , i, j ∈ N
U = (Prop,Prop,Prop), (Typei,Typej ,Typemax(i,j)) , i, j ∈ N

Cumulativity: Prop ⊆ Type0 ⊆ Type1 ⊆ . . .

ECC

S = Prop, Typei , i ∈ N
A = (Prop : Type), (Typei : Typei+1) , i ∈ N
R = (Prop,Prop), (Prop,Typei), (Typei,Prop), (Typei,Typej ,Typemax(i,j)) , i, j ∈ N
U = (Prop,Prop,Prop), (Typei,Typej ,Typemax(i,j)) , i, j ∈ N

In the current version of the Coq proof assistant, based on the Calculus of Inductive Construc-
tions (CIC), the notion of Σ-type is implemented as an inductive type.

3.2 Inductive Types

Induction is a basic notion in logic and set theory.

• When a set is defined inductively we understand it as being “built up from the bottom” by
a set of basic constructors.

• Elements of such a set can be decomposed in “smaller elements” in a well-founded manner.

Cumulativity:

3.2. INDUCTIVE TYPES 25

The type of monoids over A, Monoid(A), can be defined by

Monoid(A) := Σ ◦ :A→A→A.Σe : A.

(Πx, y, z :A. (x ◦ y) ◦ z =L x ◦ (y ◦ z)) ∧
(Πx :A. e ◦ x =L x)

Conjunction and equality are define as described before.

If m : Monoid(A), we can extract the elements of the monoid structure by projections

fst m : A→A→A

fst (sndm) : A

snd (sndm) : MLaws A (fst m) (fst (sndm))

assuming

MLaws := λA :Set.λ◦ :A→A→A.λ e :A. (Π x, y, z :A.(x◦y)◦z =L x◦(y◦z)) ∧ (Πx :A. e◦x =L x)

MLaws := λ A :Set.λ ◦ :A→A→A.λ e :A.

(Πx, y, z :A. (x ◦ y) ◦ z =L x ◦ (y ◦ z)) ∧ (Π x :A. e ◦ x =L x)

3.1.2 Extended Calculus of Constructions

Extended Calculus of Constructions (ECC) is the type theory supporting the Lego proof assistant.
ECC can be described by the following specification:

S = Prop, Typei , i ∈ N
A = (Prop : Type), (Typei : Typei+1) , i ∈ N
R = (Prop,Prop), (Prop,Typei), (Typei,Prop), (Typei,Typej ,Typemax(i,j)) , i, j ∈ N
U = (Prop,Prop,Prop), (Typei,Typej ,Typemax(i,j)) , i, j ∈ N

Cumulativity: Prop ⊆ Type0 ⊆ Type1 ⊆ . . .

ECC

S = Prop, Typei , i ∈ N
A = (Prop : Type), (Typei : Typei+1) , i ∈ N
R = (Prop,Prop), (Prop,Typei), (Typei,Prop), (Typei,Typej ,Typemax(i,j)) , i, j ∈ N
U = (Prop,Prop,Prop), (Typei,Typej ,Typemax(i,j)) , i, j ∈ N

In the current version of the Coq proof assistant, based on the Calculus of Inductive Construc-
tions (CIC), the notion of Σ-type is implemented as an inductive type.

3.2 Inductive Types

Induction is a basic notion in logic and set theory.

• When a set is defined inductively we understand it as being “built up from the bottom” by
a set of basic constructors.

• Elements of such a set can be decomposed in “smaller elements” in a well-founded manner.

Specification:

12

Inductive Types

• When a set is defined inductively we understand it as being “built up from the
bottom” by a set of basic constructors.

• Elements of such a set can be decomposed in “smaller elements” in a well-founded
manner.

• This gives us principles of:

Induction is a basic notion in logic and set theory.

• “proof by induction” and

• “function definition by recursion”.

13

Inductive Types

• Constructors (which are the introduction rules of the type I) give the canonical
ways of constructing one element of the new type .

• I defined is the smallest set (of objects) closed under its introduction rules.

• The inhabitants of type I are the objects that can be obtained by a finite
number of applications of the type constructors.

We can define a new type I inductively by giving its constructors together with their
types which must be of the form

26 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

• This gives us principles of “proof by induction” and “function definition by recursion”.

We can define a new type I inductively by giving its constructors together with their types
which must be of the form

τ1→ . . .→τn→I , with n ≥ 0

• Constructors (which are the introduction rules of the type I) give the canonical ways of
constructing one element of the new type I.

• The type I defined id the smallest set (of objects) closed under its introduction rules.

• The inhabitants of type I are the objects that can be obtained by a finite number of appli-
cations of the type constructors.

For instance, the inductive type N : Set of natural numbers has two constructors

0 : N
S : N→ N

3.2.1 Case analysis

To program and reason about an inductive type we must have means to analyze its inhabitants.
The elimination rules for the inductive types express ways to use the objects of the inductive

type in order to define objects of other types, and are associated to new computational rules.

The first elimination rule for indutive types one can consider is case analyses.
For instance, n : N means that n was introduced using either 0 or S, so we may define an

object case n of {0⇒ b1 | S⇒ b2} in another type σ depending on which constructor was used to
introduce n. A typing rule for this construction is

Γ $ n : N Γ $ b1 : σ Γ $ b2 : N→σ

Γ $ case n of {0⇒ b1 | S⇒ b2} : σ

and the associated computing rules are

case 0 of {0⇒ b1 | S⇒ b2} → b1

case (Sx) of {0⇒ b1 | S⇒ b2} → b2 x

The case analysis rule is very useful but it does not give a mechanism to define recursive functions.

3.2.2 Recursors

When an inductive type is defined in a type theory the theory should automatically generate a
scheme for proof-by-induction and a scheme for primitive recursion.

The inductive type comes equiped with a recursor that can be used to define functions and
prove properties on that type.

The recursor is a constant RI that represents the structural induction principle for the ele-
ments of the inductive type I, and the computation rule associated to it defines a safe recursive
scheme for programming.

Type I can occur in any of the “domains” of its constructors. However, the

occurrences of I in must be in positive positions in order to assure the
well-foundedness of the datatype.

26 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

• This gives us principles of “proof by induction” and “function definition by recursion”.

We can define a new type I inductively by giving its constructors together with their types
which must be of the form

τ1→ . . .→τn→I , with n ≥ 0

• Constructors (which are the introduction rules of the type I) give the canonical ways of
constructing one element of the new type I.

• The type I defined is the smallest set (of objects) closed under its introduction rules.

• The inhabitants of type I are the objects that can be obtained by a finite number of appli-
cations of the type constructors.

• Note that the type I (under definition) can occur in any of the “domains” of its constructors.
However, the occurrences of I in τi must be in positive positions in order to assure the well-
foundedness of the datatype.

For instance, assuming that I does not occur in types A and B, I→B→ I, A→ (B→ I)→ I

or ((I→A)→B)→A→ I are valid types for a contructor of I, but (I→A)→ I or ((A→ I)→
B)→A→I are not.

3.2.1 Examples

For instance, the inductive type N : Set of natural numbers has two constructors

0 : N
S : N→ N

Notice that the positivity condition still permits functional recursive arguments in the construc-
tors. A well-known example of a higher-order datatype is the type O : Set of ordinal notations
which has three constructors

S : O
Succ : O→ O
Lim : (N→ O)→ O

To program and reason about an inductive type we must have means to analyze its inhabitants.
The elimination rules for the inductive types express ways to use the objects of the inductive

type in order to define objects of other types, and are associated to new computational rules.

3.2.2 Case analysis

The first elimination rule for indutive types one can consider is case analyses.
For instance, n : N means that n was introduced using either 0 or S, so we may define an

object case n of {0⇒ b1 | S⇒ b2} in another type σ depending on which constructor was used to
introduce n. A typing rule for this construction is

Γ $ n : N Γ $ b1 : σ Γ $ b2 : N→σ

Γ $ case n of {0⇒ b1 | S⇒ b2} : σ

and the associated computing rules are

case 0 of {0⇒ b1 | S⇒ b2} → b1

case (Sx) of {0⇒ b1 | S⇒ b2} → b2 x

The case analysis rule is very useful but it does not give a mechanism to define recursive functions.

NOTE:

 (I $ A) $ I

((A $ I) $ B) $ A $ I

Wrong !I $ B $ I

A $ (B $I) $ I

((I $ A) $ B) $ A $ I

OK

14

26 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

• This gives us principles of “proof by induction” and “function definition by recursion”.

We can define a new type I inductively by giving its constructors together with their types
which must be of the form

τ1→ . . .→τn→I , with n ≥ 0

• Constructors (which are the introduction rules of the type I) give the canonical ways of
constructing one element of the new type I.

• The type I defined id the smallest set (of objects) closed under its introduction rules.

• The inhabitants of type I are the objects that can be obtained by a finite number of appli-
cations of the type constructors.

