
Pure Type Systems

• Pure Type Systems (PTS) provide a general description for a large class of
typed !-calculi.

• PTS make it possible to derive lot of meta theoretic properties in a generic
way.

• In PTS we only have one type constructor (") and one computation rule ($).
(Therefore the name “pure”).

• PTS were originally introduced (albeit in a different from) by S. Berardi and
J. Terlouw as a generalization of Barendregt’s !-cube, which itself provides a
fine-grained analysis of the Calculus of Constructions.

21

M is of type A relative to a typing of the free variables of M

and A (which are declared in !)

Chapter 2

Type Systems and Logics

2.1 Pure Type Systems

• Pure Type Systems (PTS) provide a framework to specify typed λ-calculi.

• The typed lambda calculi that belong to the class of PTS have only one type constructor
(Π) and a computation rule (β). (Therefore the name “pure”).

• The framework of PTS provides a general description of a large class of typed λ-calculi and
makes it possible to derive lot of meta theoretic properties in a generic way.

• PTS were originally introduced (albeit in a different from) by S.Berardi and J. Terlouw as
a generalization of Barendregt’s λ-cube, which itself provides a fine-grained analysis of the
Calculus of Constructions.

PTS are formal systems for deriving judgements of the form

Γ ! M : A

were both M and A are in the set of the so called pseudoterms and Γ is a finite sequence of
declarations, statements of the form x : B, where x is a variable and B a pseudoterm.

2.1.1 Syntax

PTS have a single category of expressions, which are called pseudo-terms. The definitions of
pseudo-terms is parameterized by a set V of variables and a set S of sorts (constants that denote
the universes of the type system.

Definition 2.1.1 For some set S, the set T of pseudo-terms over S is defined by the abstract
syntax

T ::= S | V | T T | λV :T .T | ΠV :T . T

where V is a countable set of variables

3

Pure Type Systems

PTS are formal systems for deriving judgments of the form

context
list of variable declarations

pseudo-terms

22

Syntax

PTS have a single category of expressions, which are called pseudo-terms.

The definitions of pseudo-terms is parameterized by a set V of variables and

a set S of sorts (constants that denote the universes of the type system).

Both " and # bind variables.
We have the usual notation for free variables and bound variables.

Chapter 2

Type Systems and Logics

2.1 Pure Type Systems

• Pure Type Systems (PTS) provide a framework to specify typed λ-calculi.

• The typed lambda calculi that belong to the class of PTS have only one type constructor
(Π) and a computation rule (β). (Therefore the name “pure”).

• The framework of PTS provides a general description of a large class of typed λ-calculi and
makes it possible to derive lot of meta theoretic properties in a generic way.

• PTS were originally introduced (albeit in a different from) by S.Berardi and J. Terlouw as
a generalization of Barendregt’s λ-cube, which itself provides a fine-grained analysis of the
Calculus of Constructions.

PTS are formal systems for deriving judgements of the form

Γ ! M : A

were both M and A are in the set of the so called pseudoterms and Γ is a finite sequence of
declarations, statements of the form x : B, where x is a variable and B a pseudoterm.

2.1.1 Syntax

PTS have a single category of expressions, which are called pseudo-terms. The definitions of
pseudo-terms is parameterized by a set V of variables and a set S of sorts (constants that denote
the universes of the type system.

Definition 2.1.1 For some set S, the set T of pseudo-terms over S is defined by the abstract
syntax

T ::= S | V | T T | λV :T .T | ΠV :T . T

where V is a countable set of variables

3

The set T of pseudo-terms are defined by the abstract syntax

Definition

23

Definitions

Pseudo-terms inherit much of the standard definitions and notations of !-calculi.

• FV(M) denotes the set of free variables of the pseudo-term M .

• We write A " B instead of " x : A. B whenever x ! FV(B).

• M [x := N] denotes the substitution of N for all the free occurrences of x in
M .

• We identify pseudo-terms that are equal up to a renaming of bound variables

(!-conversion).

• We assume the standard variable convention, so all bound variables are chosen
to be different from free variables.

24

Definitions

• "-reduction is defined as the compatible closure of the rule

 is the reflexive-transitive closure of

 is the reflexive-symmetric-transitive closure of

• Application associates to the left, abstraction to the right and application
binds more tightly than abstraction.

• We let x, y, z , ... range over V and s, s’, ... range over S

4 CHAPTER 2. TYPE SYSTEMS AND LOGICS

• We write A→B instead of Πx :A.B whenever x "∈ FV(B).

• M [x := N] denote the substitution of N for all the free occurrences of x in M .

• We identify pseudo-terms that are equal up to a renaming of bound variables (α-conversion).

• We assume the standard variable convention, so all bound variables are chosen to be different
from free variables.

• β-reduction is defined as the compatible closure of the rule

(λ x :A.M) N →β M [x := N]

!β is the reflexive-transitive closure of→β .

=β is the reflexive-symmetric-transitive closure of→β .

• Application associates to the left, abstraction to the right and application binds more tightly
than abstraction.

• We let x, y, z, ... range over V and s, s′, ... range over S.

2.1.3 Typing Rules for Pure Type Systems

(axiom) 〈〉 & ∗ : " if (s1, s2) ∈ A

(start) Γ & A : s
Γ, x :A & x : A

if x "∈ dom(Γ)

(weakening) Γ & A : B Γ & C : s
Γ, x :C & A : B

if x "∈ dom(Γ)

(product)
Γ & A : s1 Γ, x :A & B : s2

Γ & (Π x :A.B) : s3

if (s1, s2, s3) ∈ R

(application)
Γ & F : (Π x :A.B) Γ & a : A

Γ & F a : B[x := a]

(abstraction)
Γ, x :A & b : B Γ & (Π x :A.B) : s

Γ & λ x :A.b : (Π x :A.B)

(conversion) Γ & A : B Γ & B′ : s

Γ & A : B′ if B =β B′

4 CHAPTER 2. TYPE SYSTEMS AND LOGICS

• We write A→B instead of Πx :A.B whenever x "∈ FV(B).

• M [x := N] denote the substitution of N for all the free occurrences of x in M .

• We identify pseudo-terms that are equal up to a renaming of bound variables (α-conversion).

• We assume the standard variable convention, so all bound variables are chosen to be different
from free variables.

• β-reduction is defined as the compatible closure of the rule

(λ x :A.M) N →β M [x := N]

!β is the reflexive-transitive closure of→β .

=β is the reflexive-symmetric-transitive closure of→β .

• Application associates to the left, abstraction to the right and application binds more tightly
than abstraction.

• We let x, y, z, ... range over V and s, s′, ... range over S.

2.1.3 Typing Rules for Pure Type Systems

(axiom) 〈〉 & ∗ : " if (s1, s2) ∈ A

(start) Γ & A : s
Γ, x :A & x : A

if x "∈ dom(Γ)

(weakening) Γ & A : B Γ & C : s
Γ, x :C & A : B

if x "∈ dom(Γ)

(product)
Γ & A : s1 Γ, x :A & B : s2

Γ & (Π x :A.B) : s3

if (s1, s2, s3) ∈ R

(application)
Γ & F : (Π x :A.B) Γ & a : A

Γ & F a : B[x := a]

(abstraction)
Γ, x :A & b : B Γ & (Π x :A.B) : s

Γ & λ x :A.b : (Π x :A.B)

(conversion) Γ & A : B Γ & B′ : s

Γ & A : B′ if B =β B′

4 CHAPTER 2. TYPE SYSTEMS AND LOGICS

• We write A→B instead of Πx :A.B whenever x "∈ FV(B).

• M [x := N] denote the substitution of N for all the free occurrences of x in M .

• We identify pseudo-terms that are equal up to a renaming of bound variables (α-conversion).

• We assume the standard variable convention, so all bound variables are chosen to be different
from free variables.

• β-reduction is defined as the compatible closure of the rule

(λ x :A.M) N →β M [x := N]

!β is the reflexive-transitive closure of→β .

=β is the reflexive-symmetric-transitive closure of→β .

• Application associates to the left, abstraction to the right and application binds more tightly
than abstraction.

• We let x, y, z, ... range over V and s, s′, ... range over S.

