Pure Type Systems

® Pure Type Systems (PTS) provide a general description for a large class of
typed A-calculi.

® PTS make it possible to derive lot of meta theoretic properties in a generic
way.

® In PTS we only have one type constructor (I1) and one computation rule ([3).
(Therefore the name “pure”).

® PTS were originally introduced (albeit in a different from) by S. Berardi and
J. Terlouw as a generalization of Barendregt’s A-cube, which itself provides a
fine-grained analysis of the Calculus of Constructions.

21

Syntax

PTS have a single category of expressions, which are called pseudo-terms.

The definitions of pseudo-terms is parameterized by a set "V of variables and
a set S of sorts (constants that denote the universes of the type system).

Definition

The set 7 of pseudo-terms are defined by the abstract syntax

T =S |\V|TT | A\V:T.T |1UV:T. T

Both I1 and A bind variables.
We have the usual notation for free variables and bound variables.

Pure Type Systems

PTS are formal systems for deriving judgments of the form

' M: A

AV

context pseudo-terms
list of variable declarations

M is of type A relative to a typing of the free variables of M
and A (which are declared in I")

23

22

Definitions

Pseudo-terms inherit much of the standard definitions and notations of A-calculi.
® FV(M) denotes the set of free variables of the pseudo-term M .

® We write A = B instead of Il x : A. B whenever x ¢ FV(B).

® M [x:=N | denotes the substitution of N for all the free occurrences of x in
M .

® We identify pseudo-terms that are equal up to a renaming of bound variables
(cx-conversion).

® We assume the standard variable convention, so all bound variables are chosen
to be different from free variables.

24

Definitions

® fB-reduction is defined as the compatible closure of the rule

Az:AM)N —g Mx:=N]

—3 is the reflexive-transitive closure of — g

=p3 is the reflexive-symmetric-transitive closure of — g

® Application associates to the left, abstraction to the right and application
binds more tightly than abstraction.

® We let x, 9,7, ... range over Vand s, s, ... range over S

Dependent types

In the type theory one can define for every set A and A-indexed family of
sets (Ba)zca anew set Il,c 4B, called dependent function space.

Elements of Il;c 4B, are functions with domain A and such that f(a) € B,
for every a € A .

IT-construction of PTS works in the same way:

ITx:A. B(z) is the type of terms F such that, for every a : A, Fa: B(a)

25

27

Salient Features of PTS

® PTS describe A-calculi a la Church (A-abstractions carry the domain of
bound variables).

® PTS are minimal (just IT type construction and (3 reduction rule), which
imposes strict limitations on their applicability.

® PTS model dependent fypes. Type constructor Il captures in the type
theory the set-theoretic notion of generic or dependent function space.

Specifications

The typing system of PTS is parameterized by a triple (S, A, R) where

S is the set of universes of the type system;
A determine the typing relation between universes;
R determine which dependent function types may be found and where they live.

4 e 2\
Definition
A PTS-specification is a triple (S, A, R) where
e S is a set of sorts
* A cSxS isa set of axioms
e R € SX SXS is a set of rules
We use (sl,s2) to denote rules of the form (si,s2,s2).
. J

Every specification S induces a PTS AS.

26

28

Contexts and Judgments

® The set G of contexts is given by the abstract syntax G :=()|G,V:T

e We let < denote context inclusion
e The domain of a context is defined by the clause
dom(z1: Ay, .., xn: Ap) = {21, ..., 20}

e We let I', A range over G
® A judgment is a triple of the form I' - A: B where A, B €7 and I' € G.

® A judgment is derivable if it can be inferred from the typing rules of the
next slide.

e If 'A:B thenT, A and B are legal.
o IfI'HFA:s forseS,wesay that A is a type.

29

Typing rules for PTS

(axiom) () F s1: 89 if (s1,82) € A

It embeds the relation A into the type system.

