

Learning Forests of Trees from Data Streams

João Gama, Pedro Medas, Pedro Rodrigues LIACC University of Porto

Adaptive Learning Systems – ALES Project sponsored by Fundação Ciência e Tecnologia Contract: POSI/SRI/39770/2001

Overview

- Motivation
- · Related Work
- Ultra-Fast Forest Trees
 - Binary Decision trees
 - Splitting Criteria From Leaf to Decision Node
 Functional Leaves

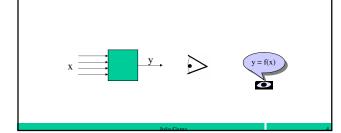
 - Functional Nodes
 - Forest of Trees
- Concept Drift • Experimental Work
 - Stationary Datasets
 - · Sensitivity Analysis
 - Non-stationary Datasets
 - · Electricity Market
- Conclusions

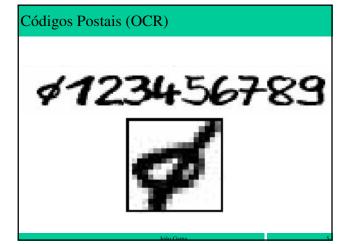
Aprendizagem Automática

- Áreas disciplinares
- Estatística
- Inferência estatística
- Computação
 - Inteligência Artificial
 - Aprendizagem Automática
- Bases de dados
- · Bases de Dados Multidimensionais
- Definições:
- "Self-constructing or self-modifying representations of what is being experienced for possible future use" Michalski, 1990
- "Analysis of observational data to find unsuspected relationships and to summarize the data in novel ways that are both understandable and useful for the data owner" Hand, Mannila, Smyth, 2001
- Obter representações em compreensão a partir de representações em extensão.

Aplicações

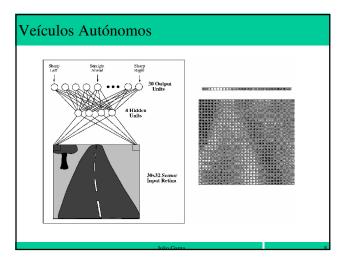
- Códigos Postais
- Predição do uso da terra
- Aprender a conduzir veículos autónomos
- Web sites Adaptativos.





Predição do Uso da Terra

Spectral band 1	Spectral band 2	Spectral band 3
Spectral band 4	Land use (Actual)	Land use (Predicted)
	22	



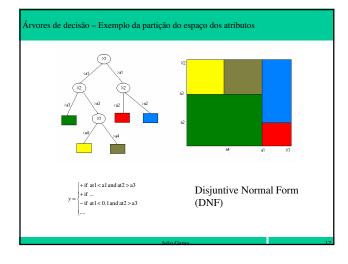
Árvores de Decisão

Uma árvore de decisão utiliza uma estratégia de *dividir*para-conquistar:

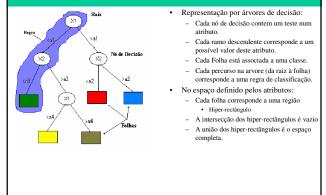
- Um problema complexo é decomposto em sub-problemas mais simples.
- Recursivamente a mesma estratégia é aplicada a cada subproblema.
- A capacidade de discriminação de uma árvore vem da:
- Divisão do espaço definido pelos atributos em sub-espaços.
- A cada sub-espaço é associada uma classe.
- Crescente interesse

•

- CART (Breiman, Friedman, et.al.)
- C4.5 (Quinlan)
- S_{plus}, Statistica, SPSS



O que é uma Arvore de Decisão?



Vantagens das Arvores de decisão

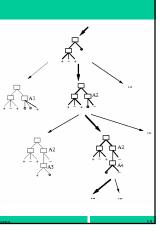
Método não-paramétrico

- Não assume nenhuma distribuição particular para os dados.
- Pode construir modelos para qualquer função desde que o numero de exemplos de treino seja suficiente.
- A estrutura da árvore de decisão é independente da escala das variáveis.
 Transformações monótonas das variáveis (log x, 2*x, ...) não alteram a estrutura da arvore.
- Elevado grau de interpretabilidade
- Uma decisão complexa (prever o valor da classe) é decomposto numa sucessão de decisões elementares.
- É eficiente na construção de modelos:
 Complexidade média O(n log n)
- Robusto á presença de pontos extremos e atributos redundantes ou irrelevantes.
 Mecanismo de selecção de atributos.
- Comportamento no Limite: $erro(\acute{a}rvore)_{n\to\infty} = erro_{Bayes}$