For instance, the inductive type N : Set of natural numbers has two constructors

0 : N
S : N→ N

3.2.1 Case analysis

To program and reason about an inductive type we must have means to analyze its inhabitants.
The elimination rules for the inductive types express ways to use the objects of the inductive

type in order to define objects of other types, and are associated to new computational rules.

The first elimination rule for indutive types one can consider is case analyses.
For instance, n : N means that n was introduced using either 0 or S, so we may define an

object case n of {0⇒ b1 | S⇒ b2} in another type σ depending on which constructor was used to
introduce n. A typing rule for this construction is

Γ $ n : N Γ $ b1 : σ Γ $ b2 : N→σ

Γ $ case n of {0⇒ b1 | S⇒ b2} : σ

and the associated computing rules are

case 0 of {0⇒ b1 | S⇒ b2} → b1

case (Sx) of {0⇒ b1 | S⇒ b2} → b2 x

The case analysis rule is very useful but it does not give a mechanism to define recursive functions.

3.2.2 Recursors

When an inductive type is defined in a type theory the theory should automatically generate a
scheme for proof-by-induction and a scheme for primitive recursion.

The inductive type comes equiped with a recursor that can be used to define functions and
prove properties on that type.

The recursor is a constant RI that represents the structural induction principle for the ele-
ments of the inductive type I, and the computation rule associated to it defines a safe recursive
scheme for programming.

Examples

To program and reason about an inductive type we must have means to analyze its
inhabitants.

The elimination rules for the inductive types express ways to use the objects of the
inductive type in order to define objects of other types, and are associated to new
computational rules.

• A well-known example of a higher-order datatype is the type of
ordinal notations which has three constructors

26 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

• This gives us principles of “proof by induction” and “function definition by recursion”.

We can define a new type I inductively by giving its constructors together with their types
which must be of the form

τ1→ . . .→τn→I , with n ≥ 0

• Constructors (which are the introduction rules of the type I) give the canonical ways of
constructing one element of the new type I.

• The type I defined is the smallest set (of objects) closed under its introduction rules.

• The inhabitants of type I are the objects that can be obtained by a finite number of appli-
cations of the type constructors.

• Note that the type I (under definition) can occur in any of the “domains” of its constructors.
However, the occurrences of I in τi must be in positive positions in order to assure the well-
foundedness of the datatype.

For instance, assuming that I does not occur in types A and B, I→B→ I, A→ (B→ I)→ I

or ((I→A)→B)→A→ I are valid types for a contructor of I, but (I→A)→ I or ((A→ I)→
B)→A→I are not.

3.2.1 Examples

For instance, the inductive type N : Set of natural numbers has two constructors

0 : N
S : N→ N

Notice that the positivity condition still permits functional recursive arguments in the construc-
tors. A well-known example of a higher-order datatype is the type O : Set of ordinal notations
which has three constructors

S : O
Succ : O→ O
Lim : (N→ O)→ O

To program and reason about an inductive type we must have means to analyze its inhabitants.
The elimination rules for the inductive types express ways to use the objects of the inductive

type in order to define objects of other types, and are associated to new computational rules.

3.2.2 Case analysis

The first elimination rule for indutive types one can consider is case analyses.
For instance, n : N means that n was introduced using either 0 or S, so we may define an

object case n of {0⇒ b1 | S⇒ b2} in another type σ depending on which constructor was used to
introduce n. A typing rule for this construction is

Γ $ n : N Γ $ b1 : σ Γ $ b2 : N→σ

Γ $ case n of {0⇒ b1 | S⇒ b2} : σ

and the associated computing rules are

case 0 of {0⇒ b1 | S⇒ b2} → b1

case (Sx) of {0⇒ b1 | S⇒ b2} → b2 x

The case analysis rule is very useful but it does not give a mechanism to define recursive functions.

• The inductive type of natural numbers has two constructors

26 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

• This gives us principles of “proof by induction” and “function definition by recursion”.

We can define a new type I inductively by giving its constructors together with their types
which must be of the form

τ1→ . . .→τn→I , with n ≥ 0

• Constructors (which are the introduction rules of the type I) give the canonical ways of
constructing one element of the new type I.

• The type I defined is the smallest set (of objects) closed under its introduction rules.

• The inhabitants of type I are the objects that can be obtained by a finite number of appli-
cations of the type constructors.

• Note that the type I (under definition) can occur in any of the “domains” of its constructors.
However, the occurrences of I in τi must be in positive positions in order to assure the well-
foundedness of the datatype.

For instance, assuming that I does not occur in types A and B, I→B→ I, A→ (B→ I)→ I

or ((I→A)→B)→A→ I are valid types for a contructor of I, but (I→A)→ I or ((A→ I)→
B)→A→I are not.

3.2.1 Examples

For instance, the inductive type N : Set of natural numbers has two constructors

0 : N
S : N→ N

Notice that the positivity condition still permits functional recursive arguments in the construc-
tors. A well-known example of a higher-order datatype is the type O : Set of ordinal notations
which has three constructors

S : O
Succ : O→ O
Lim : (N→ O)→ O

To program and reason about an inductive type we must have means to analyze its inhabitants.
The elimination rules for the inductive types express ways to use the objects of the inductive

type in order to define objects of other types, and are associated to new computational rules.

3.2.2 Case analysis

The first elimination rule for indutive types one can consider is case analyses.
For instance, n : N means that n was introduced using either 0 or S, so we may define an

object case n of {0⇒ b1 | S⇒ b2} in another type σ depending on which constructor was used to
introduce n. A typing rule for this construction is

Γ $ n : N Γ $ b1 : σ Γ $ b2 : N→σ

Γ $ case n of {0⇒ b1 | S⇒ b2} : σ

and the associated computing rules are

case 0 of {0⇒ b1 | S⇒ b2} → b1

case (Sx) of {0⇒ b1 | S⇒ b2} → b2 x

The case analysis rule is very useful but it does not give a mechanism to define recursive functions.

26 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

• This gives us principles of “proof by induction” and “function definition by recursion”.

We can define a new type I inductively by giving its constructors together with their types
which must be of the form

τ1→ . . .→τn→I , with n ≥ 0

• Constructors (which are the introduction rules of the type I) give the canonical ways of
constructing one element of the new type I.

• The type I defined is the smallest set (of objects) closed under its introduction rules.

• The inhabitants of type I are the objects that can be obtained by a finite number of appli-
cations of the type constructors.

• Note that the type I (under definition) can occur in any of the “domains” of its constructors.
However, the occurrences of I in τi must be in positive positions in order to assure the well-
foundedness of the datatype.

For instance, assuming that I does not occur in types A and B, I→B→ I, A→ (B→ I)→ I

or ((I→A)→B)→A→ I are valid types for a contructor of I, but (I→A)→ I or ((A→ I)→
B)→A→I are not.

3.2.1 Examples

For instance, the inductive type N : Set of natural numbers has two constructors

0 : N
S : N→ N

Notice that the positivity condition still permits functional recursive arguments in the construc-
tors. A well-known example of a higher-order datatype is the type O : Set of ordinal notations
which has three constructors

Zero : O
Succ : O→ O
Lim : (N→ O)→ O

To program and reason about an inductive type we must have means to analyze its inhabitants.
The elimination rules for the inductive types express ways to use the objects of the inductive

type in order to define objects of other types, and are associated to new computational rules.

3.2.2 Case analysis

The first elimination rule for indutive types one can consider is case analyses.
For instance, n : N means that n was introduced using either 0 or S, so we may define an

object case n of {0⇒ b1 | S⇒ b2} in another type σ depending on which constructor was used to
introduce n. A typing rule for this construction is

Γ $ n : N Γ $ b1 : σ Γ $ b2 : N→σ

Γ $ case n of {0⇒ b1 | S⇒ b2} : σ

and the associated computing rules are

case 0 of {0⇒ b1 | S⇒ b2} → b1

case (Sx) of {0⇒ b1 | S⇒ b2} → b2 x

The case analysis rule is very useful but it does not give a mechanism to define recursive functions.

15

Case analysis

The first elimination rule for inductive types one can consider is case analyses.

The case analysis rule is very useful but it does not give a mechanism to define
recursive functions.

and the associated computing rules are

A typing rule for this construction is

26 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

• This gives us principles of “proof by induction” and “function definition by recursion”.

We can define a new type I inductively by giving its constructors together with their types
which must be of the form

τ1→ . . .→τn→I , with n ≥ 0

• Constructors (which are the introduction rules of the type I) give the canonical ways of
constructing one element of the new type I.

• The type I defined is the smallest set (of objects) closed under its introduction rules.

• The inhabitants of type I are the objects that can be obtained by a finite number of appli-
cations of the type constructors.

• Note that the type I (under definition) can occur in any of the “domains” of its constructors.
However, the occurrences of I in τi must be in positive positions in order to assure the well-
foundedness of the datatype.

For instance, assuming that I does not occur in types A and B, I→B→ I, A→ (B→ I)→ I

or ((I→A)→B)→A→ I are valid types for a contructor of I, but (I→A)→ I or ((A→ I)→
B)→A→I are not.