2.1.3 Typing Rules for Pure Type Systems

(axiom) 〈〉 & ∗ : " if (s1, s2) ∈ A

(start) Γ & A : s
Γ, x :A & x : A

if x "∈ dom(Γ)

(weakening) Γ & A : B Γ & C : s
Γ, x :C & A : B

if x "∈ dom(Γ)

(product)
Γ & A : s1 Γ, x :A & B : s2

Γ & (Π x :A.B) : s3

if (s1, s2, s3) ∈ R

(application)
Γ & F : (Π x :A.B) Γ & a : A

Γ & F a : B[x := a]

(abstraction)
Γ, x :A & b : B Γ & (Π x :A.B) : s

Γ & λ x :A.b : (Π x :A.B)

(conversion) Γ & A : B Γ & B′ : s

Γ & A : B′ if B =β B′

4 CHAPTER 2. TYPE SYSTEMS AND LOGICS

• We write A→B instead of Πx :A.B whenever x "∈ FV(B).

• M [x := N] denote the substitution of N for all the free occurrences of x in M .

• We identify pseudo-terms that are equal up to a renaming of bound variables (α-conversion).

• We assume the standard variable convention, so all bound variables are chosen to be different
from free variables.

• β-reduction is defined as the compatible closure of the rule

(λ x :A.M) N →β M [x := N]

!β is the reflexive-transitive closure of→β .

=β is the reflexive-symmetric-transitive closure of→β .

• Application associates to the left, abstraction to the right and application binds more tightly
than abstraction.

• We let x, y, z, ... range over V and s, s′, ... range over S.

2.1.3 Typing Rules for Pure Type Systems

(axiom) 〈〉 & ∗ : " if (s1, s2) ∈ A

(start) Γ & A : s
Γ, x :A & x : A

if x "∈ dom(Γ)

(weakening) Γ & A : B Γ & C : s
Γ, x :C & A : B

if x "∈ dom(Γ)

(product)
Γ & A : s1 Γ, x :A & B : s2

Γ & (Π x :A.B) : s3

if (s1, s2, s3) ∈ R

(application)
Γ & F : (Π x :A.B) Γ & a : A

Γ & F a : B[x := a]

(abstraction)
Γ, x :A & b : B Γ & (Π x :A.B) : s

Γ & λ x :A.b : (Π x :A.B)

(conversion) Γ & A : B Γ & B′ : s

Γ & A : B′ if B =β B′

4 CHAPTER 2. TYPE SYSTEMS AND LOGICS

• We write A→B instead of Πx :A.B whenever x "∈ FV(B).

• M [x := N] denote the substitution of N for all the free occurrences of x in M .

• We identify pseudo-terms that are equal up to a renaming of bound variables (α-conversion).

• We assume the standard variable convention, so all bound variables are chosen to be different
from free variables.

• β-reduction is defined as the compatible closure of the rule

(λ x :A.M) N →β M [x := N]

!β is the reflexive-transitive closure of→β .

=β is the reflexive-symmetric-transitive closure of→β .

• Application associates to the left, abstraction to the right and application binds more tightly
than abstraction.

• We let x, y, z, ... range over V and s, s′, ... range over S.

2.1.3 Typing Rules for Pure Type Systems

(axiom) 〈〉 & ∗ : " if (s1, s2) ∈ A

(start) Γ & A : s
Γ, x :A & x : A

if x "∈ dom(Γ)

(weakening) Γ & A : B Γ & C : s
Γ, x :C & A : B

if x "∈ dom(Γ)

(product)
Γ & A : s1 Γ, x :A & B : s2

Γ & (Π x :A.B) : s3

if (s1, s2, s3) ∈ R

(application)
Γ & F : (Π x :A.B) Γ & a : A

Γ & F a : B[x := a]

(abstraction)
Γ, x :A & b : B Γ & (Π x :A.B) : s

Γ & λ x :A.b : (Π x :A.B)

(conversion) Γ & A : B Γ & B′ : s

Γ & A : B′ if B =β B′

25

Salient Features of PTS

• PTS describe !-calculi à la Church (!-abstractions carry the domain of
bound variables).

• PTS are minimal (just " type construction and $ reduction rule), which
imposes strict limitations on their applicability.

• PTS model dependent types. Type constructor " captures in the type
theory the set-theoretic notion of generic or dependent function space.

26

Dependent types

In the type theory one can define for every set A and A-indexed family of

sets a new set called dependent function space.

4 CHAPTER 2. TYPE SYSTEMS AND LOGICS

• We write A→B instead of Πx :A.B whenever x "∈ FV(B).

• M [x := N] denote the substitution of N for all the free occurrences of x in M .

• We identify pseudo-terms that are equal up to a renaming of bound variables (α-conversion).

• We assume the standard variable convention, so all bound variables are chosen to be different
from free variables.

• β-reduction is defined as the compatible closure of the rule

(λ x :A.M) N →β M [x := N]

!β is the reflexive-transitive closure of→β .

=β is the reflexive-symmetric-transitive closure of→β .

• Application associates to the left, abstraction to the right and application binds more tightly
than abstraction.

• We let x, y, z, ... range over V and s, s′, ... range over S.

2.1.3 Salient Features of PTS

• PTS describe λ-calculi à la Church (λ-abstraction carry the domain of bound variables).

• PTS are minimal (just Π type construction and β reduction rule), which imposes strict
limitations on their applicability.

• PTS model dependent types. Type constructor Π captures in the type theory the set-theoretic
notion of generic or dependent function space.

In the type theory one can define for every set A and A-indexed family of sets (Ba)x∈A a
new set Πx∈ABx called dependent function space.

Elements of Πx∈ABx are functions with domain A and such that f(a) ∈ Ba for every a ∈ A.

Π-construction of PTS works in the same way

Π x :A.B(x) is the type of terms f such that, for every a : A, F a : B(a)

4 CHAPTER 2. TYPE SYSTEMS AND LOGICS

• We write A→B instead of Πx :A.B whenever x "∈ FV(B).

• M [x := N] denote the substitution of N for all the free occurrences of x in M .

• We identify pseudo-terms that are equal up to a renaming of bound variables (α-conversion).

• We assume the standard variable convention, so all bound variables are chosen to be different
from free variables.

• β-reduction is defined as the compatible closure of the rule

(λ x :A.M) N →β M [x := N]

!β is the reflexive-transitive closure of→β .

=β is the reflexive-symmetric-transitive closure of→β .

• Application associates to the left, abstraction to the right and application binds more tightly
than abstraction.

• We let x, y, z, ... range over V and s, s′, ... range over S.

2.1.3 Salient Features of PTS

• PTS describe λ-calculi à la Church (λ-abstraction carry the domain of bound variables).

• PTS are minimal (just Π type construction and β reduction rule), which imposes strict
limitations on their applicability.

• PTS model dependent types. Type constructor Π captures in the type theory the set-theoretic
notion of generic or dependent function space.

In the type theory one can define for every set A and A-indexed family of sets (Ba)x∈A a
new set Πx∈ABx called dependent function space.

Elements of Πx∈ABx are functions with domain A and such that f(a) ∈ Ba for every a ∈ A.

Π-construction of PTS works in the same way

Π x :A.B(x) is the type of terms f such that, for every a : A, F a : B(a)
"-construction of PTS works in the same way:

Elements of are functions with domain A and such that

for every .

4 CHAPTER 2. TYPE SYSTEMS AND LOGICS

• We write A→B instead of Πx :A.B whenever x "∈ FV(B).

• M [x := N] denote the substitution of N for all the free occurrences of x in M .

• We identify pseudo-terms that are equal up to a renaming of bound variables (α-conversion).

• We assume the standard variable convention, so all bound variables are chosen to be different
from free variables.

• β-reduction is defined as the compatible closure of the rule

(λ x :A.M) N →β M [x := N]

!β is the reflexive-transitive closure of→β .

=β is the reflexive-symmetric-transitive closure of→β .

• Application associates to the left, abstraction to the right and application binds more tightly
than abstraction.

• We let x, y, z, ... range over V and s, s′, ... range over S.

2.1.3 Salient Features of PTS

• PTS describe λ-calculi à la Church (λ-abstraction carry the domain of bound variables).