Typing rules for PTS

(axiom) () F s1: 802 if (s1,82) € A

' A:s

tart e E—
(start) Ne:AF xz: A

if x ¢ dom(I")

I'-A:B TI'+C:s

keni if dom(T
(weakening) T2oCF A B if x & dom(TI")
r+-A: Iz:A + B:
(product) S 52 if (s1,82,83) €R
I' m (Izx:A.B) : s3
. ' - F:(llz:A.B) T'Fa:A
(application)
' b Fa: Blz :=a]
) Fz:AFb:B ' Iz:A.B):s
(abstraction)
'k Ax:Ab: (Ilz: A. B)
. ’.
(conversion) LrRA:B ' B:s if B=3 B’

' A:B

31

30

Typing rules for PTS

p
(start) - A:s
I'e:AFz: A
(esleming) I'+A:B I'- C:s
I'z:C - A:B

if © ¢ dom(I")

if x ¢ dom(T")

It allows the introduction of variables in a context.

32

Typing rules for PTS

' A:s;y Thax:AF B:sy

if (s1,82,83) € R
T F (Lz:A.B):s3 (61,82, 8)

(product)

It allows for dependent function types fo be formed, provided they match
the rule in R.

Typing rules for PTS

z:A+Fb:B I'' - (Ilz:A.B) : s
' Ax:Ab: (IIz:A. B)

(abstraction)

It allows to build A-abstractions.

Note that the side condition requires that the dependent function type is
well formed.

33

35

Typing rules for PTS

' F:(Ilz:A.B) T'Fa:A
' Fa: Bz :=al

(application)

It allows to form applications.

Note substitution [x :=a] in the type of the application, in order to
accommodate type dependencies.

Typing rules for PTS

' A:B I'F B':s
'+ A:B

(conversion) if B=3 B’

It ensures that convertible types (i.e. types that are 3-equal) have the same
inhabitants.

This rule is crucial for higher-order type theories, because types are A-terms
and can be reduced, and for dependent type theories because they may occur
in types.

34

36

Examples of PTS

Non-dependent type systems (i.e. an expression M : A with A :* cannot appear

as a subexpression of B : *)

A—, the simply typed A-calculus.

A2 is the PTS counterpart of Girard’s System F.

Aw is the PTS counterpart of Girard's System Fw.

S = %k, O
A— A = (* : D)
R = (*%)
S = % 0
2 A = (x:0)
R - (*7 *)7 (‘:Iv *)
S = %, O
| A = (x:0)
R = (*7*)7 (Dv*)v (D7 D)

In logical terms, these non-dependent systems correspond to propositional logics.

37

More examples of non-dependent PTS

AU", Girards System U~

AU , System U

The System A

S = x 0, A
AU~ A = (x:0), (O:4)
R = (xx), (0,%), (0,0), (A,0)
S = x 0, A
A | A = (x:0), (O:4)
R = (*7 *)7 (D7 *)7 (DVD)7 (A7 *)7 (A7 D)
S = x
Ax A = (x:x%)
R = (%%)

AU, AU and A* are inconsistent in the sense that there exists a pseudo-term M

such that the judgment A :* =M : A is derivable.

Examples of dependent PTS

It is possible fo type expressions B : * which contain as subexpression M : A : *.

AP is the PTS counterpart of the Logical Frameworks due to Harper et al.
S x, O

AP | A = (x:0)
R = (%%), (x0)

AP2 is the PTS counterpart of Longo and Moggi’s system also named AP2.

S = %, Od
AP2 | A = (x:0)
R = (*x), (O%), (x,0)

AC (also known as APw) is the PTS counterpart of Coquand and Huet’s Calculus
of Constructions.

S x, O
AC| A = (x:0)
R (x,%), (O,%), (x,0), (O0,0)

In logical terms, these dependent systems correspond to predicate logics.

39

Another example of dependent PTS

ACw is an extension of the Calculus os Constructions.

S = 0 ,ieN
A = (x:0o), (0;:0i41) ,i€N
R = (*7*)7 (Di,*)v (*7Di)7 (DiaDjyljmaX(i,j))

AC*
» ,JEN

38

40