3.2.1 Examples

For instance, the inductive type N : Set of natural numbers has two constructors

0 : N
S : N→ N

Notice that the positivity condition still permits functional recursive arguments in the construc-
tors. A well-known example of a higher-order datatype is the type O : Set of ordinal notations
which has three constructors

Zero : O
Succ : O→ O
Lim : (N→ O)→ O

To program and reason about an inductive type we must have means to analyze its inhabitants.
The elimination rules for the inductive types express ways to use the objects of the inductive

type in order to define objects of other types, and are associated to new computational rules.

3.2.2 Case analysis

The first elimination rule for indutive types one can consider is case analyses.
For instance, n : N means that n was introduced using either 0 or S, so we may define an

object case n of {0⇒ b1 | S⇒ b2} in another type σ depending on which constructor was used to
introduce n. A typing rule for this construction is

Γ $ n : N Γ $ b1 : σ Γ $ b2 : N→σ

Γ $ case n of {0⇒ b1 | S⇒ b2} : σ

and the associated computing rules are

case 0 of {0⇒ b1 | S⇒ b2} → b1

case (Sx) of {0⇒ b1 | S⇒ b2} → b2 x

The case analysis rule is very useful but it does not give a mechanism to define recursive functions.

26 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

• This gives us principles of “proof by induction” and “function definition by recursion”.

We can define a new type I inductively by giving its constructors together with their types
which must be of the form

τ1→ . . .→τn→I , with n ≥ 0

• Constructors (which are the introduction rules of the type I) give the canonical ways of
constructing one element of the new type I.

• The type I defined is the smallest set (of objects) closed under its introduction rules.

• The inhabitants of type I are the objects that can be obtained by a finite number of appli-
cations of the type constructors.

• Note that the type I (under definition) can occur in any of the “domains” of its constructors.
However, the occurrences of I in τi must be in positive positions in order to assure the well-
foundedness of the datatype.

For instance, assuming that I does not occur in types A and B, I→B→ I, A→ (B→ I)→ I

or ((I→A)→B)→A→ I are valid types for a contructor of I, but (I→A)→ I or ((A→ I)→
B)→A→I are not.

3.2.1 Examples

For instance, the inductive type N : Set of natural numbers has two constructors

0 : N
S : N→ N

Notice that the positivity condition still permits functional recursive arguments in the construc-
tors. A well-known example of a higher-order datatype is the type O : Set of ordinal notations
which has three constructors

Zero : O
Succ : O→ O
Lim : (N→ O)→ O

To program and reason about an inductive type we must have means to analyze its inhabitants.
The elimination rules for the inductive types express ways to use the objects of the inductive

type in order to define objects of other types, and are associated to new computational rules.

3.2.2 Case analysis

The first elimination rule for indutive types one can consider is case analyses.
For instance, n : N means that n was introduced using either 0 or S, so we may define an

object case n of {0⇒ b1 | S⇒ b2} in another type σ depending on which constructor was used to
introduce n. A typing rule for this construction is

Γ $ n : N Γ $ b1 : σ Γ $ b2 : N→σ

Γ $ case n of {0⇒ b1 | S⇒ b2} : σ

and the associated computing rules are

case 0 of {0⇒ b1 | S⇒ b2} → b1

case (Sx) of {0⇒ b1 | S⇒ b2} → b2 x

The case analysis rule is very useful but it does not give a mechanism to define recursive functions.

For instance, means that was introduced using either 0 or S, so we
may define an object in another type depending
on which constructor was used to introduce .

26 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

• This gives us principles of “proof by induction” and “function definition by recursion”.

We can define a new type I inductively by giving its constructors together with their types
which must be of the form

τ1→ . . .→τn→I , with n ≥ 0

• Constructors (which are the introduction rules of the type I) give the canonical ways of
constructing one element of the new type I.

• The type I defined is the smallest set (of objects) closed under its introduction rules.

• The inhabitants of type I are the objects that can be obtained by a finite number of appli-
cations of the type constructors.

• Note that the type I (under definition) can occur in any of the “domains” of its constructors.
However, the occurrences of I in τi must be in positive positions in order to assure the well-
foundedness of the datatype.

For instance, assuming that I does not occur in types A and B, I→B→ I, A→ (B→ I)→ I

or ((I→A)→B)→A→ I are valid types for a contructor of I, but (I→A)→ I or ((A→ I)→
B)→A→I are not.

3.2.1 Examples

For instance, the inductive type N : Set of natural numbers has two constructors

0 : N
S : N→ N

Notice that the positivity condition still permits functional recursive arguments in the construc-
tors. A well-known example of a higher-order datatype is the type O : Set of ordinal notations
which has three constructors

Zero : O
Succ : O→ O
Lim : (N→ O)→ O

To program and reason about an inductive type we must have means to analyze its inhabitants.
The elimination rules for the inductive types express ways to use the objects of the inductive

type in order to define objects of other types, and are associated to new computational rules.

3.2.2 Case analysis

The first elimination rule for indutive types one can consider is case analyses.
For instance, n : N means that n was introduced using either 0 or S, so we may define an

object case n of {0⇒ b1 | S⇒ b2} in another type σ depending on which constructor was used to
introduce n. A typing rule for this construction is

Γ $ n : N Γ $ b1 : σ Γ $ b2 : N→σ

Γ $ case n of {0⇒ b1 | S⇒ b2} : σ

and the associated computing rules are

case 0 of {0⇒ b1 | S⇒ b2} → b1

case (Sx) of {0⇒ b1 | S⇒ b2} → b2 x

The case analysis rule is very useful but it does not give a mechanism to define recursive functions.

26 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

• This gives us principles of “proof by induction” and “function definition by recursion”.

We can define a new type I inductively by giving its constructors together with their types
which must be of the form

τ1→ . . .→τn→I , with n ≥ 0

• Constructors (which are the introduction rules of the type I) give the canonical ways of
constructing one element of the new type I.

• The type I defined is the smallest set (of objects) closed under its introduction rules.

• The inhabitants of type I are the objects that can be obtained by a finite number of appli-
cations of the type constructors.

• Note that the type I (under definition) can occur in any of the “domains” of its constructors.
However, the occurrences of I in τi must be in positive positions in order to assure the well-
foundedness of the datatype.

For instance, assuming that I does not occur in types A and B, I→B→ I, A→ (B→ I)→ I

or ((I→A)→B)→A→ I are valid types for a contructor of I, but (I→A)→ I or ((A→ I)→
B)→A→I are not.

3.2.1 Examples

For instance, the inductive type N : Set of natural numbers has two constructors

0 : N
S : N→ N

Notice that the positivity condition still permits functional recursive arguments in the construc-
tors. A well-known example of a higher-order datatype is the type O : Set of ordinal notations
which has three constructors

Zero : O
Succ : O→ O
Lim : (N→ O)→ O

To program and reason about an inductive type we must have means to analyze its inhabitants.
The elimination rules for the inductive types express ways to use the objects of the inductive

type in order to define objects of other types, and are associated to new computational rules.

3.2.2 Case analysis

The first elimination rule for indutive types one can consider is case analyses.
For instance, n : N means that n was introduced using either 0 or S, so we may define an

object case n of {0⇒ b1 | S⇒ b2} in another type σ depending on which constructor was used to
introduce n. A typing rule for this construction is

Γ $ n : N Γ $ b1 : σ Γ $ b2 : N→σ

Γ $ case n of {0⇒ b1 | S⇒ b2} : σ

and the associated computing rules are

case 0 of {0⇒ b1 | S⇒ b2} → b1

case (Sx) of {0⇒ b1 | S⇒ b2} → b2 x

The case analysis rule is very useful but it does not give a mechanism to define recursive functions.

26 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

• This gives us principles of “proof by induction” and “function definition by recursion”.

We can define a new type I inductively by giving its constructors together with their types
which must be of the form

τ1→ . . .→τn→I , with n ≥ 0

• Constructors (which are the introduction rules of the type I) give the canonical ways of
constructing one element of the new type I.

• The type I defined is the smallest set (of objects) closed under its introduction rules.

• The inhabitants of type I are the objects that can be obtained by a finite number of appli-
cations of the type constructors.

• Note that the type I (under definition) can occur in any of the “domains” of its constructors.
However, the occurrences of I in τi must be in positive positions in order to assure the well-
foundedness of the datatype.

For instance, assuming that I does not occur in types A and B, I→B→ I, A→ (B→ I)→ I

or ((I→A)→B)→A→ I are valid types for a contructor of I, but (I→A)→ I or ((A→ I)→
B)→A→I are not.

3.2.1 Examples

For instance, the inductive type N : Set of natural numbers has two constructors

0 : N
S : N→ N

Notice that the positivity condition still permits functional recursive arguments in the construc-
tors. A well-known example of a higher-order datatype is the type O : Set of ordinal notations
which has three constructors

Zero : O
Succ : O→ O
Lim : (N→ O)→ O

To program and reason about an inductive type we must have means to analyze its inhabitants.
The elimination rules for the inductive types express ways to use the objects of the inductive

type in order to define objects of other types, and are associated to new computational rules.