• PTS are minimal (just Π type construction and β reduction rule), which imposes strict
limitations on their applicability.

• PTS model dependent types. Type constructor Π captures in the type theory the set-theoretic
notion of generic or dependent function space.

In the type theory one can define for every set A and A-indexed family of sets (Ba)x∈A a
new set Πx∈ABx called dependent function space.

Elements of Πx∈ABx are functions with domain A and such that f(a) ∈ Ba for every a ∈ A.

Π-construction of PTS works in the same way

Π x :A.B(x) is the type of terms f such that, for every a : A, F a : B(a)

4 CHAPTER 2. TYPE SYSTEMS AND LOGICS

• We write A→B instead of Πx :A.B whenever x "∈ FV(B).

• M [x := N] denote the substitution of N for all the free occurrences of x in M .

• We identify pseudo-terms that are equal up to a renaming of bound variables (α-conversion).

• We assume the standard variable convention, so all bound variables are chosen to be different
from free variables.

• β-reduction is defined as the compatible closure of the rule

(λ x :A.M) N →β M [x := N]

!β is the reflexive-transitive closure of→β .

=β is the reflexive-symmetric-transitive closure of→β .

• Application associates to the left, abstraction to the right and application binds more tightly
than abstraction.

• We let x, y, z, ... range over V and s, s′, ... range over S.

2.1.3 Salient Features of PTS

• PTS describe λ-calculi à la Church (λ-abstraction carry the domain of bound variables).

• PTS are minimal (just Π type construction and β reduction rule), which imposes strict
limitations on their applicability.

• PTS model dependent types. Type constructor Π captures in the type theory the set-theoretic
notion of generic or dependent function space.

In the type theory one can define for every set A and A-indexed family of sets (Ba)x∈A a
new set Πx∈ABx called dependent function space.

Elements of Πx∈ABx are functions with domain A and such that f(a) ∈ Ba for every a ∈ A.

Π-construction of PTS works in the same way

Π x :A.B(x) is the type of terms f such that, for every a : A, F a : B(a)

4 CHAPTER 2. TYPE SYSTEMS AND LOGICS

• We write A→B instead of Πx :A.B whenever x "∈ FV(B).

• M [x := N] denote the substitution of N for all the free occurrences of x in M .

• We identify pseudo-terms that are equal up to a renaming of bound variables (α-conversion).

• We assume the standard variable convention, so all bound variables are chosen to be different
from free variables.

• β-reduction is defined as the compatible closure of the rule

(λ x :A.M) N →β M [x := N]

!β is the reflexive-transitive closure of→β .

=β is the reflexive-symmetric-transitive closure of→β .

• Application associates to the left, abstraction to the right and application binds more tightly
than abstraction.

• We let x, y, z, ... range over V and s, s′, ... range over S.

2.1.3 Salient Features of PTS

• PTS describe λ-calculi à la Church (λ-abstraction carry the domain of bound variables).

• PTS are minimal (just Π type construction and β reduction rule), which imposes strict
limitations on their applicability.

• PTS model dependent types. Type constructor Π captures in the type theory the set-theoretic
notion of generic or dependent function space.

In the type theory one can define for every set A and A-indexed family of sets (Ba)x∈A a
new set Πx∈ABx called dependent function space.

Elements of Πx∈ABx are functions with domain A and such that f(a) ∈ Ba for every a ∈ A.

Π-construction of PTS works in the same way

Π x :A.B(x) is the type of terms f such that, for every a : A, F a : B(a)

4 CHAPTER 2. TYPE SYSTEMS AND LOGICS

• We write A→B instead of Πx :A.B whenever x "∈ FV(B).

• M [x := N] denote the substitution of N for all the free occurrences of x in M .

• We identify pseudo-terms that are equal up to a renaming of bound variables (α-conversion).

• We assume the standard variable convention, so all bound variables are chosen to be different
from free variables.

• β-reduction is defined as the compatible closure of the rule

(λ x :A.M) N →β M [x := N]

!β is the reflexive-transitive closure of→β .

=β is the reflexive-symmetric-transitive closure of→β .

• Application associates to the left, abstraction to the right and application binds more tightly
than abstraction.

• We let x, y, z, ... range over V and s, s′, ... range over S.

2.1.3 Salient Features of PTS

• PTS describe λ-calculi à la Church (λ-abstraction carry the domain of bound variables).

• PTS are minimal (just Π type construction and β reduction rule), which imposes strict
limitations on their applicability.

• PTS model dependent types. Type constructor Π captures in the type theory the set-theoretic
notion of generic or dependent function space.

In the type theory one can define for every set A and A-indexed family of sets (Ba)x∈A a
new set Πx∈ABx called dependent function space.

Elements of Πx∈ABx are functions with domain A and such that f(a) ∈ Ba for every a ∈ A.

Π-construction of PTS works in the same way

Π x :A.B(x) is the type of terms f such that, for every a : A, F a : B(a)is the type of terms F such that, for every ,

4 CHAPTER 2. TYPE SYSTEMS AND LOGICS

• We write A→B instead of Πx :A.B whenever x "∈ FV(B).

• M [x := N] denote the substitution of N for all the free occurrences of x in M .

• We identify pseudo-terms that are equal up to a renaming of bound variables (α-conversion).

• We assume the standard variable convention, so all bound variables are chosen to be different
from free variables.

• β-reduction is defined as the compatible closure of the rule

(λ x :A.M) N →β M [x := N]

!β is the reflexive-transitive closure of→β .

=β is the reflexive-symmetric-transitive closure of→β .

• Application associates to the left, abstraction to the right and application binds more tightly
than abstraction.

• We let x, y, z, ... range over V and s, s′, ... range over S.

2.1.3 Salient Features of PTS

• PTS describe λ-calculi à la Church (λ-abstraction carry the domain of bound variables).

• PTS are minimal (just Π type construction and β reduction rule), which imposes strict
limitations on their applicability.

• PTS model dependent types. Type constructor Π captures in the type theory the set-theoretic
notion of generic or dependent function space.

In the type theory one can define for every set A and A-indexed family of sets (Ba)x∈A a
new set Πx∈ABx called dependent function space.

Elements of Πx∈ABx are functions with domain A and such that f(a) ∈ Ba for every a ∈ A.

Π-construction of PTS works in the same way

Π x :A.B(x) is the type of terms f such that, for every a : A, F a : B(a)

4 CHAPTER 2. TYPE SYSTEMS AND LOGICS

• We write A→B instead of Πx :A.B whenever x "∈ FV(B).

• M [x := N] denote the substitution of N for all the free occurrences of x in M .

• We identify pseudo-terms that are equal up to a renaming of bound variables (α-conversion).

• We assume the standard variable convention, so all bound variables are chosen to be different
from free variables.

• β-reduction is defined as the compatible closure of the rule

(λ x :A.M) N →β M [x := N]

!β is the reflexive-transitive closure of→β .

=β is the reflexive-symmetric-transitive closure of→β .

• Application associates to the left, abstraction to the right and application binds more tightly
than abstraction.

• We let x, y, z, ... range over V and s, s′, ... range over S.

2.1.3 Salient Features of PTS

• PTS describe λ-calculi à la Church (λ-abstraction carry the domain of bound variables).

• PTS are minimal (just Π type construction and β reduction rule), which imposes strict
limitations on their applicability.

• PTS model dependent types. Type constructor Π captures in the type theory the set-theoretic
notion of generic or dependent function space.

In the type theory one can define for every set A and A-indexed family of sets (Ba)x∈A a
new set Πx∈ABx called dependent function space.

Elements of Πx∈ABx are functions with domain A and such that f(a) ∈ Ba for every a ∈ A.

Π-construction of PTS works in the same way

Π x :A.B(x) is the type of terms f such that, for every a : A, F a : B(a)

27

Specifications

The typing system of PTS is parameterized by a triple (S, A, R) where

Every specification S induces a PTS #S.

• S is a set of sorts

• A ⊆ S # S is a set of axioms

• R ⊆ S # S # S is a set of rules

A PTS-specification is a triple (S, A, R) where

Definition

We use (s1,s2) to denote rules of the form (s1,s2,s2).

S is the set of universes of the type system;
A determine the typing relation between universes;
R determine which dependent function types may be found and where they live.