O espaço de Hipóteses

- O espaço de hipóteses é
- completo

 Qualquer função pode ser representada por uma árvore de decisão.
- Não reconsidera opções tomadas
- Mínimos locais
 Escolhas com suporte
- estatístico – Robusto ao ruído
- Preferência por árvores mais pequenas



Data Streams

- Automatic, high-speed, detailed
 - 3 billion telephone calls per day
 - 30 billion emails per day 1 billion SMS
 - I billion SM
 - Satellite DataIP Network Traffic
 - IF Network Hall

•....

	Traditional	Stream
Nr. Of Passes	Multiple	Single
Time	Unlimited	Restrict
Memory	Unlimited	Restrict
Result	Accurate	Approximate

Challenges

- Data is collected continuously over time
- Finances, Economics, Telecommunications,
- Huge volumes of data
- Most of data-mining techniques are memory based
- All the data must be resident in main-memory
- Our goal
- Design incremental algorithms that work online
- · Given the actual decision model and a new example modify the actual model to accommodate the example.
- Today's talk: focus on classification problems
 - Given a *infinite* sequence of pairs of the form $\{\vec{x}_i, y_i\}$ - Where $y \in \{y_1, y_2, ..., y_n\}$
 - Find a function y = f(x)
 - That can predict the y value for an unseen \vec{x}

Design Criteria for Learning from Data Streams

Data-streams

- Open-ended data flow
- Continuous flow of data

Data Mining on Data streams:

- Processing each example
 - · Small constant time
- · Fixed amount of main memory
- Single scan of the data
 - · Without (or reduced) revisit old records.
 - · Processing examples at the speed they arrive
- Classifiers at anytime
 - Ideally, produce a model equivalent to the one that would be obtained by a batch data-mining algorithm
- The data-generating phenomenon could change over time
 - · Concept drift

Related Work

- Incremental Trees
- Decision Trees for Data streams
 - > Very Fast Decision Trees for Mining High-Speed Data Streams (P. Domingos, et al., KDD 2000)
 - When should a leaf become a decision node?
 - » Hoeffding Bound Nominal Attributes
- VFDTc (Gama, R.Rocha, P.Medas, KDD03)
 - · Numerical attributes
 - · Functional leaves
- Non-Incremental Trees
- Functional Leaves
 - Assistant (I. Kononenko), Perceptron Trees (P.Utgoff, 1988)
 - Nbtree (R. Kohavi, KDD 96)
- Splitting Criteria
 - Split Selection Methods For Classification Tress (W. Loh, Y. Shih, 1997)
 - Two-class problems

Ultra-Fast Forest of Trees

- Main characteristics:
 - Incremental, works online
 - Continuous attributes
 - Single scan over the training data
 - · Processing each example in constant time
 - Forest of Trees
 - - A n class-problem is decomposed into n*(n-1)/2 two-classes problem · For each binary problem generate a decision tree

 - Functional Leaves
 - · Whenever a test example reach a leaf, it is classified using
 - The majority class of the training examples that fall at this leaf.
 - A naïve Bayes built using the training examples that fall at this leaf.
 - A IDBD classifier built using the training examples that fall at this leaf.
 - · Anytime classifier

Binary decision trees for data streams

Growing a single tree

- Start with an empty leaf
- While TRUE
 - · Read next example
 - · Propagate the example through the tree - From the root till a leaf
 - · For each attribute

 - Update sufficient statistics » Statistics to compute mean and standard deviation
 - » Nx, Sx, Sx2
 - · Estimate the gain of splitting
 - For each attribute
 - » Compute the cut-point given by quadratic discriminant analysis » Estimate the information gain
 - If the Hoeffding bound between the two best attributes is verified
 - » The leaf becomes a decision node with two descendent leaves

The splitting criteria

The case of two classes.

- All candidate splits will have the form of Attribute_i \leq value_i
- For each attribute, quadratic discriminant analysis defines the cut-point.
 - Assume that for each class the attribute-values follows a *univariate* normal distribution
 - N(mean, standard deviation).
 - Where p(i) is the probability that an example that fall at leaf t is from classe I
 - The best cut-point is the solution of: $p(+)N(\bar{x}_+, \sigma_+) = p(-)N(\bar{x}_-, \sigma_-)$ - A quadratic equation with at most two solutions: d1, d2
 - · The solutions of the equation split the X-axis into three intervals: $(-\infty; d1); (d1, d2); (d2; +\infty)$
 - We choose between d1 or d2, the one that is closer to the sample means.