3.2.2 Case analysis

The first elimination rule for indutive types one can consider is case analyses.
For instance, n : N means that n was introduced using either 0 or S, so we may define an

object case n of {0⇒ b1 | S⇒ b2} in another type σ depending on which constructor was used to
introduce n. A typing rule for this construction is

Γ $ n : N Γ $ b1 : σ Γ $ b2 : N→σ

Γ $ case n of {0⇒ b1 | S⇒ b2} : σ

and the associated computing rules are

case 0 of {0⇒ b1 | S⇒ b2} → b1

case (Sx) of {0⇒ b1 | S⇒ b2} → b2 x

The case analysis rule is very useful but it does not give a mechanism to define recursive functions.

26 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

• This gives us principles of “proof by induction” and “function definition by recursion”.

We can define a new type I inductively by giving its constructors together with their types
which must be of the form

τ1→ . . .→τn→I , with n ≥ 0

• Constructors (which are the introduction rules of the type I) give the canonical ways of
constructing one element of the new type I.

• The type I defined is the smallest set (of objects) closed under its introduction rules.

• The inhabitants of type I are the objects that can be obtained by a finite number of appli-
cations of the type constructors.

• Note that the type I (under definition) can occur in any of the “domains” of its constructors.
However, the occurrences of I in τi must be in positive positions in order to assure the well-
foundedness of the datatype.

For instance, assuming that I does not occur in types A and B, I→B→ I, A→ (B→ I)→ I

or ((I→A)→B)→A→ I are valid types for a contructor of I, but (I→A)→ I or ((A→ I)→
B)→A→I are not.

3.2.1 Examples

For instance, the inductive type N : Set of natural numbers has two constructors

0 : N
S : N→ N

Notice that the positivity condition still permits functional recursive arguments in the construc-
tors. A well-known example of a higher-order datatype is the type O : Set of ordinal notations
which has three constructors

Zero : O
Succ : O→ O
Lim : (N→ O)→ O

To program and reason about an inductive type we must have means to analyze its inhabitants.
The elimination rules for the inductive types express ways to use the objects of the inductive

type in order to define objects of other types, and are associated to new computational rules.

3.2.2 Case analysis

The first elimination rule for indutive types one can consider is case analyses.
For instance, n : N means that n was introduced using either 0 or S, so we may define an

object case n of {0⇒ b1 | S⇒ b2} in another type σ depending on which constructor was used to
introduce n. A typing rule for this construction is

Γ $ n : N Γ $ b1 : σ Γ $ b2 : N→σ

Γ $ case n of {0⇒ b1 | S⇒ b2} : σ

and the associated computing rules are

case 0 of {0⇒ b1 | S⇒ b2} → b1

case (Sx) of {0⇒ b1 | S⇒ b2} → b2 x

The case analysis rule is very useful but it does not give a mechanism to define recursive functions.

26 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

• This gives us principles of “proof by induction” and “function definition by recursion”.

We can define a new type I inductively by giving its constructors together with their types
which must be of the form

τ1→ . . .→τn→I , with n ≥ 0

• Constructors (which are the introduction rules of the type I) give the canonical ways of
constructing one element of the new type I.

• The type I defined is the smallest set (of objects) closed under its introduction rules.

• The inhabitants of type I are the objects that can be obtained by a finite number of appli-
cations of the type constructors.

• Note that the type I (under definition) can occur in any of the “domains” of its constructors.
However, the occurrences of I in τi must be in positive positions in order to assure the well-
foundedness of the datatype.

For instance, assuming that I does not occur in types A and B, I→B→ I, A→ (B→ I)→ I

or ((I→A)→B)→A→ I are valid types for a contructor of I, but (I→A)→ I or ((A→ I)→
B)→A→I are not.

3.2.1 Examples

For instance, the inductive type N : Set of natural numbers has two constructors

0 : N
S : N→ N

Notice that the positivity condition still permits functional recursive arguments in the construc-
tors. A well-known example of a higher-order datatype is the type O : Set of ordinal notations
which has three constructors

Zero : O
Succ : O→ O
Lim : (N→ O)→ O

To program and reason about an inductive type we must have means to analyze its inhabitants.
The elimination rules for the inductive types express ways to use the objects of the inductive

type in order to define objects of other types, and are associated to new computational rules.

3.2.2 Case analysis

The first elimination rule for indutive types one can consider is case analyses.
For instance, n : N means that n was introduced using either 0 or S, so we may define an

object case n of {0⇒ b1 | S⇒ b2} in another type σ depending on which constructor was used to
introduce n. A typing rule for this construction is

Γ $ n : N Γ $ b1 : σ Γ $ b2 : N→σ

Γ $ case n of {0⇒ b1 | S⇒ b2} : σ

and the associated computing rules are

case 0 of {0⇒ b1 | S⇒ b2} → b1

case (Sx) of {0⇒ b1 | S⇒ b2} → b2 x

The case analysis rule is very useful but it does not give a mechanism to define recursive functions.

16

Recursors
When an inductive type is defined in a type theory the theory should automatically
generate a scheme for proof-by-induction and a scheme for primitive recursion.

and its reduction rules are

• The inductive type comes equipped with a recursor that can be used to define
functions and prove properties on that type.

• The recursor is a constant that represents the structural induction principle
for the elements of the inductive type I , and the computation rule associated to
it defines a safe recursive scheme for programming.

3.2. INDUCTIVE TYPES 27

3.2.3 Recursors

When an inductive type is defined in a type theory the theory should automatically generate a
scheme for proof-by-induction and a scheme for primitive recursion.

The inductive type comes equiped with a recursor that can be used to define functions and
prove properties on that type.

The recursor is a constant RI that represents the structural induction principle for the ele-
ments of the inductive type I, and the computation rule associated to it defines a safe recursive
scheme for programming.

For example, RN, the recursor for N, has the following typing rule:

Γ ! P : N→Type Γ ! a : P 0 Γ ! a′ : Πx :N. P x→P (Sx)
Γ ! RN P a a′ : Πn :N. P n

and its reduction rules are

RN P aa′ 0 → a

RN P aa′ (Sx) → a′ x (RN P aa′ x)

Observe that:

• The proof-by-induction scheme can be recoverd by setting P to be of type N→Prop.

Let indN := λ P :N→Prop.RN P we obtain the following rule

Γ ! P : N→Prop Γ ! a : P 0 Γ ! a′ : Πx :N. P x→P (Sx)
Γ ! indN P aa′ : Πn :N. P n

This is the well known structural induction principle over natural numbers. It allows to
prove some universal property of natural numbers (∀n :N. Pn) by induction on n.

• The primitive recursion scheme (allowing dependent types) can be recoverd by setting P :
N→Set.

Let recN := λ P :N→Set.RN P we obtain the following rule

Γ ! T : N→Set Γ ! a : T 0 Γ ! a′ : Πx :N. T x→T (Sx)
Γ ! recN T a a′ : Πn :N. T n

We can define functions using the recursors. For instance, a function that doubles a natural
number can be defined as follows:

double := recN (λn :N. N) 0 (λx :N.λy :N.S (S y))

This approach gives safe way to express recursion without introducing non-normalizable ob-
jects. However, codifying recursive functions in terms of elimination constants can be rather
difficult, and is quite far from the way we are used to program.

For example, , the recursor for , has the following typing rule:

3.2. INDUCTIVE TYPES 27

3.2.3 Recursors

When an inductive type is defined in a type theory the theory should automatically generate a
scheme for proof-by-induction and a scheme for primitive recursion.

The inductive type comes equiped with a recursor that can be used to define functions and
prove properties on that type.

The recursor is a constant RI that represents the structural induction principle for the ele-
ments of the inductive type I, and the computation rule associated to it defines a safe recursive
scheme for programming.

For example, RN, the recursor for N, has the following typing rule:

Γ ! P : N→Type Γ ! a : P 0 Γ ! a′ : Πx :N. P x→P (Sx)
Γ ! RN P a a′ : Πn :N. P n

and its reduction rules are

RN P aa′ 0 → a

RN P aa′ (Sx) → a′ x (RN P aa′ x)

Observe that:

• The proof-by-induction scheme can be recoverd by setting P to be of type N→Prop.

Let indN := λ P :N→Prop.RN P we obtain the following rule

Γ ! P : N→Prop Γ ! a : P 0 Γ ! a′ : Πx :N. P x→P (Sx)
Γ ! indN P aa′ : Πn :N. P n

This is the well known structural induction principle over natural numbers. It allows to
prove some universal property of natural numbers (∀n :N. Pn) by induction on n.

• The primitive recursion scheme (allowing dependent types) can be recoverd by setting P :
N→Set.

Let recN := λ P :N→Set.RN P we obtain the following rule

Γ ! T : N→Set Γ ! a : T 0 Γ ! a′ : Πx :N. T x→T (Sx)
Γ ! recN T a a′ : Πn :N. T n

We can define functions using the recursors. For instance, a function that doubles a natural
number can be defined as follows:

double := recN (λn :N. N) 0 (λx :N.λy :N.S (S y))

This approach gives safe way to express recursion without introducing non-normalizable ob-
jects. However, codifying recursive functions in terms of elimination constants can be rather
difficult, and is quite far from the way we are used to program.