28

Contexts and Judgments

• A judgment is derivable if it can be inferred from the typing rules of the
next slide.

• The set of contexts is given by the abstract syntax

• We let ⊆ denote context inclusion
• The domain of a context is defined by the clause

• We let !, % range over

2.1. PURE TYPE SYSTEMS 5

(axiom) 〈〉 # ∗ : ! if (s1, s2) ∈ A

(start) Γ # A : s
Γ, x :A # x : A

if x &∈ dom(Γ)

(weakening) Γ # A : B Γ # C : s
Γ, x :C # A : B

if x &∈ dom(Γ)

(product)
Γ # A : s1 Γ, x :A # B : s2

Γ # (Π x :A.B) : s3

if (s1, s2, s3) ∈ R

(application)
Γ # F : (Π x :A.B) Γ # a : A

Γ # F a : B[x := a]

(abstraction)
Γ, x :A # b : B Γ # (Π x :A.B) : s

Γ # λ x :A.b : (Π x :A.B)

(conversion) Γ # A : B Γ # B′ : s

Γ # A : B′ if B =β B′

Figure 2.1: Typing rules for PTS

2.1.5 Contexts and Judgments

• The set G of contexts is given by the abstract syntax G ::= 〈〉 | G,V : T

– We let ⊆ denote context inclusion.

– The domain of a context is defined by the clause dom(x1 : A1, ..., xn : An) = {x1, ..., xn}

– We let Γ,∆ range over G.

• A judgment is a triple of the form Γ # A : B where A,B ∈ Γ and Γ ∈ G. Γ, A and B are
the context, the subject and the predicate of the judgment.

• A judgment is derivable if it can be infered from the typing rules of Figure 2.1.

• If Γ # A : B then Γ, A and B are legal.

• If Γ # A : s for s ∈ S we say that A is a type.

Note that:

• contexts amy introcude type variables with assertions of he form A : s with s ∈ S.

• contexts are ordered lists so as to handle possible dependencies, e.g., A : s, a : A intriduces
a type variable and an object variable nd is meaningful, whereas a : A,A : s is not.

2.1. PURE TYPE SYSTEMS 5

(axiom) 〈〉 # ∗ : ! if (s1, s2) ∈ A

(start) Γ # A : s
Γ, x :A # x : A

if x &∈ dom(Γ)

(weakening) Γ # A : B Γ # C : s
Γ, x :C # A : B

if x &∈ dom(Γ)

(product)
Γ # A : s1 Γ, x :A # B : s2

Γ # (Π x :A.B) : s3

if (s1, s2, s3) ∈ R

(application)
Γ # F : (Π x :A.B) Γ # a : A

Γ # F a : B[x := a]

(abstraction)
Γ, x :A # b : B Γ # (Π x :A.B) : s

Γ # λ x :A.b : (Π x :A.B)

(conversion) Γ # A : B Γ # B′ : s

Γ # A : B′ if B =β B′

Figure 2.1: Typing rules for PTS

2.1.5 Contexts and Judgments

• The set G of contexts is given by the abstract syntax G ::= 〈〉 | G,V : T

– We let ⊆ denote context inclusion.

– The domain of a context is defined by the clause dom(x1 :A1, ..., xn :An) = {x1, ..., xn}

– We let Γ,∆ range over G.

• A judgment is a triple of the form Γ # A : B where A,B ∈ Γ and Γ ∈ G. Γ, A and B are
the context, the subject and the predicate of the judgment.

• A judgment is derivable if it can be infered from the typing rules of Figure 2.1.

• If Γ # A : B then Γ, A and B are legal.

• If Γ # A : s for s ∈ S we say that A is a type.

Note that:

• contexts amy introcude type variables with assertions of he form A : s with s ∈ S.

• contexts are ordered lists so as to handle possible dependencies, e.g., A : s, a : A intriduces
a type variable and an object variable nd is meaningful, whereas a : A,A : s is not.

2.1. PURE TYPE SYSTEMS 5

(axiom) 〈〉 # ∗ : ! if (s1, s2) ∈ A

(start) Γ # A : s
Γ, x :A # x : A

if x &∈ dom(Γ)

(weakening) Γ # A : B Γ # C : s
Γ, x :C # A : B

if x &∈ dom(Γ)

(product)
Γ # A : s1 Γ, x :A # B : s2

Γ # (Π x :A.B) : s3

if (s1, s2, s3) ∈ R

(application)
Γ # F : (Π x :A.B) Γ # a : A

Γ # F a : B[x := a]

(abstraction)
Γ, x :A # b : B Γ # (Π x :A.B) : s

Γ # λ x :A.b : (Π x :A.B)

(conversion) Γ # A : B Γ # B′ : s

Γ # A : B′ if B =β B′

Figure 2.1: Typing rules for PTS

2.1.5 Contexts and Judgments

• The set G of contexts is given by the abstract syntax G ::= 〈〉 | G,V : T

– We let ⊆ denote context inclusion.

– The domain of a context is defined by the clause dom(x1 :A1, ..., xn :An) = {x1, ..., xn}

– We let Γ,∆ range over G.

• A judgment is a triple of the form Γ # A : B where A,B ∈ Γ and Γ ∈ G. Γ, A and B are
the context, the subject and the predicate of the judgment.

• A judgment is derivable if it can be infered from the typing rules of Figure 2.1.

• If Γ # A : B then Γ, A and B are legal.

• If Γ # A : s for s ∈ S we say that A is a type.

Note that:

• contexts amy introcude type variables with assertions of he form A : s with s ∈ S.

• contexts are ordered lists so as to handle possible dependencies, e.g., A : s, a : A intriduces
a type variable and an object variable nd is meaningful, whereas a : A,A : s is not.

2.1. PURE TYPE SYSTEMS 5

(axiom) 〈〉 # ∗ : ! if (s1, s2) ∈ A

(start) Γ # A : s
Γ, x :A # x : A

if x &∈ dom(Γ)

(weakening) Γ # A : B Γ # C : s
Γ, x :C # A : B

if x &∈ dom(Γ)

(product)
Γ # A : s1 Γ, x :A # B : s2

Γ # (Π x :A.B) : s3

if (s1, s2, s3) ∈ R

(application)
Γ # F : (Π x :A.B) Γ # a : A

Γ # F a : B[x := a]

(abstraction)
Γ, x :A # b : B Γ # (Π x :A.B) : s

Γ # λ x :A.b : (Π x :A.B)

(conversion) Γ # A : B Γ # B′ : s

Γ # A : B′ if B =β B′

Figure 2.1: Typing rules for PTS

2.1.5 Contexts and Judgments

• The set G of contexts is given by the abstract syntax G ::= 〈〉 | G,V : T

– We let ⊆ denote context inclusion.

– The domain of a context is defined by the clause dom(x1 :A1, ..., xn :An) = {x1, ..., xn}

– We let Γ,∆ range over G.

• A judgment is a triple of the form Γ # A : B where A,B ∈ Γ and Γ ∈ G. Γ, A and B are
the context, the subject and the predicate of the judgment.

• A judgment is derivable if it can be infered from the typing rules of Figure 2.1.

• If Γ # A : B then Γ, A and B are legal.

• If Γ # A : s for s ∈ S we say that A is a type.

Note that:

• contexts amy introcude type variables with assertions of he form A : s with s ∈ S.

• contexts are ordered lists so as to handle possible dependencies, e.g., A : s, a : A intriduces
a type variable and an object variable nd is meaningful, whereas a : A,A : s is not.

• If then !, A and B are legal.

• If for s ∈ S , we say that A is a type.

2.1. PURE TYPE SYSTEMS 5

(axiom) 〈〉 # ∗ : ! if (s1, s2) ∈ A

(start) Γ # A : s
Γ, x :A # x : A

if x &∈ dom(Γ)

(weakening) Γ # A : B Γ # C : s
Γ, x :C # A : B

if x &∈ dom(Γ)

(product)
Γ # A : s1 Γ, x :A # B : s2

Γ # (Π x :A.B) : s3

if (s1, s2, s3) ∈ R

(application)
Γ # F : (Π x :A.B) Γ # a : A

Γ # F a : B[x := a]

(abstraction)
Γ, x :A # b : B Γ # (Π x :A.B) : s

Γ # λ x :A.b : (Π x :A.B)

(conversion) Γ # A : B Γ # B′ : s

Γ # A : B′ if B =β B′

Figure 2.1: Typing rules for PTS

2.1.5 Contexts and Judgments

• The set G of contexts is given by the abstract syntax G ::= 〈〉 | G,V : T

– We let ⊆ denote context inclusion.