For each Attribute Att_i>d Att_i<=d - The cut point defines a contingency table. **P**₂⁺ Class+ \mathbf{p}_1^{\dagger} - The information gain is: Class -P₂· **p**₁[.] $G(Att_i) = \inf(p^+, p^-) - \sum (p_j * \inf(p_j^+, p_j^-))$ where $info(p^+, p^-) = -p^+ \log_2 p^+ - p^- \log_2 p^-$ The attributes are sorted by information gain. $- G(X_a) > G(X_b) > ... > G(X_c)$ When should we transform a leaf into a decision node? When there is a high probability that the selected attribute is the wright one !

Estimating the gain of a cut-point

The Hoeffding bound

- Suppose we have made **n** independent observations of a random variable r whose range is R.
- The Hoeffding bound states that:
 - With probability 1-δ
 - The true mean of **r** is at least $\bar{r} \pm \varepsilon$ where $\varepsilon = \sqrt{\frac{R^2 \ln(1/\delta)}{2n}}$
 - Include mean of **r** is at least $r \pm \varepsilon$ where $\varepsilon = \sqrt{\frac{2n}{2n}}$ Independent of the probability distribution generating the examples.
- The heuristic used to choose test attributes is the information gain G(.)
 - Select the attribute that maximizes the information gain.
 - The range of information gain is log (#classes)
- Suppose that after seeing **n** examples, $G(X_a) > G(X_b) > ... > G(X_c)$
- Given a desired δ , the Hoeffding bound ensures that Xa is the correct choice if G(Xa)- $G(Xb) > \varepsilon$.
 - with probability 1- δ

From a leaf to a decision node

The tree is expanded:

- When the difference of gains between the two best attributes satisfies the Hoeffding bound,
 - A splitting test based on the best attribute is installed in the leaf
 The leaf becomes a decision node with two descendent
 - The leaf becomes a decision node with branches
- When two or more attributes have very similar gains
 - · Even given a large number of examples, and
 - The Hoeffding bound declares a tie.
 - Example: there are duplicate attributes.
 - The leaf becomes a decision node, if ∇G < ε < τ where τ is a user defined constant.

How many examples should be required to trigger the evaluation of the splitting decision criteria?

 $n_{\min} = 1/(2*\delta)*\log(2/\varepsilon)$

Short Term Memory

+

ļ

Att;

>d

- We maintain a limited number of the most recent examples.
- They are maintained on a *double queue*, that supports
 - Constant time for insertion of elements at the beginning of the sequence.
 - Constant time for deletion of elements at the end of the sequence.
- When the tree is expanded, two new leaves are generated.
- The sufficient statistics of these new leaves are initialized with the examples at the short term memory.

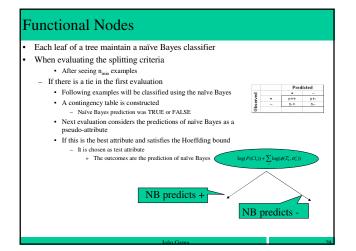
Classification strategies at Leaves

- To classify a test example
 - The example traverses the tree from the root to a leaf,
 - Following the path given by the attribute values.
- The leaf classifies the example.
- The usual strategy:
- The test example is classified with the majority class from the training examples that reached the leaf.
- In incremental learning, that
 - · Maintain a set of sufficient statistics at each leaf
 - · Only install a split test when there is evidence enough
 - · More appropriate and powerful techniques should be applied!
- We have implemented two other classification strategies:
 - Naive Bayes
 - · Incremental Delta-Bar-Delta rule

Functional Leaves: Naïve Bayes

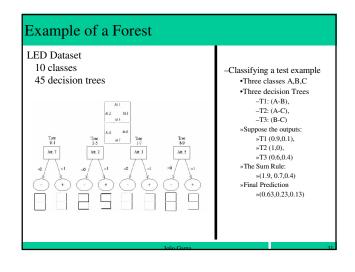
- Naive Bayes
 - Based on Bayes Theorem
 - Assuming the independence of the attributes given the class label
 - We assume that, for each class, the attribute-values follow a normal distribution
 From the sufficient statistics stored at each leaf.
 - Naturally Incremental
 - A test example is classified in the class that maximizes:

$$P(Cl_i \mid \vec{x}) \propto \log(P(Cl_i)) + \sum \log(\phi(\vec{x}_k^i, \sigma_k^i))$$