3.2. INDUCTIVE TYPES 27

3.2.3 Recursors

When an inductive type is defined in a type theory the theory should automatically generate a
scheme for proof-by-induction and a scheme for primitive recursion.

The inductive type comes equiped with a recursor that can be used to define functions and
prove properties on that type.

The recursor is a constant RI that represents the structural induction principle for the ele-
ments of the inductive type I, and the computation rule associated to it defines a safe recursive
scheme for programming.

For example, RN, the recursor for N, has the following typing rule:

Γ ! P : N→Type Γ ! a : P 0 Γ ! a′ : Πx :N. P x→P (Sx)
Γ ! RN P a a′ : Πn :N. P n

and its reduction rules are

RN P aa′ 0 → a

RN P aa′ (Sx) → a′ x (RN P aa′ x)

Observe that:

• The proof-by-induction scheme can be recoverd by setting P to be of type N→Prop.

Let indN := λ P :N→Prop.RN P we obtain the following rule

Γ ! P : N→Prop Γ ! a : P 0 Γ ! a′ : Πx :N. P x→P (Sx)
Γ ! indN P aa′ : Πn :N. P n

This is the well known structural induction principle over natural numbers. It allows to
prove some universal property of natural numbers (∀n :N. Pn) by induction on n.

• The primitive recursion scheme (allowing dependent types) can be recoverd by setting P :
N→Set.

Let recN := λ P :N→Set.RN P we obtain the following rule

Γ ! T : N→Set Γ ! a : T 0 Γ ! a′ : Πx :N. T x→T (Sx)
Γ ! recN T a a′ : Πn :N. T n

We can define functions using the recursors. For instance, a function that doubles a natural
number can be defined as follows:

double := recN (λn :N. N) 0 (λx :N.λy :N.S (S y))

This approach gives safe way to express recursion without introducing non-normalizable ob-
jects. However, codifying recursive functions in terms of elimination constants can be rather
difficult, and is quite far from the way we are used to program.

3.2. INDUCTIVE TYPES 27

3.2.3 Recursors

When an inductive type is defined in a type theory the theory should automatically generate a
scheme for proof-by-induction and a scheme for primitive recursion.

The inductive type comes equiped with a recursor that can be used to define functions and
prove properties on that type.

The recursor is a constant RI that represents the structural induction principle for the ele-
ments of the inductive type I, and the computation rule associated to it defines a safe recursive
scheme for programming.

For example, RN, the recursor for N, has the following typing rule:

Γ ! P : N→Type Γ ! a : P 0 Γ ! a′ : Πx :N. P x→P (Sx)
Γ ! RN P a a′ : Πn :N. P n

and its reduction rules are

RN P aa′ 0 → a

RN P aa′ (Sx) → a′ x (RN P aa′ x)

Observe that:

• The proof-by-induction scheme can be recoverd by setting P to be of type N→Prop.

Let indN := λ P :N→Prop.RN P we obtain the following rule

Γ ! P : N→Prop Γ ! a : P 0 Γ ! a′ : Πx :N. P x→P (Sx)
Γ ! indN P aa′ : Πn :N. P n

This is the well known structural induction principle over natural numbers. It allows to
prove some universal property of natural numbers (∀n :N. Pn) by induction on n.

• The primitive recursion scheme (allowing dependent types) can be recoverd by setting P :
N→Set.

Let recN := λ P :N→Set.RN P we obtain the following rule

Γ ! T : N→Set Γ ! a : T 0 Γ ! a′ : Πx :N. T x→T (Sx)
Γ ! recN T a a′ : Πn :N. T n

We can define functions using the recursors. For instance, a function that doubles a natural
number can be defined as follows:

double := recN (λn :N. N) 0 (λx :N.λy :N.S (S y))

This approach gives safe way to express recursion without introducing non-normalizable ob-
jects. However, codifying recursive functions in terms of elimination constants can be rather
difficult, and is quite far from the way we are used to program.

3.2. INDUCTIVE TYPES 27

3.2.3 Recursors

When an inductive type is defined in a type theory the theory should automatically generate a
scheme for proof-by-induction and a scheme for primitive recursion.

The inductive type comes equiped with a recursor that can be used to define functions and
prove properties on that type.

The recursor is a constant RI that represents the structural induction principle for the ele-
ments of the inductive type I, and the computation rule associated to it defines a safe recursive
scheme for programming.

For example, RN, the recursor for N, has the following typing rule:

Γ ! P : N→Type Γ ! a : P 0 Γ ! a′ : Πx :N. P x→P (Sx)
Γ ! RN P a a′ : Πn :N. P n

and its reduction rules are

RN P aa′ 0 → a

RN P aa′ (Sx) → a′ x (RN P aa′ x)

Observe that:

• The proof-by-induction scheme can be recoverd by setting P to be of type N→Prop.

Let indN := λ P :N→Prop.RN P we obtain the following rule

Γ ! P : N→Prop Γ ! a : P 0 Γ ! a′ : Πx :N. P x→P (Sx)
Γ ! indN P aa′ : Πn :N. P n

This is the well known structural induction principle over natural numbers. It allows to
prove some universal property of natural numbers (∀n :N. Pn) by induction on n.

• The primitive recursion scheme (allowing dependent types) can be recoverd by setting P :
N→Set.

Let recN := λ P :N→Set.RN P we obtain the following rule

Γ ! T : N→Set Γ ! a : T 0 Γ ! a′ : Πx :N. T x→T (Sx)
Γ ! recN T a a′ : Πn :N. T n

We can define functions using the recursors. For instance, a function that doubles a natural
number can be defined as follows:

double := recN (λn :N. N) 0 (λx :N.λy :N.S (S y))

This approach gives safe way to express recursion without introducing non-normalizable ob-
jects. However, codifying recursive functions in terms of elimination constants can be rather
difficult, and is quite far from the way we are used to program.

17

Proof-by-induction scheme

3.2. INDUCTIVE TYPES 27

3.2.3 Recursors

When an inductive type is defined in a type theory the theory should automatically generate a
scheme for proof-by-induction and a scheme for primitive recursion.

The inductive type comes equiped with a recursor that can be used to define functions and
prove properties on that type.

The recursor is a constant RI that represents the structural induction principle for the ele-
ments of the inductive type I, and the computation rule associated to it defines a safe recursive
scheme for programming.

For example, RN, the recursor for N, has the following typing rule:

Γ ! P : N→Type Γ ! a : P 0 Γ ! a′ : Πx :N. P x→P (Sx)
Γ ! RN P a a′ : Πn :N. P n

and its reduction rules are

RN P aa′ 0 → a

RN P aa′ (Sx) → a′ x (RN P aa′ x)

Observe that:

• The proof-by-induction scheme can be recoverd by setting P to be of type N→Prop.

Let indN := λ P :N→Prop.RN P we obtain the following rule

Γ ! P : N→Prop Γ ! a : P 0 Γ ! a′ : Πx :N. P x→P (Sx)
Γ ! indN P aa′ : Πn :N. P n

This is the well known structural induction principle over natural numbers. It allows to
prove some universal property of natural numbers (∀n :N. Pn) by induction on n.

• The primitive recursion scheme (allowing dependent types) can be recoverd by setting P :
N→Set.

Let recN := λ P :N→Set.RN P we obtain the following rule

Γ ! T : N→Set Γ ! a : T 0 Γ ! a′ : Πx :N. T x→T (Sx)
Γ ! recN T a a′ : Πn :N. T n

We can define functions using the recursors. For instance, a function that doubles a natural
number can be defined as follows:

double := recN (λn :N. N) 0 (λx :N.λy :N.S (S y))

This approach gives safe way to express recursion without introducing non-normalizable ob-
jects. However, codifying recursive functions in terms of elimination constants can be rather
difficult, and is quite far from the way we are used to program.

3.2. INDUCTIVE TYPES 27

3.2.3 Recursors

When an inductive type is defined in a type theory the theory should automatically generate a
scheme for proof-by-induction and a scheme for primitive recursion.

The inductive type comes equiped with a recursor that can be used to define functions and
prove properties on that type.

The recursor is a constant RI that represents the structural induction principle for the ele-
ments of the inductive type I, and the computation rule associated to it defines a safe recursive
scheme for programming.

For example, RN, the recursor for N, has the following typing rule:

Γ ! P : N→Type Γ ! a : P 0 Γ ! a′ : Πx :N. P x→P (Sx)
Γ ! RN P a a′ : Πn :N. P n

and its reduction rules are

RN P aa′ 0 → a

RN P aa′ (Sx) → a′ x (RN P aa′ x)

Observe that:

• The proof-by-induction scheme can be recoverd by setting P to be of type N→Prop.