– The domain of a context is defined by the clause dom(x1 :A1, ..., xn :An) = {x1, ..., xn}

– We let Γ,∆ range over G.

• A judgment is a triple of the form Γ # A : B where A,B ∈ Γ and Γ ∈ G. Γ, A and B are
the context, the subject and the predicate of the judgment.

• A judgment is derivable if it can be infered from the typing rules of Figure 2.1.

• If Γ # A : B then Γ, A and B are legal.

• If Γ # A : s for s ∈ S we say that A is a type.

Note that:

• contexts amy introcude type variables with assertions of he form A : s with s ∈ S.

• contexts are ordered lists so as to handle possible dependencies, e.g., A : s, a : A intriduces
a type variable and an object variable nd is meaningful, whereas a : A,A : s is not.

2.1. PURE TYPE SYSTEMS 5

(axiom) 〈〉 # ∗ : ! if (s1, s2) ∈ A

(start) Γ # A : s
Γ, x :A # x : A

if x &∈ dom(Γ)

(weakening) Γ # A : B Γ # C : s
Γ, x :C # A : B

if x &∈ dom(Γ)

(product)
Γ # A : s1 Γ, x :A # B : s2

Γ # (Π x :A.B) : s3

if (s1, s2, s3) ∈ R

(application)
Γ # F : (Π x :A.B) Γ # a : A

Γ # F a : B[x := a]

(abstraction)
Γ, x :A # b : B Γ # (Π x :A.B) : s

Γ # λ x :A.b : (Π x :A.B)

(conversion) Γ # A : B Γ # B′ : s

Γ # A : B′ if B =β B′

Figure 2.1: Typing rules for PTS

2.1.5 Contexts and Judgments

• The set G of contexts is given by the abstract syntax G ::= 〈〉 | G,V : T

– We let ⊆ denote context inclusion.

– The domain of a context is defined by the clause dom(x1 :A1, ..., xn :An) = {x1, ..., xn}

– We let Γ,∆ range over G.

• A judgment is a triple of the form Γ # A : B where A,B ∈ Γ and Γ ∈ G. Γ, A and B are
the context, the subject and the predicate of the judgment.

• A judgment is derivable if it can be infered from the typing rules of Figure 2.1.

• If Γ # A : B then Γ, A and B are legal.

• If Γ # A : s for s ∈ S we say that A is a type.

Note that:

• contexts amy introcude type variables with assertions of he form A : s with s ∈ S.

• contexts are ordered lists so as to handle possible dependencies, e.g., A : s, a : A intriduces
a type variable and an object variable nd is meaningful, whereas a : A,A : s is not.

• A judgment is a triple of the form where and .

2.1. PURE TYPE SYSTEMS 5

(axiom) 〈〉 # ∗ : ! if (s1, s2) ∈ A

(start) Γ # A : s
Γ, x :A # x : A

if x &∈ dom(Γ)

(weakening) Γ # A : B Γ # C : s
Γ, x :C # A : B

if x &∈ dom(Γ)

(product)
Γ # A : s1 Γ, x :A # B : s2

Γ # (Π x :A.B) : s3

if (s1, s2, s3) ∈ R

(application)
Γ # F : (Π x :A.B) Γ # a : A

Γ # F a : B[x := a]

(abstraction)
Γ, x :A # b : B Γ # (Π x :A.B) : s

Γ # λ x :A.b : (Π x :A.B)

(conversion) Γ # A : B Γ # B′ : s

Γ # A : B′ if B =β B′

Figure 2.1: Typing rules for PTS

2.1.5 Contexts and Judgments

• The set G of contexts is given by the abstract syntax G ::= 〈〉 | G,V : T

– We let ⊆ denote context inclusion.

– The domain of a context is defined by the clause dom(x1 :A1, ..., xn :An) = {x1, ..., xn}

– We let Γ,∆ range over G.

• A judgment is a triple of the form Γ # A : B where A,B ∈ Γ and Γ ∈ G. Γ, A and B are
the context, the subject and the predicate of the judgment.

• A judgment is derivable if it can be infered from the typing rules of Figure 2.1.

• If Γ # A : B then Γ, A and B are legal.

• If Γ # A : s for s ∈ S we say that A is a type.

Note that:

• contexts amy introcude type variables with assertions of he form A : s with s ∈ S.

• contexts are ordered lists so as to handle possible dependencies, e.g., A : s, a : A intriduces
a type variable and an object variable nd is meaningful, whereas a : A,A : s is not.

2.1. PURE TYPE SYSTEMS 5

(axiom) 〈〉 # ∗ : ! if (s1, s2) ∈ A

(start) Γ # A : s
Γ, x :A # x : A

if x &∈ dom(Γ)

(weakening) Γ # A : B Γ # C : s
Γ, x :C # A : B

if x &∈ dom(Γ)

(product)
Γ # A : s1 Γ, x :A # B : s2

Γ # (Π x :A.B) : s3

if (s1, s2, s3) ∈ R

(application)
Γ # F : (Π x :A.B) Γ # a : A

Γ # F a : B[x := a]

(abstraction)
Γ, x :A # b : B Γ # (Π x :A.B) : s

Γ # λ x :A.b : (Π x :A.B)

(conversion) Γ # A : B Γ # B′ : s

Γ # A : B′ if B =β B′

Figure 2.1: Typing rules for PTS

2.1.5 Contexts and Judgments

• The set G of contexts is given by the abstract syntax G ::= 〈〉 | G,V : T

– We let ⊆ denote context inclusion.

– The domain of a context is defined by the clause dom(x1 :A1, ..., xn :An) = {x1, ..., xn}

– We let Γ,∆ range over G.

• A judgment is a triple of the form Γ # A : B where A,B ∈ Γ and Γ ∈ G. Γ, A and B are
the context, the subject and the predicate of the judgment.

• A judgment is derivable if it can be infered from the typing rules of Figure 2.1.

• If Γ # A : B then Γ, A and B are legal.

• If Γ # A : s for s ∈ S we say that A is a type.

Note that:

• contexts amy introcude type variables with assertions of he form A : s with s ∈ S.

• contexts are ordered lists so as to handle possible dependencies, e.g., A : s, a : A intriduces
a type variable and an object variable nd is meaningful, whereas a : A,A : s is not.

2.2. PURE TYPE SYSTEMS 9

(axiom) 〈〉 # ∗ : ! if (s1, s2) ∈ A

(start) Γ # A : s
Γ, x :A # x : A

if x &∈ dom(Γ)

(weakening) Γ # A : B Γ # C : s
Γ, x :C # A : B

if x &∈ dom(Γ)

(product)
Γ # A : s1 Γ, x :A # B : s2

Γ # (Πx :A.B) : s3

if (s1, s2, s3) ∈ R

(application)
Γ # F : (Πx :A.B) Γ # a : A

Γ # F a : B[x := a]

(abstraction)
Γ, x :A # b : B Γ # (Πx :A.B) : s

Γ # λx :A.b : (Πx :A.B)

(conversion) Γ # A : B Γ # B′ : s

Γ # A : B′ if B =β B′

Figure 2.1: Typing rules for PTS

2.2.5 Contexts and Judgments

• The set G of contexts is given by the abstract syntax G ::= 〈〉 | G,V : T

– We let ⊆ denote context inclusion.

– The domain of a context is defined by the clause dom(x1 :A1, ..., xn :An) = {x1, ..., xn}

– We let Γ,∆ range over G.

• A judgment is a triple of the form Γ # A : B where A,B ∈ T and Γ ∈ G. Γ, A and B are
the context, the subject and the predicate of the judgment.

• A judgment is derivable if it can be infered from the typing rules of Figure 2.1.

• If Γ # A : B then Γ, A and B are legal.

• If Γ # A : s for s ∈ S we say that A is a type.