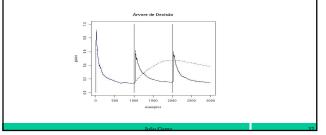
Forest of Trees

- A multi-class problem is decomposed into a set of two-class problems.
 - A n class problem is decomposed into n(n-1)/2 binary problems.
 - A two-class problem for each possible pair of classes..
 - For each problem generate a decision tree
 - · Leading to a forest of decision trees.
- · Fusion of classifiers
- To classify a test example:
 - Each decision tree classifies the example
 - Output a probability class distribution
 - The outputs of all decision trees are aggregated using the sum rule.



Concept Drift

- Goal
- Online Learning in the context of non-stationary data
- The Basic Idea:
 - When there is a change in the class-distribution of the examples:
 The actual model does not correspond any more to the actual distribution
 The error-rate increase



The Method

•

At each node of the Tree maintain a naïve-Bayes Classifier

- Directly derived from the statistics needed by the splitting criteria
- When an example traverse a node, the naïve-Bayes classifies the example
- Given a sequence of training examples, the predictions of naïve-Bayes are Bernoulli experiments:
 - T,F,T,F,T,F,T,T,T,F,....
 - With
 - $p_i = (\#F/i)$
 - $-S_i = \sqrt{p_i(1-p_i)/i}$
 - » Where i is the number of trials

 $\forall i$ in the actual context

Detect Drift

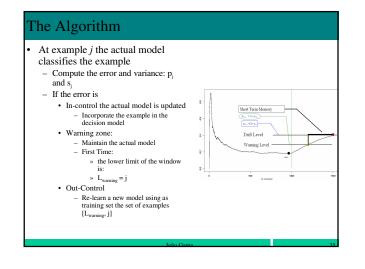
- The algorithm maintains two registers

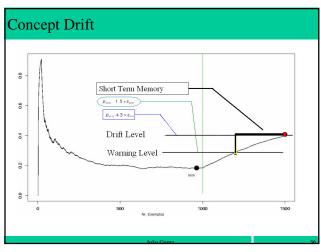
- P_{min} and S_{min} such that $P_{min}+S_{min}=min(p_i+s_i)$
 - Minimum of the Error rate taking the variance of the estimator into account.

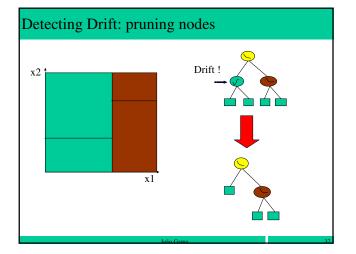
– At example j

- The error of the learning algorithm will be
 - Out-control if $p_i + s_j > p_{min} + \alpha * s_{min}$

 - $\begin{array}{l} \text{ In-control if } p_j + s_j < P_{\min} + \beta * s_{\min} \\ \text{ Warning if } p_{\min} + \alpha * s_{\min} > p_j + s_j > p_{\min} + \beta * s_{\min} \\ & \text{ The constants } \alpha \text{ and } \beta \text{ depend on the confidence level} \end{array}$
 - » In our experiments $\beta=2$ and $\alpha=3$

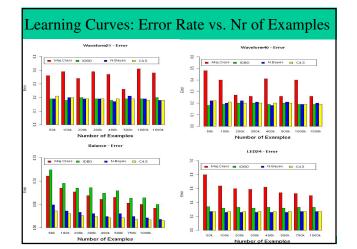


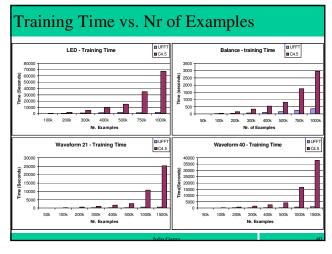




Experimental Evaluation

- The algorithm has been implemented and evaluated.
- Four data streams
- Electricity Market Dataset
- Waveform. Two data streams (21 attributes, 40 attributes)
 Bayes Error 16%
- LED (24 attributes, 17 irrelevant)
- Bayes Error: 26%
- Balance Scale (4 Attributes, 3 Classes)
- Evaluation Criteria: error on an independent test set
- Goals:
 - Comparative study of UFFT versus a standard batch decision tree learner (C4.5)
 Error Rate
 Learning Times
 - Learning Ti
 Tree Size
 - Study the effect of Functional leaves in terms of error rate
 - Sensitivity to
 - Order of examples
 - Noise