Let indN := λ P :N→Prop.RN P we obtain the following rule

Γ ! P : N→Prop Γ ! a : P 0 Γ ! a′ : Πx :N. P x→P (Sx)
Γ ! indN P aa′ : Πn :N. P n

This is the well known structural induction principle over natural numbers. It allows to
prove some universal property of natural numbers (∀n :N. Pn) by induction on n.

• The primitive recursion scheme (allowing dependent types) can be recoverd by setting P :
N→Set.

Let recN := λ P :N→Set.RN P we obtain the following rule

Γ ! T : N→Set Γ ! a : T 0 Γ ! a′ : Πx :N. T x→T (Sx)
Γ ! recN T a a′ : Πn :N. T n

We can define functions using the recursors. For instance, a function that doubles a natural
number can be defined as follows:

double := recN (λn :N. N) 0 (λx :N.λy :N.S (S y))

This approach gives safe way to express recursion without introducing non-normalizable ob-
jects. However, codifying recursive functions in terms of elimination constants can be rather
difficult, and is quite far from the way we are used to program.

Let . We obtain the following rule

This is the well known structural induction principle over natural numbers. It
allows to prove some universal property of natural numbers by

induction on n.

3.2. INDUCTIVE TYPES 27

3.2.3 Recursors

When an inductive type is defined in a type theory the theory should automatically generate a
scheme for proof-by-induction and a scheme for primitive recursion.

The inductive type comes equiped with a recursor that can be used to define functions and
prove properties on that type.

The recursor is a constant RI that represents the structural induction principle for the ele-
ments of the inductive type I, and the computation rule associated to it defines a safe recursive
scheme for programming.

For example, RN, the recursor for N, has the following typing rule:

Γ ! P : N→Type Γ ! a : P 0 Γ ! a′ : Πx :N. P x→P (Sx)
Γ ! RN P a a′ : Πn :N. P n

and its reduction rules are

RN P aa′ 0 → a

RN P aa′ (Sx) → a′ x (RN P aa′ x)

Observe that:

• The proof-by-induction scheme can be recoverd by setting P to be of type N→Prop.

Let indN := λ P :N→Prop.RN P we obtain the following rule

Γ ! P : N→Prop Γ ! a : P 0 Γ ! a′ : Πx :N. P x→P (Sx)
Γ ! indN P aa′ : Πn :N. P n

This is the well known structural induction principle over natural numbers. It allows to
prove some universal property of natural numbers (∀n :N. Pn) by induction on n.

• The primitive recursion scheme (allowing dependent types) can be recoverd by setting P :
N→Set.

Let recN := λ P :N→Set.RN P we obtain the following rule

Γ ! T : N→Set Γ ! a : T 0 Γ ! a′ : Πx :N. T x→T (Sx)
Γ ! recN T a a′ : Πn :N. T n

We can define functions using the recursors. For instance, a function that doubles a natural
number can be defined as follows:

double := recN (λn :N. N) 0 (λx :N.λy :N.S (S y))

This approach gives safe way to express recursion without introducing non-normalizable ob-
jects. However, codifying recursive functions in terms of elimination constants can be rather
difficult, and is quite far from the way we are used to program.

3.2. INDUCTIVE TYPES 27

3.2.3 Recursors

When an inductive type is defined in a type theory the theory should automatically generate a
scheme for proof-by-induction and a scheme for primitive recursion.

The inductive type comes equiped with a recursor that can be used to define functions and
prove properties on that type.

The recursor is a constant RI that represents the structural induction principle for the ele-
ments of the inductive type I, and the computation rule associated to it defines a safe recursive
scheme for programming.

For example, RN, the recursor for N, has the following typing rule:

Γ ! P : N→Type Γ ! a : P 0 Γ ! a′ : Πx :N. P x→P (Sx)
Γ ! RN P a a′ : Πn :N. P n

and its reduction rules are

RN P aa′ 0 → a

RN P aa′ (Sx) → a′ x (RN P aa′ x)

Observe that:

• The proof-by-induction scheme can be recoverd by setting P to be of type N→Prop.

Let indN := λ P :N→Prop.RN P we obtain the following rule

Γ ! P : N→Prop Γ ! a : P 0 Γ ! a′ : Πx :N. P x→P (Sx)
Γ ! indN P aa′ : Πn :N. P n

This is the well known structural induction principle over natural numbers. It allows to
prove some universal property of natural numbers (∀n :N. Pn) by induction on n.

• The primitive recursion scheme (allowing dependent types) can be recoverd by setting P :
N→Set.

Let recN := λ P :N→Set.RN P we obtain the following rule

Γ ! T : N→Set Γ ! a : T 0 Γ ! a′ : Πx :N. T x→T (Sx)
Γ ! recN T a a′ : Πn :N. T n

We can define functions using the recursors. For instance, a function that doubles a natural
number can be defined as follows:

double := recN (λn :N. N) 0 (λx :N.λy :N.S (S y))

This approach gives safe way to express recursion without introducing non-normalizable ob-
jects. However, codifying recursive functions in terms of elimination constants can be rather
difficult, and is quite far from the way we are used to program.

The proof-by-induction scheme can be recovered from by setting P to be of
type

3.2. INDUCTIVE TYPES 27

3.2.3 Recursors

When an inductive type is defined in a type theory the theory should automatically generate a
scheme for proof-by-induction and a scheme for primitive recursion.

The inductive type comes equiped with a recursor that can be used to define functions and
prove properties on that type.

The recursor is a constant RI that represents the structural induction principle for the ele-
ments of the inductive type I, and the computation rule associated to it defines a safe recursive
scheme for programming.

For example, RN, the recursor for N, has the following typing rule:

Γ ! P : N→Type Γ ! a : P 0 Γ ! a′ : Πx :N. P x→P (Sx)
Γ ! RN P a a′ : Πn :N. P n

and its reduction rules are

RN P aa′ 0 → a

RN P aa′ (Sx) → a′ x (RN P aa′ x)

Observe that:

• The proof-by-induction scheme can be recoverd by setting P to be of type N→Prop.

Let indN := λ P :N→Prop.RN P we obtain the following rule

Γ ! P : N→Prop Γ ! a : P 0 Γ ! a′ : Πx :N. P x→P (Sx)
Γ ! indN P aa′ : Πn :N. P n

This is the well known structural induction principle over natural numbers. It allows to
prove some universal property of natural numbers (∀n :N. Pn) by induction on n.

• The primitive recursion scheme (allowing dependent types) can be recoverd by setting P :
N→Set.

Let recN := λ P :N→Set.RN P we obtain the following rule

Γ ! T : N→Set Γ ! a : T 0 Γ ! a′ : Πx :N. T x→T (Sx)
Γ ! recN T a a′ : Πn :N. T n

We can define functions using the recursors. For instance, a function that doubles a natural
number can be defined as follows:

double := recN (λn :N. N) 0 (λx :N.λy :N.S (S y))

This approach gives safe way to express recursion without introducing non-normalizable ob-
jects. However, codifying recursive functions in terms of elimination constants can be rather
difficult, and is quite far from the way we are used to program.

18

Primitive recursion scheme

Let . We obtain the following rule

3.2. INDUCTIVE TYPES 27

3.2.3 Recursors

When an inductive type is defined in a type theory the theory should automatically generate a
scheme for proof-by-induction and a scheme for primitive recursion.

The inductive type comes equiped with a recursor that can be used to define functions and
prove properties on that type.

The recursor is a constant RI that represents the structural induction principle for the ele-
ments of the inductive type I, and the computation rule associated to it defines a safe recursive
scheme for programming.

For example, RN, the recursor for N, has the following typing rule:

Γ ! P : N→Type Γ ! a : P 0 Γ ! a′ : Πx :N. P x→P (Sx)
Γ ! RN P a a′ : Πn :N. P n

and its reduction rules are

RN P aa′ 0 → a

RN P aa′ (Sx) → a′ x (RN P aa′ x)

Observe that:

• The proof-by-induction scheme can be recoverd by setting P to be of type N→Prop.

Let indN := λ P :N→Prop.RN P we obtain the following rule

Γ ! P : N→Prop Γ ! a : P 0 Γ ! a′ : Πx :N. P x→P (Sx)
Γ ! indN P aa′ : Πn :N. P n

This is the well known structural induction principle over natural numbers. It allows to
prove some universal property of natural numbers (∀n :N. Pn) by induction on n.

• The primitive recursion scheme (allowing dependent types) can be recoverd by setting P :
N→Set.

Let recN := λ P :N→Set.RN P we obtain the following rule

Γ ! T : N→Set Γ ! a : T 0 Γ ! a′ : Πx :N. T x→T (Sx)
Γ ! recN T a a′ : Πn :N. T n

We can define functions using the recursors. For instance, a function that doubles a natural
number can be defined as follows:

double := recN (λn :N. N) 0 (λx :N.λy :N.S (S y))

This approach gives safe way to express recursion without introducing non-normalizable ob-
jects. However, codifying recursive functions in terms of elimination constants can be rather
difficult, and is quite far from the way we are used to program.