Note that:

• contexts may introduce type variables with assertions of the form A : s with s ∈ S.

• contexts are ordered lists so as to handle possible dependencies, e.g., A : s, a : A intriduces
a type variable and an object variable nd is meaningful, whereas a : A,A : s is not.

29

Typing rules for PTS
2.2. PURE TYPE SYSTEMS 9

(axiom) 〈〉 # s1 : s2 if (s1, s2) ∈ A

(start) Γ # A : s
Γ, x :A # x : A

if x %∈ dom(Γ)

(weakening) Γ # A : B Γ # C : s
Γ, x :C # A : B

if x %∈ dom(Γ)

(product)
Γ # A : s1 Γ, x :A # B : s2

Γ # (Πx :A.B) : s3

if (s1, s2, s3) ∈ R

(application)
Γ # F : (Πx :A.B) Γ # a : A

Γ # F a : B[x := a]

(abstraction)
Γ, x :A # b : B Γ # (Πx :A.B) : s

Γ # λx :A.b : (Πx :A.B)

(conversion) Γ # A : B Γ # B′ : s

Γ # A : B′ if B =β B′

Figure 2.1: Typing rules for PTS

2.2.5 Contexts and Judgments

• The set G of contexts is given by the abstract syntax G ::= 〈〉 | G,V : T

– We let ⊆ denote context inclusion.

– The domain of a context is defined by the clause dom(x1 :A1, ..., xn :An) = {x1, ..., xn}

– We let Γ,∆ range over G.

• A judgment is a triple of the form Γ # A : B where A,B ∈ T and Γ ∈ G. Γ, A and B are
the context, the subject and the predicate of the judgment.

• A judgment is derivable if it can be infered from the typing rules of Figure 2.1.

• If Γ # A : B then Γ, A and B are legal.

• If Γ # A : s for s ∈ S we say that A is a type.

Note that:

• contexts may introduce type variables with assertions of the form A : s with s ∈ S.

• contexts are ordered lists so as to handle possible dependencies, e.g., A : s, a : A intriduces
a type variable and an object variable nd is meaningful, whereas a : A,A : s is not.

30

It embeds the relation A into the type system.

Typing rules for PTS
10 CHAPTER 2. TYPE SYSTEMS AND LOGICS

2.2.6 Typing rules for PTS

(axiom) 〈〉 # s1 : s2 if (s1, s2) ∈ A

embeds the relation A into the type system.

(start) Γ # A : s
Γ, x :A # x : A

if x %∈ dom(Γ)

(weakening) Γ # A : B Γ # C : s
Γ, x :C # A : B

if x %∈ dom(Γ)

allow the introduction of variables in a context.

(product)
Γ # A : s1 Γ, x :A # B : s2

Γ # (Πx :A.B) : s3

if (s1, s2, s3) ∈ R

allows for dependent function types to be formed, provided they match the rule in R.

(application)
Γ # F : (Πx :A.B) Γ # a : A

Γ # F a : B[x := a]

allows to form applications. Note substitution [x := a] in the type of the application, in order to
accommodate type dependencies.

(abstraction)
Γ, x :A # b : B Γ # (Πx :A.B) : s

Γ # λx :A.b : (Πx :A.B)

allows to build λ-abstractions. Note that the side condition requires that the dependent function
type is well formed.

(conversion) Γ # A : B Γ # B′ : s

Γ # A : B′ if B =β B′

ensures that convertible types (i.e. types that are β-equal) have the same inhabitants. This rule
is crucial for higher-order type theories, because types are λ-terms and can be reduced, and for
dependent type theories because they may occur in types.

2.2.7 Examples of PTS

Some examples of non-dependent type systems (i.e. an expression M : A with A : ∗ cannot appear
as a subexpression of B : ∗).

λ→, the simply typed λ-calculus.

S = ∗, !
A = (∗ : !)
R = (∗, ∗)

31

It allows the introduction of variables in a context.

Typing rules for PTS

6 CHAPTER 2. TYPE SYSTEMS AND LOGICS

2.1.6 Typing rules for PTS

(axiom) 〈〉 # ∗ : ! if (s1, s2) ∈ A

embeds the relation A into the type system.

(start) Γ # A : s
Γ, x :A # x : A

if x &∈ dom(Γ)

(weakening) Γ # A : B Γ # C : s
Γ, x :C # A : B

if x &∈ dom(Γ)

allow the introduction of variables in a context.

(product)
Γ # A : s1 Γ, x :A # B : s2

Γ # (Π x :A.B) : s3

if (s1, s2, s3) ∈ R

allows for dependent function types to be formed, provided they match the rule in R.

(application)
Γ # F : (Π x :A.B) Γ # a : A

Γ # F a : B[x := a]
allows to build λ-abstractions Note that the side condition requires that the dependent function
type is well formed.

(abstraction)
Γ, x :A # b : B Γ # (Π x :A.B) : s

Γ # λ x :A.b : (Π x :A.B)

allows to form applications. Note substitution [x := a] in the type of the application, in order to
accommodate type dependencies.

(conversion) Γ # A : B Γ # B′ : s

Γ # A : B′ if B =β B′

ensures that convertible types (i.e. types that are beta-equal) have the same inhabitants. This
rule is crucial for higher-order type theories, because types are λ-terms and can be reduced, and
for dependent type theories because they may occur in types.

2.2 Lambda Cube

λω !! λC

λ2

""!!!!!!!!!!
!! λP2

""!!!!!!!!!!

λω

##

!! λPω

##

λ→ !!

""!!!!!!!!!

##

λP

""!!!!!!!!!

##

32

It allows for dependent function types to be formed, provided they match
the rule in R.

Typing rules for PTS

6 CHAPTER 2. TYPE SYSTEMS AND LOGICS

2.1.6 Typing rules for PTS

(axiom) 〈〉 # ∗ : ! if (s1, s2) ∈ A

embeds the relation A into the type system.

(start) Γ # A : s
Γ, x :A # x : A

if x &∈ dom(Γ)

(weakening) Γ # A : B Γ # C : s
Γ, x :C # A : B

if x &∈ dom(Γ)

allow the introduction of variables in a context.

(product)
Γ # A : s1 Γ, x :A # B : s2

Γ # (Π x :A.B) : s3

if (s1, s2, s3) ∈ R

allows for dependent function types to be formed, provided they match the rule in R.

(application)
Γ # F : (Π x :A.B) Γ # a : A

Γ # F a : B[x := a]
allows to build λ-abstractions Note that the side condition requires that the dependent function
type is well formed.

(abstraction)
Γ, x :A # b : B Γ # (Π x :A.B) : s

Γ # λ x :A.b : (Π x :A.B)

allows to form applications. Note substitution [x := a] in the type of the application, in order to
accommodate type dependencies.

(conversion) Γ # A : B Γ # B′ : s

Γ # A : B′ if B =β B′

ensures that convertible types (i.e. types that are beta-equal) have the same inhabitants. This
rule is crucial for higher-order type theories, because types are λ-terms and can be reduced, and
for dependent type theories because they may occur in types.

2.2 Lambda Cube

λω !! λC

λ2

""!!!!!!!!!!
!! λP2

""!!!!!!!!!!

λω

##

!! λPω

##

λ→ !!

""!!!!!!!!!

##

λP

""!!!!!!!!!

##

33

It allows to form applications.

Note substitution [x := a] in the type of the application, in order to
accommodate type dependencies.

Typing rules for PTS

6 CHAPTER 2. TYPE SYSTEMS AND LOGICS

2.1.6 Typing rules for PTS

(axiom) 〈〉 # ∗ : ! if (s1, s2) ∈ A

embeds the relation A into the type system.

(start) Γ # A : s
Γ, x :A # x : A

if x &∈ dom(Γ)

(weakening) Γ # A : B Γ # C : s
Γ, x :C # A : B

if x &∈ dom(Γ)

allow the introduction of variables in a context.

(product)
Γ # A : s1 Γ, x :A # B : s2

Γ # (Π x :A.B) : s3

if (s1, s2, s3) ∈ R

allows for dependent function types to be formed, provided they match the rule in R.

(application)
Γ # F : (Π x :A.B) Γ # a : A

Γ # F a : B[x := a]
allows to build λ-abstractions Note that the side condition requires that the dependent function
type is well formed.