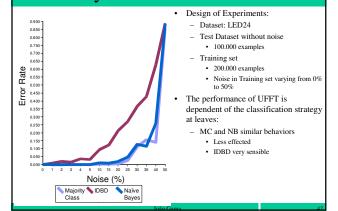


Learning Curves: Error Rate versus Nr. of Examples

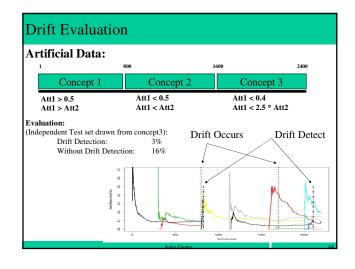
Using the majority class at leaves:

- The error rate decreases when training set size increases
- Using Functional leaves:
- We observe strong improvements of the error rate.
- The performance of any Functional model is quite similar to a standard batch tree learner.
- The error rate is almost constantAnytime classifier

Sensitivity to Noise

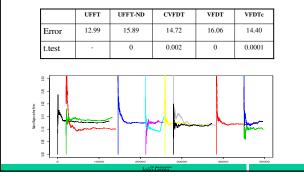


Sensitivity to the Order of Examples Design of experiments 0.400-Dataset: Waveform 40 0.375-• Fixed training set: 300,000 0.350 Train UFFT with different 0.325 permutations of the 0.300 training set 0.300-0.275 -0.250 -0.225 -- Changes in the order of the examples • Fixed Test set: 250,000 0.200 The performance of UFFT has low 0.175 dependence from the order of the examples 0.150 Naïve Bayes & IDBD with very low 0.125 sensitivity to the order of the sample 0.100-3 5 6 7 8 9 10 11 12 13 2 - Majority class is the most effected. ◆ Majority Class ◆ IDBD Naïve Bayes



SEA Concepts

Streaming Ensemble Algorithm for large scale classification, N. Street, Y.Kim KDD01



The Electricity Market Dataset

- The data was collected from the Australian New South Wales Electricity Market
 - The electricity price is not fixed
 - The price is set every 5 minutes
 - It is affected by demand and supply of the market
 - The dataset covers the period from 7 May 1996 till 5 December 1998
 - Contains 45312 examples
 - Attributes
 - Day of Week
 - NSW electricity demand
 - Victorian electricity demand
 Scheduled electricity transfer
 - Scheduled electricity tra
 - Class Label:
 - » Change (UP, DOWN) of the price related to a moving average of the last 24 hours.

Experiments

Two sets of experiments:

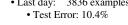
- Predicting last week
- Predicting last day

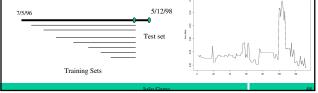
Error-rates using the decision tree available in R (CART like):

Test Set	All Data	Last Year
Last Day	18.7%	12.5%
Last Week	23.5%	22.4%

Generalization Bound

- A Lower Bound for the generalization error:
 - Exhaustive search of the best training set *looking to the error in the test set*Training set:
 - Last week: 3548 examples
 Test Error: 19%
 Last day: 3836 examples



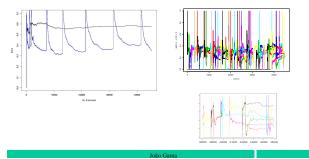


Test Set	Lower Bound	All Data	Last Year	Drift Detection
Last Day	10.4%	18.7%	12.5%	10.4%
Last Week	19.0%	23.5%	22.4%	19.9%

Online error

Trace of the online error of a decision tree:

- Using drift detection
- Without using drift detection



Conclusions

- UFFT: Incremental, online forest of trees for data-streams
- Processes each example in constant time and memory
- Single scan over the data
- Functional Leaves
- Anytime Classifier
- The experimental section suggests:
 - Performance similar to a batch decision tree learner when using Functional leaves.
 - No need for pruning.
 - · Decisions with statistical support.
 - Resilience to the order of examples, noise
 - Robust to detect concept drift
- Future Work
- Multivariate decision nodes

Thanks for your attention!

More information: http://www.liacc.up.pt/~jgama