3.2. INDUCTIVE TYPES 27

3.2.3 Recursors

When an inductive type is defined in a type theory the theory should automatically generate a
scheme for proof-by-induction and a scheme for primitive recursion.

The inductive type comes equiped with a recursor that can be used to define functions and
prove properties on that type.

The recursor is a constant RI that represents the structural induction principle for the ele-
ments of the inductive type I, and the computation rule associated to it defines a safe recursive
scheme for programming.

For example, RN, the recursor for N, has the following typing rule:

Γ ! P : N→Type Γ ! a : P 0 Γ ! a′ : Πx :N. P x→P (Sx)
Γ ! RN P a a′ : Πn :N. P n

and its reduction rules are

RN P aa′ 0 → a

RN P aa′ (Sx) → a′ x (RN P aa′ x)

Observe that:

• The proof-by-induction scheme can be recoverd by setting P to be of type N→Prop.

Let indN := λ P :N→Prop.RN P we obtain the following rule

Γ ! P : N→Prop Γ ! a : P 0 Γ ! a′ : Πx :N. P x→P (Sx)
Γ ! indN P aa′ : Πn :N. P n

This is the well known structural induction principle over natural numbers. It allows to
prove some universal property of natural numbers (∀n :N. Pn) by induction on n.

• The primitive recursion scheme (allowing dependent types) can be recoverd by setting P :
N→Set.

Let recN := λ P :N→Set.RN P we obtain the following rule

Γ ! T : N→Set Γ ! a : T 0 Γ ! a′ : Πx :N. T x→T (Sx)
Γ ! recN T a a′ : Πn :N. T n

We can define functions using the recursors. For instance, a function that doubles a natural
number can be defined as follows:

double := recN (λn :N. N) 0 (λx :N.λy :N.S (S y))

This approach gives safe way to express recursion without introducing non-normalizable ob-
jects. However, codifying recursive functions in terms of elimination constants can be rather
difficult, and is quite far from the way we are used to program.

We can define functions using the recursors.

A function that doubles a natural number can be defined as follows

3.2. INDUCTIVE TYPES 27

3.2.3 Recursors

When an inductive type is defined in a type theory the theory should automatically generate a
scheme for proof-by-induction and a scheme for primitive recursion.

The inductive type comes equiped with a recursor that can be used to define functions and
prove properties on that type.

The recursor is a constant RI that represents the structural induction principle for the ele-
ments of the inductive type I, and the computation rule associated to it defines a safe recursive
scheme for programming.

For example, RN, the recursor for N, has the following typing rule:

Γ ! P : N→Type Γ ! a : P 0 Γ ! a′ : Πx :N. P x→P (Sx)
Γ ! RN P a a′ : Πn :N. P n

and its reduction rules are

RN P aa′ 0 → a

RN P aa′ (Sx) → a′ x (RN P aa′ x)

Observe that:

• The proof-by-induction scheme can be recoverd by setting P to be of type N→Prop.

Let indN := λ P :N→Prop.RN P we obtain the following rule

Γ ! P : N→Prop Γ ! a : P 0 Γ ! a′ : Πx :N. P x→P (Sx)
Γ ! indN P aa′ : Πn :N. P n

This is the well known structural induction principle over natural numbers. It allows to
prove some universal property of natural numbers (∀n :N. Pn) by induction on n.

• The primitive recursion scheme (allowing dependent types) can be recoverd by setting P :
N→Set.

Let recN := λ P :N→Set.RN P we obtain the following rule

Γ ! T : N→Set Γ ! a : T 0 Γ ! a′ : Πx :N. T x→T (Sx)
Γ ! recN T a a′ : Πn :N. T n

We can define functions using the recursors. For instance, a function that doubles a natural
number can be defined as follows:

double := recN (λn :N. N) 0 (λx :N.λy :N.S (S y))

This approach gives safe way to express recursion without introducing non-normalizable ob-
jects. However, codifying recursive functions in terms of elimination constants can be rather
difficult, and is quite far from the way we are used to program.

This gives us a safe way to express recursion without introducing non-normalizable
objects. However, codifying recursive functions in terms of elimination constants can
be rather difficult, and is quite far from the way we are used to program.

Example:

The primitive recursion scheme (allowing dependent types) can be recovered from
 by setting P to be of type

3.2. INDUCTIVE TYPES 27

3.2.3 Recursors

When an inductive type is defined in a type theory the theory should automatically generate a
scheme for proof-by-induction and a scheme for primitive recursion.

The inductive type comes equiped with a recursor that can be used to define functions and
prove properties on that type.

The recursor is a constant RI that represents the structural induction principle for the ele-
ments of the inductive type I, and the computation rule associated to it defines a safe recursive
scheme for programming.

For example, RN, the recursor for N, has the following typing rule:

Γ ! P : N→Type Γ ! a : P 0 Γ ! a′ : Πx :N. P x→P (Sx)
Γ ! RN P a a′ : Πn :N. P n

and its reduction rules are

RN P aa′ 0 → a

RN P aa′ (Sx) → a′ x (RN P aa′ x)

Observe that:

• The proof-by-induction scheme can be recoverd by setting P to be of type N→Prop.

Let indN := λ P :N→Prop.RN P we obtain the following rule

Γ ! P : N→Prop Γ ! a : P 0 Γ ! a′ : Πx :N. P x→P (Sx)
Γ ! indN P aa′ : Πn :N. P n

This is the well known structural induction principle over natural numbers. It allows to
prove some universal property of natural numbers (∀n :N. Pn) by induction on n.

• The primitive recursion scheme (allowing dependent types) can be recoverd by setting P :
N→Set.

Let recN := λ P :N→Set.RN P we obtain the following rule

Γ ! T : N→Set Γ ! a : T 0 Γ ! a′ : Πx :N. T x→T (Sx)
Γ ! recN T a a′ : Πn :N. T n

We can define functions using the recursors. For instance, a function that doubles a natural
number can be defined as follows:

double := recN (λn :N. N) 0 (λx :N.λy :N.S (S y))

This approach gives safe way to express recursion without introducing non-normalizable ob-
jects. However, codifying recursive functions in terms of elimination constants can be rather
difficult, and is quite far from the way we are used to program.

3.2. INDUCTIVE TYPES 27

3.2.3 Recursors

When an inductive type is defined in a type theory the theory should automatically generate a
scheme for proof-by-induction and a scheme for primitive recursion.

The inductive type comes equiped with a recursor that can be used to define functions and
prove properties on that type.

The recursor is a constant RI that represents the structural induction principle for the ele-
ments of the inductive type I, and the computation rule associated to it defines a safe recursive
scheme for programming.

For example, RN, the recursor for N, has the following typing rule:

Γ ! P : N→Type Γ ! a : P 0 Γ ! a′ : Πx :N. P x→P (Sx)
Γ ! RN P a a′ : Πn :N. P n

and its reduction rules are

RN P aa′ 0 → a

RN P aa′ (Sx) → a′ x (RN P aa′ x)

Observe that:

• The proof-by-induction scheme can be recoverd by setting P to be of type N→Prop.

Let indN := λ P :N→Prop.RN P we obtain the following rule

Γ ! P : N→Prop Γ ! a : P 0 Γ ! a′ : Πx :N. P x→P (Sx)
Γ ! indN P aa′ : Πn :N. P n

This is the well known structural induction principle over natural numbers. It allows to
prove some universal property of natural numbers (∀n :N. Pn) by induction on n.

• The primitive recursion scheme (allowing dependent types) can be recoverd by setting P :
N→Set.

Let recN := λ P :N→Set.RN P we obtain the following rule

Γ ! T : N→Set Γ ! a : T 0 Γ ! a′ : Πx :N. T x→T (Sx)
Γ ! recN T a a′ : Πn :N. T n

We can define functions using the recursors. For instance, a function that doubles a natural
number can be defined as follows:

double := recN (λn :N. N) 0 (λx :N.λy :N.S (S y))

This approach gives safe way to express recursion without introducing non-normalizable ob-
jects. However, codifying recursive functions in terms of elimination constants can be rather
difficult, and is quite far from the way we are used to program.

19

General recursion

Using this, the function that doubles a natural number can be defined by

But, this approach opens the door to the introduction of non-normalizable objects.

Functional programming languages feature general recursion, allowing recursive
functions to be defined by means of pattern-matching and a general fixpoint operator
to encode recursive calls.

28 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

3.2.4 General recursion

Functional programming languages feature general recursion, allowing recursive functions to be
defined by means of pattern-matching and a general fixpoint operator to encode recursive calls.
The typing rule for N fixpoint expressions is

Γ ! N→θ : s Γ, f : N→θ ! e : N→θ

Γ ! (fix f = e) : N→θ

and the associated computation rules are

(fix f = e) 0 → e[f := (fix f = e)] 0
(fix f = e) (Sx) → e[f := (fix f = e)] (Sx)

Using this, the function that doubles a natural number can be defined by

(fix double = λ n. case n of {0⇒ 0 | S⇒ (λx.S (S (double x)})

Of course, this approach opens the door to the introduction of non-normalizable objects, but
it raises the level of expressiveness of the language.