(abstraction)
Γ, x :A # b : B Γ # (Π x :A.B) : s

Γ # λ x :A.b : (Π x :A.B)

allows to form applications. Note substitution [x := a] in the type of the application, in order to
accommodate type dependencies.

(conversion) Γ # A : B Γ # B′ : s

Γ # A : B′ if B =β B′

ensures that convertible types (i.e. types that are beta-equal) have the same inhabitants. This
rule is crucial for higher-order type theories, because types are λ-terms and can be reduced, and
for dependent type theories because they may occur in types.

2.2 Lambda Cube

λω !! λC

λ2

""!!!!!!!!!!
!! λP2

""!!!!!!!!!!

λω

##

!! λPω

##

λ→ !!

""!!!!!!!!!

##

λP

""!!!!!!!!!

##

34

2.1. PURE TYPE SYSTEMS 5

(axiom) 〈〉 # ∗ : ! if (s1, s2) ∈ A

(start) Γ # A : s
Γ, x :A # x : A

if x &∈ dom(Γ)

(weakening) Γ # A : B Γ # C : s
Γ, x :C # A : B

if x &∈ dom(Γ)

(product)
Γ # A : s1 Γ, x :A # B : s2

Γ # (Π x :A.B) : s3

if (s1, s2, s3) ∈ R

(application)
Γ # F : (Π x :A.B) Γ # a : A

Γ # F a : B[x := a]

(abstraction)
Γ, x :A # b : B Γ # (Π x :A.B) : s

Γ # λ x :A.b : (Π x :A.B)

(conversion) Γ # A : B Γ # B′ : s

Γ # A : B′ if B =β B′

Figure 2.1: Typing rules for PTS

2.1.5 Contexts and Judgments

• The set G of contexts is given by the abstract syntax G ::= 〈〉 | G,V : T

– We let ⊆ denote context inclusion.

– The domain of a context is defined by the clause dom(x1 :A1, ..., xn :An) = {x1, ..., xn}

– We let Γ,∆ range over G.

• A judgment is a triple of the form Γ # A : B where A,B ∈ Γ and Γ ∈ G. Γ, A and B are
the context, the subject and the predicate of the judgment.

• A judgment is derivable if it can be infered from the typing rules of Figure 2.1.

• If Γ # A : B then Γ, A and B are legal.

• If Γ # A : s for s ∈ S we say that A is a type.

Note that:

• contexts may introduce type variables with assertions of the form A : s with s ∈ S.

• contexts are ordered lists so as to handle possible dependencies, e.g., A : s, a : A intriduces
a type variable and an object variable nd is meaningful, whereas a : A,A : s is not.

It allows to build !-abstractions.

Note that the side condition requires that the dependent function type is
well formed.

Typing rules for PTS

35

6 CHAPTER 2. TYPE SYSTEMS AND LOGICS

2.1.6 Typing rules for PTS

(axiom) 〈〉 # ∗ : ! if (s1, s2) ∈ A

embeds the relation A into the type system.

(start) Γ # A : s
Γ, x :A # x : A

if x &∈ dom(Γ)

(weakening) Γ # A : B Γ # C : s
Γ, x :C # A : B

if x &∈ dom(Γ)

allow the introduction of variables in a context.

(product)
Γ # A : s1 Γ, x :A # B : s2

Γ # (Π x :A.B) : s3

if (s1, s2, s3) ∈ R

allows for dependent function types to be formed, provided they match the rule in R.

(application)
Γ # F : (Π x :A.B) Γ # a : A

Γ # F a : B[x := a]
allows to build λ-abstractions Note that the side condition requires that the dependent function
type is well formed.

(abstraction)
Γ, x :A # b : B Γ # (Π x :A.B) : s

Γ # λ x :A.b : (Π x :A.B)

allows to form applications. Note substitution [x := a] in the type of the application, in order to
accommodate type dependencies.

(conversion) Γ # A : B Γ # B′ : s

Γ # A : B′ if B =β B′

ensures that convertible types (i.e. types that are beta-equal) have the same inhabitants. This
rule is crucial for higher-order type theories, because types are λ-terms and can be reduced, and
for dependent type theories because they may occur in types.

2.2 Lambda Cube

λω !! λC

λ2

""!!!!!!!!!!
!! λP2

""!!!!!!!!!!

λω

##

!! λPω

##

λ→ !!

""!!!!!!!!!

##

λP

""!!!!!!!!!

##

It ensures that convertible types (i.e. types that are $-equal) have the same
inhabitants.

This rule is crucial for higher-order type theories, because types are !-terms
and can be reduced, and for dependent type theories because they may occur
in types.

Typing rules for PTS

36

Examples of PTS

2.1. PURE TYPE SYSTEMS 7

λ→
S = ∗, !
A = (∗ : !)
R = (∗, ∗)

λ2, is the PTS counterpart of the Girard’s System F.

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗)

λ2
S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗)

λω, is the PTS counterpart of the Girard’s System Fω.

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗), (!,!)

λω

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗), (!,!)

In logical terms, these non-dependent systems correspond to propositional logics.

2.1.8 More examples of non-dependent PTS

λU−, the Girard’s System U−.

S = ∗, !, #
A = (∗ : !), (! : #)
R = (∗, ∗), (!, ∗), (!,!), (#,!)

λU−
S = ∗, !, #
A = (∗ : !), (! : #)
R = (∗, ∗), (!, ∗), (!,!), (#,!)

λU ,the System U .

S = ∗, !, #
A = (∗ : !), (! : #)
R = (∗, ∗), (!, ∗), (!,!), (#, ∗), (#,!)

λU

S = ∗, !, #
A = (∗ : !), (! : #)
R = (∗, ∗), (!, ∗), (!,!), (#, ∗), (#,!)

2.1. PURE TYPE SYSTEMS 7

λ→
S = ∗, !
A = (∗ : !)
R = (∗, ∗)

λ2, is the PTS counterpart of the Girard’s System F.

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗)

λ2
S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗)

λω, is the PTS counterpart of the Girard’s System Fω.

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗), (!,!)

λω

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗), (!,!)

In logical terms, these non-dependent systems correspond to propositional logics.

2.1.8 More examples of non-dependent PTS

λU−, the Girard’s System U−.

S = ∗, !, #
A = (∗ : !), (! : #)
R = (∗, ∗), (!, ∗), (!,!), (#,!)

λU−
S = ∗, !, #
A = (∗ : !), (! : #)
R = (∗, ∗), (!, ∗), (!,!), (#,!)

λU ,the System U .

S = ∗, !, #
A = (∗ : !), (! : #)
R = (∗, ∗), (!, ∗), (!,!), (#, ∗), (#,!)

λU

S = ∗, !, #
A = (∗ : !), (! : #)
R = (∗, ∗), (!, ∗), (!,!), (#, ∗), (#,!)

2.1. PURE TYPE SYSTEMS 7

λ→
S = ∗, !
A = (∗ : !)
R = (∗, ∗)

λ2, is the PTS counterpart of the Girard’s System F.

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗)

λ2
S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗)

λω, is the PTS counterpart of the Girard’s System Fω.

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗), (!,!)

λω

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗), (!,!)

In logical terms, these non-dependent systems correspond to propositional logics.

2.1.8 More examples of non-dependent PTS

λU−, the Girard’s System U−.

S = ∗, !, #
A = (∗ : !), (! : #)
R = (∗, ∗), (!, ∗), (!,!), (#,!)

λU−
S = ∗, !, #
A = (∗ : !), (! : #)
R = (∗, ∗), (!, ∗), (!,!), (#,!)

λU ,the System U .

S = ∗, !, #
A = (∗ : !), (! : #)
R = (∗, ∗), (!, ∗), (!,!), (#, ∗), (#,!)

λU

S = ∗, !, #
A = (∗ : !), (! : #)
R = (∗, ∗), (!, ∗), (!,!), (#, ∗), (#,!)

Non-dependent type systems (i.e. an expression M : A with A : ! cannot appear
as a subexpression of B : !)

#2 is the PTS counterpart of Girard’s System F.

#&, the simply typed !-calculus.

#$ is the PTS counterpart of Girard’s System F$.

