Pure Type Systems

- Pure Type Systems (PTS) provide a general description for a large class of typed λ -calculi.
- PTS make it possible to derive lot of meta theoretic properties in a generic way.
- In PTS we only have one type constructor (Π) and one computation rule (β). (Therefore the name "pure").
- PTS were originally introduced (albeit in a different from) by S. Berardi and J. Terlouw as a generalization of Barendregt's λ -cube, which itself provides a fine-grained analysis of the Calculus of Constructions.

21

Pure Type Systems

PTS are formal systems for deriving judgments of the form

list of variable declarations

M is of type A relative to a typing of the free variables of M and A (which are declared in Γ)

Syntax

PTS have a single category of expressions, which are called pseudo-terms.

The definitions of pseudo-terms is parameterized by a set \mathcal{V} of variables and a set S of sorts (constants that denote the universes of the type system).

Definition

The set \mathcal{T} of pseudo-terms are defined by the abstract syntax

$$\mathcal{T} \ ::= \ \mathcal{S} \mid \mathcal{V} \mid \mathcal{T} \mathcal{T} \mid \lambda \mathcal{V} : \mathcal{T} . \mathcal{T} \mid \Pi \mathcal{V} : \mathcal{T} . \mathcal{T}$$

Both Π and λ bind variables.

We have the usual notation for free variables and bound variables.

Definitions

Pseudo-terms inherit much of the standard definitions and notations of λ -calculi.

- ullet FV(M) denotes the set of free variables of the pseudo-term M .
- We write $A \to B$ instead of $\Pi x : A \cdot B$ whenever $x \notin FV(B)$.
- M[x := N] denotes the substitution of N for all the free occurrences of x in M .
- We identify pseudo-terms that are equal up to a renaming of bound variables $(\alpha$ -conversion).
- We assume the standard variable convention, so all bound variables are chosen to be different from free variables.

23

Definitions

β-reduction is defined as the compatible closure of the rule

$$(\lambda x : A.M) N \rightarrow_{\beta} M[x := N]$$

- $^{ o}\beta$ is the reflexive-transitive closure of $^{ o}\beta$
- $=_{eta}$ is the reflexive-symmetric-transitive closure of \to_{eta}
- Application associates to the left, abstraction to the right and application binds more tightly than abstraction.
- We let x, y, z, ... range over \mathcal{V} and s, s', ... range over S

Salient Features of PTS

- PTS describe λ -calculi à la Church (λ -abstractions carry the domain of bound variables).
- PTS are minimal (just Π type construction and β reduction rule), which imposes strict limitations on their applicability.
- ullet PTS model dependent types. Type constructor Π captures in the type theory the set-theoretic notion of generic or dependent function space.

Dependent types

In the type theory one can define for every set A and A-indexed family of sets $(B_a)_{x\in A}$ a new set $\Pi_{x\in A}B_x$ called dependent function space.

Elements of $\Pi_{x\in A}B_x$ are functions with domain A and such that $f(a)\in B_a$ for every $a\in A$.

 Π -construction of PTS works in the same way:

 $\prod x : A. B(x)$ is the type of terms F such that, for every a : A, Fa : B(a)

27

Specifications

The typing system of PTS is parameterized by a triple (S, A, R) where

- S is the set of universes of the type system;
- \mathcal{A} determine the typing relation between universes;
- \mathcal{R} determine which dependent function types may be found and where they live.

Definition

A PTS-specification is a triple (S, A, R) where

- S is a set of sorts
- $A \subseteq S \times S$ is a set of axioms
- $\mathcal{R} \subseteq S \times S \times S$ is a set of rules

We use (s1,s2) to denote rules of the form (s1,s2,s2).

Every specification S induces a PTS λS .

Contexts and Judgments

- ullet The set ${\cal G}$ of contexts is given by the abstract syntax $eta:=\langle
 angle\mid {\cal G},{\cal V}:{\cal T}$
 - We let ⊆ denote context inclusion
 - The domain of a context is defined by the clause

$$dom(x_1: A_1, ..., x_n: A_n) = \{x_1, ..., x_n\}$$

- We let Γ, Δ range over \mathcal{G}
- A judgment is a triple of the form $\Gamma \vdash A : B$ where $A, B \in \mathcal{T}$ and $\Gamma \in \mathcal{G}$.
- A judgment is derivable if it can be inferred from the typing rules of the next slide.
 - If $\Gamma \vdash A : B$ then Γ , A and B are legal.
 - If $\Gamma \vdash A : s$ for $s \in S$, we say that A is a type.

20

Typing rules for PTS

$$\langle \rangle \vdash s_1 : s_2$$

if
$$(s_1, s_2) \in \mathcal{A}$$

$$\frac{\Gamma \vdash A : s}{\Gamma. x : A \vdash x : A}$$

if
$$x \not\in \mathsf{dom}(\Gamma)$$

$$\frac{\Gamma \vdash A : B \quad \Gamma \vdash C : s}{\Gamma, x : C \vdash A : B}$$

if
$$x \not\in \mathsf{dom}(\Gamma)$$

$$\frac{\Gamma \vdash A : s_1 \quad \Gamma, x : A \vdash B : s_2}{\Gamma \vdash (\Pi x : A : B) : s_3}$$

if
$$(s_1, s_2, s_3) \in \mathcal{R}$$

$$\frac{\Gamma \vdash F : (\Pi x : A.B) \quad \Gamma \vdash a : A}{\Gamma \vdash F a : B[x := a]}$$

$$\frac{\Gamma, x : A \vdash b : B \quad \Gamma \vdash (\Pi x : A.B) : s}{\Gamma \vdash \lambda x : A.b : (\Pi x : A.B)}$$

$$\frac{\Gamma \vdash A : B \quad \Gamma \vdash B' : s}{\Gamma \vdash A \cdot B'}$$

if
$$B =_{\beta} B'$$

Typing rules for PTS

(axiom)
$$\langle \rangle \vdash s_1 : s_2$$
 if $(s_1, s_2) \in \mathcal{A}$

It embeds the relation $\ensuremath{\mathcal{A}}$ into the type system.