3.2.5 About termination

Checking convertability between types may require computing with recursive functions. So, the
combination of non-normalization with dependent types leads to undecidable type checking.

To enforce decidability of type checking, proof assistants either require recursive functions to
be encoded in terms of recursors or allow restricted forms of fixpoint expressions.

A usual way to ensure termination of fixpoint expressions is to impose syntatical restrictions
through a predicate Gf on untyped terms. This predicate enforces termination by constraining
all recursive calls to be applied to terms structurally smaller than the formal argument of the
function.

The restricted typing rule for fixpoint expressions hence becomes:

Γ ! N→θ : s Γ, f : N→θ ! e : N→θ

Γ ! (fix f = e) : N→θ
if Gf (e)

3.2.6 On positivity

As illustrated above, general recursion permits the definition of non-terminating functions. So does
the possibility of declaring non well-founded datatypes, as illustrated by the following example.

Consider a datatype d defined by a single introduction rule C : (d→ θ)→ d, where θ may be
any type (even the empty type). Let app ≡ λx.λy. case x of {C ⇒ λf. f y}, t ≡ (λz. app z z) and
Ω ≡ app (C t) (C t). We have app : d→ d→ θ, t : d→ θ and Ω : θ. However, Ω is a looping term
which has no canonical form

Ω ! case (C t) of {C⇒ λf. f (C t)} → (λf. f (C t)) t → t (C t) → Ω

What enables to construct a non-normalizing term in θ is the negative occurrence of d in the
domain of C.

In order to banish non-well-founded elements from the language, proof assistants usually impose
a positivity condition on the possible forms of the introduction rules of the inductive datatypes.

and the associated computation rules are

28 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

3.2.4 General recursion

Functional programming languages feature general recursion, allowing recursive functions to be
defined by means of pattern-matching and a general fixpoint operator to encode recursive calls.
The typing rule for N fixpoint expressions is

Γ ! N→θ : s Γ, f : N→θ ! e : N→θ

Γ ! (fix f = e) : N→θ

and the associated computation rules are

(fix f = e) 0 → e[f := (fix f = e)] 0
(fix f = e) (Sx) → e[f := (fix f = e)] (Sx)

Using this, the function that doubles a natural number can be defined by

(fix double = λ n. case n of {0⇒ 0 | S⇒ (λx.S (S (double x)})

Of course, this approach opens the door to the introduction of non-normalizable objects, but
it raises the level of expressiveness of the language.

3.2.5 About termination

Checking convertability between types may require computing with recursive functions. So, the
combination of non-normalization with dependent types leads to undecidable type checking.

To enforce decidability of type checking, proof assistants either require recursive functions to
be encoded in terms of recursors or allow restricted forms of fixpoint expressions.

A usual way to ensure termination of fixpoint expressions is to impose syntatical restrictions
through a predicate Gf on untyped terms. This predicate enforces termination by constraining
all recursive calls to be applied to terms structurally smaller than the formal argument of the
function.

The restricted typing rule for fixpoint expressions hence becomes:

Γ ! N→θ : s Γ, f : N→θ ! e : N→θ

Γ ! (fix f = e) : N→θ
if Gf (e)

3.2.6 On positivity

As illustrated above, general recursion permits the definition of non-terminating functions. So does
the possibility of declaring non well-founded datatypes, as illustrated by the following example.

Consider a datatype d defined by a single introduction rule C : (d→ θ)→ d, where θ may be
any type (even the empty type). Let app ≡ λx.λy. case x of {C ⇒ λf. f y}, t ≡ (λz. app z z) and
Ω ≡ app (C t) (C t). We have app : d→ d→ θ, t : d→ θ and Ω : θ. However, Ω is a looping term
which has no canonical form

Ω ! case (C t) of {C⇒ λf. f (C t)} → (λf. f (C t)) t → t (C t) → Ω

What enables to construct a non-normalizing term in θ is the negative occurrence of d in the
domain of C.

In order to banish non-well-founded elements from the language, proof assistants usually impose
a positivity condition on the possible forms of the introduction rules of the inductive datatypes.

28 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

3.2.4 General recursion

Functional programming languages feature general recursion, allowing recursive functions to be
defined by means of pattern-matching and a general fixpoint operator to encode recursive calls.
The typing rule for N fixpoint expressions is

Γ ! N→θ : s Γ, f : N→θ ! e : N→θ

Γ ! (fix f = e) : N→θ

and the associated computation rules are

(fix f = e) 0 → e[f := (fix f = e)] 0
(fix f = e) (Sx) → e[f := (fix f = e)] (Sx)

Using this, the function that doubles a natural number can be defined by

(fix double = λ n. case n of {0⇒ 0 | S⇒ (λx.S (S (double x)})

Of course, this approach opens the door to the introduction of non-normalizable objects, but
it raises the level of expressiveness of the language.

3.2.5 About termination

Checking convertability between types may require computing with recursive functions. So, the
combination of non-normalization with dependent types leads to undecidable type checking.

To enforce decidability of type checking, proof assistants either require recursive functions to
be encoded in terms of recursors or allow restricted forms of fixpoint expressions.

A usual way to ensure termination of fixpoint expressions is to impose syntatical restrictions
through a predicate Gf on untyped terms. This predicate enforces termination by constraining
all recursive calls to be applied to terms structurally smaller than the formal argument of the
function.

The restricted typing rule for fixpoint expressions hence becomes:

Γ ! N→θ : s Γ, f : N→θ ! e : N→θ

Γ ! (fix f = e) : N→θ
if Gf (e)

3.2.6 On positivity

As illustrated above, general recursion permits the definition of non-terminating functions. So does
the possibility of declaring non well-founded datatypes, as illustrated by the following example.

Consider a datatype d defined by a single introduction rule C : (d→ θ)→ d, where θ may be
any type (even the empty type). Let app ≡ λx.λy. case x of {C ⇒ λf. f y}, t ≡ (λz. app z z) and
Ω ≡ app (C t) (C t). We have app : d→ d→ θ, t : d→ θ and Ω : θ. However, Ω is a looping term
which has no canonical form

Ω ! case (C t) of {C⇒ λf. f (C t)} → (λf. f (C t)) t → t (C t) → Ω

What enables to construct a non-normalizing term in θ is the negative occurrence of d in the
domain of C.

In order to banish non-well-founded elements from the language, proof assistants usually impose
a positivity condition on the possible forms of the introduction rules of the inductive datatypes.

The typing rule for fixpoint expressions is

28 CHAPTER 3. EXTENSIONS OF PURE TYPE SYSTEMS

3.2.4 General recursion

Functional programming languages feature general recursion, allowing recursive functions to be
defined by means of pattern-matching and a general fixpoint operator to encode recursive calls.
The typing rule for N fixpoint expressions is

Γ ! N→θ : s Γ, f : N→θ ! e : N→θ

Γ ! (fix f = e) : N→θ

and the associated computation rules are

(fix f = e) 0 → e[f := (fix f = e)] 0
(fix f = e) (Sx) → e[f := (fix f = e)] (Sx)

Using this, the function that doubles a natural number can be defined by

(fix double = λ n. case n of {0⇒ 0 | S⇒ (λx.S (S (double x)})

Of course, this approach opens the door to the introduction of non-normalizable objects, but
it raises the level of expressiveness of the language.

3.2.5 About termination

Checking convertability between types may require computing with recursive functions. So, the
combination of non-normalization with dependent types leads to undecidable type checking.

To enforce decidability of type checking, proof assistants either require recursive functions to
be encoded in terms of recursors or allow restricted forms of fixpoint expressions.

A usual way to ensure termination of fixpoint expressions is to impose syntatical restrictions
through a predicate Gf on untyped terms. This predicate enforces termination by constraining
all recursive calls to be applied to terms structurally smaller than the formal argument of the
function.

The restricted typing rule for fixpoint expressions hence becomes:

Γ ! N→θ : s Γ, f : N→θ ! e : N→θ

Γ ! (fix f = e) : N→θ
if Gf (e)

3.2.6 On positivity

As illustrated above, general recursion permits the definition of non-terminating functions. So does
the possibility of declaring non well-founded datatypes, as illustrated by the following example.

Consider a datatype d defined by a single introduction rule C : (d→ θ)→ d, where θ may be
any type (even the empty type). Let app ≡ λx.λy. case x of {C ⇒ λf. f y}, t ≡ (λz. app z z) and
Ω ≡ app (C t) (C t). We have app : d→ d→ θ, t : d→ θ and Ω : θ. However, Ω is a looping term
which has no canonical form

Ω ! case (C t) of {C⇒ λf. f (C t)} → (λf. f (C t)) t → t (C t) → Ω

What enables to construct a non-normalizing term in θ is the negative occurrence of d in the
domain of C.

In order to banish non-well-founded elements from the language, proof assistants usually impose
a positivity condition on the possible forms of the introduction rules of the inductive datatypes.

20