In logical terms, these non-dependent systems correspond to propositional logics.

37

More examples of non-dependent PTS

!U%, !U and !! are inconsistent in the sense that there exists a pseudo-term M
such that the judgment A : ! " M : A is derivable.

#U%, Girard’s System U%

#U , System U

The System #!

8 CHAPTER 2. TYPE SYSTEMS AND LOGICS

The System λ∗
S = ∗
A = (∗ : ∗)
R = (∗, ∗)

λ∗
S = ∗
A = (∗ : ∗)
R = (∗, ∗)

λU−, λU and λ∗ are inconsistent in the sense that exists a pseudo-term M such that the
judgment A : ∗ " M : A is derivable.

2.1.9 Examples of dependent PTS

Some examples of dependent type systems (i.e. these systems allow to type expressions B : ∗
which contain as subexpression M : A : ∗).

λP , is the PTS counterpart of the Logical Frameworks due to Harper et al.

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (∗,!)

λP

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (∗,!)

λP2, is the PTS counterpart of the Longo and Moggi’s system also named λP2.

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗), (∗,!)

λP2
S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗), (∗,!)

λC (also known as λPω) is the PTS counterpart of the Coquand and Huet’s Calculus os
Constructions.

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗), (∗,!), (!,!)

λC

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗), (∗,!), (!,!)

In logical terms, these dependent systems correspond to predicate logics.

2.1. PURE TYPE SYSTEMS 7

λ→
S = ∗, !
A = (∗ : !)
R = (∗, ∗)

λ2, is the PTS counterpart of the Girard’s System F.

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗)

λ2
S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗)

λω, is the PTS counterpart of the Girard’s System Fω.

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗), (!,!)

λω

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗), (!,!)

In logical terms, these non-dependent systems correspond to propositional logics.

2.1.8 More examples of non-dependent PTS

λU−, the Girard’s System U−.

S = ∗, !, #
A = (∗ : !), (! : #)
R = (∗, ∗), (!, ∗), (!,!), (#,!)

λU−
S = ∗, !, #
A = (∗ : !), (! : #)
R = (∗, ∗), (!, ∗), (!,!), (#,!)

λU ,the System U .

S = ∗, !, #
A = (∗ : !), (! : #)
R = (∗, ∗), (!, ∗), (!,!), (#, ∗), (#,!)

λU

S = ∗, !, #
A = (∗ : !), (! : #)
R = (∗, ∗), (!, ∗), (!,!), (#, ∗), (#,!)

2.1. PURE TYPE SYSTEMS 7

λ→
S = ∗, !
A = (∗ : !)
R = (∗, ∗)

λ2, is the PTS counterpart of the Girard’s System F.

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗)

λ2
S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗)

λω, is the PTS counterpart of the Girard’s System Fω.

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗), (!,!)

λω

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗), (!,!)

In logical terms, these non-dependent systems correspond to propositional logics.

2.1.8 More examples of non-dependent PTS

λU−, the Girard’s System U−.

S = ∗, !, #
A = (∗ : !), (! : #)
R = (∗, ∗), (!, ∗), (!,!), (#,!)

λU−
S = ∗, !, #
A = (∗ : !), (! : #)
R = (∗, ∗), (!, ∗), (!,!), (#,!)

λU ,the System U .

S = ∗, !, #
A = (∗ : !), (! : #)
R = (∗, ∗), (!, ∗), (!,!), (#, ∗), (#,!)

λU

S = ∗, !, #
A = (∗ : !), (! : #)
R = (∗, ∗), (!, ∗), (!,!), (#, ∗), (#,!)

38

Examples of dependent PTS

In logical terms, these dependent systems correspond to predicate logics.

It is possible to type expressions B : ! which contain as subexpression M : A : !.

#P is the PTS counterpart of the Logical Frameworks due to Harper et al.

#P2 is the PTS counterpart of Longo and Moggi’s system also named !P2.

#C (also known as #P$) is the PTS counterpart of Coquand and Huet’s Calculus
of Constructions.

8 CHAPTER 2. TYPE SYSTEMS AND LOGICS

The System λ∗
S = ∗
A = (∗ : ∗)
R = (∗, ∗)

λ∗
S = ∗
A = (∗ : ∗)
R = (∗, ∗)

λU−, λU and λ∗ are inconsistent in the sense that exists a pseudo-term M such that the
judgment A : ∗ " M : A is derivable.

2.1.9 Examples of dependent PTS

Some examples of dependent type systems (i.e. these systems allow to type expressions B : ∗
which contain as subexpression M : A : ∗).

λP , is the PTS counterpart of the Logical Frameworks due to Harper et al.

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (∗,!)

λP

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (∗,!)

λP2, is the PTS counterpart of the Longo and Moggi’s system also named λP2.

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗), (∗,!)

λP2
S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗), (∗,!)

λC (also known as λPω) is the PTS counterpart of the Coquand and Huet’s Calculus os
Constructions.

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗), (∗,!), (!,!)

λC

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗), (∗,!), (!,!)

In logical terms, these dependent systems correspond to predicate logics.

8 CHAPTER 2. TYPE SYSTEMS AND LOGICS

The System λ∗
S = ∗
A = (∗ : ∗)
R = (∗, ∗)

λ∗
S = ∗
A = (∗ : ∗)
R = (∗, ∗)

λU−, λU and λ∗ are inconsistent in the sense that exists a pseudo-term M such that the
judgment A : ∗ " M : A is derivable.

2.1.9 Examples of dependent PTS

Some examples of dependent type systems (i.e. these systems allow to type expressions B : ∗
which contain as subexpression M : A : ∗).

λP , is the PTS counterpart of the Logical Frameworks due to Harper et al.

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (∗,!)

λP

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (∗,!)

λP2, is the PTS counterpart of the Longo and Moggi’s system also named λP2.

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗), (∗,!)

λP2
S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗), (∗,!)

λC (also known as λPω) is the PTS counterpart of the Coquand and Huet’s Calculus os
Constructions.

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗), (∗,!), (!,!)

λC

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗), (∗,!), (!,!)

In logical terms, these dependent systems correspond to predicate logics.

8 CHAPTER 2. TYPE SYSTEMS AND LOGICS

The System λ∗
S = ∗
A = (∗ : ∗)
R = (∗, ∗)

λ∗
S = ∗
A = (∗ : ∗)
R = (∗, ∗)

λU−, λU and λ∗ are inconsistent in the sense that exists a pseudo-term M such that the
judgment A : ∗ " M : A is derivable.

2.1.9 Examples of dependent PTS

Some examples of dependent type systems (i.e. these systems allow to type expressions B : ∗
which contain as subexpression M : A : ∗).

λP , is the PTS counterpart of the Logical Frameworks due to Harper et al.

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (∗,!)

λP

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (∗,!)

λP2, is the PTS counterpart of the Longo and Moggi’s system also named λP2.

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗), (∗,!)

λP2
S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗), (∗,!)

λC (also known as λPω) is the PTS counterpart of the Coquand and Huet’s Calculus os
Constructions.

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗), (∗,!), (!,!)

λC

S = ∗, !
A = (∗ : !)
R = (∗, ∗), (!, ∗), (∗,!), (!,!)

In logical terms, these dependent systems correspond to predicate logics.

39

Another example of dependent PTS

#C$ is an extension of the Calculus os Constructions.

2.2. LAMBDA CUBE 9

2.1.10 Another example of dependent PTS

λCω is an extension of the Calculus os Constructions.

S = ∗, !i , i ∈ N
A = (∗ : !0), (!i : !i+1) , i ∈ N
R = (∗, ∗), (!i, ∗), (∗,!i), (!i,!j ,!max(i,j)) , i, j ∈ N

λCω

S = ∗, !i , i ∈ N
A = (∗ : !0), (!i : !i+1) , i ∈ N
R = (∗, ∗), (!i, ∗), (∗,!i), (!i,!j ,!max(i,j)) , i, j ∈ N

2.2 Lambda Cube

λω !! λC

λ2

""!!!!!!!!!!
!! λP2

""!!!!!!!!!!

λω

##

!! λPω

##

λ→ !!

""!!!!!!!!!

##

λP

""!!!!!!!!!

##

2.3 Logic Cube

40