31

Typing rules for PTS

$$\frac{\Gamma \vdash A : s}{\Gamma, x : A \vdash x : A} \qquad \text{if } x \not\in \mathsf{dom}(\Gamma)$$

It allows the introduction of variables in a context.

Typing rules for PTS

(product)
$$\frac{\Gamma \vdash A : s_1 \quad \Gamma, x : A \vdash B : s_2}{\Gamma \vdash (\Pi x : A . B) : s_3} \quad \text{if } (s_1, s_2, s_3) \in \mathcal{R}$$

It allows for dependent function types to be formed, provided they match the rule in \mathcal{R} .

33

Typing rules for PTS

(application)
$$\frac{\Gamma \vdash F : (\Pi x : A.B) \quad \Gamma \vdash a : A}{\Gamma \vdash F a : B[x := a]}$$

It allows to form applications.

Note substitution [x := a] in the type of the application, in order to accommodate type dependencies.

Typing rules for PTS

(abstraction)
$$\frac{\Gamma, x : A \vdash b : B \quad \Gamma \vdash (\Pi x : A.B) : s}{\Gamma \vdash \lambda x : A.b : (\Pi x : A.B)}$$

It allows to build λ -abstractions.

Note that the side condition requires that the dependent function type is well formed.

35

Typing rules for PTS

(conversion)
$$\frac{\Gamma \vdash A : B \quad \Gamma \vdash B' : s}{\Gamma \vdash A : B'} \quad \text{if } B =_{\beta} B'$$

It ensures that convertible types (i.e. types that are β -equal) have the same inhabitants.

This rule is crucial for higher-order type theories, because types are λ -terms and can be reduced, and for dependent type theories because they may occur in types.

Examples of PTS

Non-dependent type systems (i.e. an expression M:A with A:* cannot appear as a subexpression of B:*)

 $\lambda \rightarrow$, the simply typed λ -calculus.

\\ \2 is the PTS counterpart of Girard's System F.

$$\begin{array}{|c|c|c|c|} \hline & \mathcal{S} & = & *, & \square \\ \lambda 2 & \mathcal{A} & = & (*:\square) \\ & \mathcal{R} & = & (*,*), & (\square,*) \\ \hline \end{array}$$

 $\lambda \omega$ is the PTS counterpart of Girard's System F ω .

In logical terms, these non-dependent systems correspond to propositional logics.

37

More examples of non-dependent PTS

λU⁻, Girard's System U⁻

$$\lambda U^{-} \begin{vmatrix} \mathcal{S} &=& *, \; \square, \; \triangle \\ \mathcal{A} &=& (*:\square), \; (\square:\triangle) \\ \mathcal{R} &=& (*,*), \; (\square,*), \; (\square,\square), \; (\triangle,\square) \end{vmatrix}$$

λU , System U

The System 🔭

$$\lambda *$$
 $\mathcal{S} = *$
 $\mathcal{A} = (*:*)$
 $\mathcal{R} = (*,*)$

 λU^- , λU and $\lambda *$ are **inconsistent** in the sense that there exists a pseudo-term M such that the judgment $A: * \vdash M: A$ is derivable.

Examples of dependent PTS

It is possible to type expressions B:* which contain as subexpression M:A:*.

 λP is the PTS counterpart of the Logical Frameworks due to Harper et al.

$$\begin{array}{|c|c|c|c|} \hline & \mathcal{S} & = & *, \; \square \\ \lambda P & \mathcal{A} & = & (*:\square) \\ & \mathcal{R} & = & (*,*), \; (*,\square) \\ \hline \end{array}$$

 $\lambda P2$ is the PTS counterpart of Longo and Moggi's system also named $\lambda P2$.

$$\begin{array}{|c|c|c|c|} \hline & \mathcal{S} & = & *, & \square \\ \lambda P2 & \mathcal{A} & = & (*:\square) \\ & \mathcal{R} & = & (*,*), & (\square,*), & (*,\square) \\ \hline \end{array}$$

 λC (also known as $\lambda P\omega$) is the PTS counterpart of Coquand and Huet's Calculus of Constructions.

$$\begin{array}{|c|c|c|c|} \hline & \mathcal{S} & = & *, & \square \\ & \mathcal{A} & = & (*:\square) \\ & \mathcal{R} & = & (*,*), & (\square,*), & (*,\square), & (\square,\square) \\ \hline \end{array}$$

In logical terms, these dependent systems correspond to predicate logics.

3

Another example of dependent PTS

 $\lambda C \omega$ is an extension of the Calculus os Constructions.