¢ Motivation

¢ Related Work

¢ Ultra-Fast Forest Trees

— Binary Decision trees
« Splitting Criteria
— From Leaf to Decision Node

* Functional Leaves
+ Functional Nodes

— Forest of Trees

— Concept Drift
Jodao Gama, Pedro Medas, Pedro Rodrigues * Expenmental Work
LIACC — Stationary Datasets
University of Porto « Sensitivity Analysis
Adaptive Learning Systems — ALES ~ Non-stationary Datasets
Project sponsored by Fundacio Ciéncia e Tecnologia  Electricity Market

Contract: POSI/SRI/39770/2001 .
¢ Conclusions

« Areas disciplinares * Cédigos Postais

— Estatistica * Predicdo do uso da terra
« Inferéncia estatistica . . <
N * Aprender a conduzir veiculos auténomos
— Computagio ) .
+ Inteligéncia Artificial * Web sites Adaptativos.
— Aprendizagem Automatica
— Bases de dados
* Bases de Dados Multidimensionais
¢ Definigdes:

— “Self-constructing or self-modifying representations of what is being

experienced for possible future use” Michalski, 1990
— “Analysis of observational data to find unsuspected relationships and to X D
summarize the data in novel ways that are both understandable and useful for <>

the data owner” Hand, Mannila, Smyth, 2001
— Obter representagdes em compreensdo a partir de representacdes em extensao.
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The SenseWear armband, shown in the figure below, is a sleek, wireless and accurate wearable body monitor
that enables continuous physiological monitoring outside the laboratory.

* Uma drvore de decisdo utiliza uma estratégia de dividir-

para-conquistar:

— Um problema complexo é decomposto em sub-problemas mais
simples.

— Recursivamente a mesma estratégia é aplicada a cada sub-
problema.

A capacidade de discriminag@o de uma arvore vem da: -
— Divisdo do espago definido pelos atributos em sub-espacos.

— A cada sub-espaco € associada uma classe.
¢ Crescente interesse

— CART (Breiman, Friedman, et.al.)

+if atl<aland at2>a3
— C4.5 (Quinlan)

e Disjuntive Normal Form
YT )-i at <01 and a2 >a3 (DNF)
— Sy Statistica, SPSS




Representagio por drvores de decisdo:
— Cada n6 de decisdo contem um teste num
atributo.
— Cada ramo descendente corresponde a um
possivel valor deste atributo.
— Cada Folha estd associada a uma classe.
— Cada percurso na arvore (da raiz a folha)
corresponde a uma regra de classificagao.
No espago definido pelos atributos:
— Cada folha corresponde a uma regiao
« Hiper-rectangulo
— Aintersec¢do dos hiper-rectdngulos é vazio
— A unido dos hiper-rectangulos € o espaco
completa.

Método nao-paramétrico
— Nio assume nenhuma distribui¢éo particular para os dados.
— Pode construir modelos para qualquer fun¢do desde que o numero de exemplos de
treino seja suficiente.
* A estrutura da drvore de decisdo ¢ independente da escala das varidveis.
— Transformagdes mondtonas das varidveis (log x, 2*x, ...) ndo alteram a estrutura da
arvore.
* Elevado grau de interpretabilidade
— Uma decisio complexa (prever o valor da classe) é decomposto numa sucessao de
decisdes elementares.
« E eficiente na construcio de modelos:
— Complexidade média O(n log n)
* Robusto 4 presenga de pontos extremos e atributos redundantes ou irrelevantes.
— Mecanismo de seleccdo de atributos.

+ Comportamento no Limite: erro(drvore), , =erro,,.

O espaco de hipéteses €
completo
— Qualquer fungio pode ser
representada por uma drvore de
decisdo.
* Nao reconsidera opg¢des
tomadas
— Minimos locais
* Escolhas com suporte
estatistico
— Robusto ao ruido
* Preferéncia por drvores mais
pequenas
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«Automatic, high-speed, detailed

* 3 billion telephone calls per day

* 30 billion emails per day

* 1 billion SMS

* Satellite Data

* IP Network Traffic

.

Traditional Stream

Nr. Of Passes Multiple Single
Time Unlimited Restrict
Memory Unlimited Restrict
Result Accurate Approximate




¢ Data is collected continuously over time
— Finances, Economics, Telecommunications, ....
— Huge volumes of data

¢ Most of data-mining techniques are memory based
— All the data must be resident in main-memory
¢ Our goal
— Design incremental algorithms that work online
« Given the actual decision model and a new example modify the actual model to
accommodate the example.
— Today’s talk: focus on classification problems
* Given a infinite sequence of pairs of the form {X,, y,}
— Wherey € {y;.¥2.-:Ya}
+ Find a function y = f(x)
* That can predict the y value for an unseen ¥

¢ Incremental Trees
— Decision Trees for Data streams

» Very Fast Decision Trees for Mining High-Speed Data Streams (P. Domingos, et al.,
KDD 2000)
— When should a leaf become a decision node?
» Hoeffding Bound
— Nominal Attributes
— VFDTc (Gama, R.Rocha, P.Medas, KDD03)
* Numerical attributes
+ Functional leaves
¢ Non-Incremental Trees
— Functional Leaves
+ Assistant (I. Kononenko), Perceptron Trees (P.Utgoff, 1988)
* Nbtree (R. Kohavi, KDD 96)
— Splitting Criteria
+ Split Selection Methods For Classification Tress (W. Loh, Y. Shih, 1997)
— Two-class problems

* Data-streams
— Open-ended data flow
— Continuous flow of data

* Data Mining on Data streams:

— Processing each example
* Small constant time
« Fixed amount of main memory

— Single scan of the data
« Without (or reduced) revisit old records.
* Processing examples at the speed they arrive

— Classifiers at anytime
« Ideally, produce a model equivalent to the one that would be obtained by a batch

data-mining algorithm

— The data-generating phenomenon could change over time

« Concept drift

* Main characteristics:
— Incremental, works online
— Continuous attributes
— Single scan over the training data
* Processing each example in constant time

Forest of Trees
* A n class-problem is decomposed into n*(n-1)/2 two-classes problem
« For each binary problem generate a decision tree
— Functional Leaves
* Whenever a test example reach a leaf, it is classified using
— The majority class of the training examples that fall at this leaf.
— A naive Bayes built using the training examples that fall at this leaf.
— A IDBD classifier built using the training examples that fall at this leaf.
« Anytime classifier




¢ Growing a single tree
— Start with an empty leaf
— While TRUE
* Read next example
* Propagate the example through the tree
— From the root till a leaf
« For each attribute

— Update sufficient statistics
» Statistics to compute mean and standard deviation

» NXx, Sx, Sx2
+ Estimate the gain of splitting
— For each attribute
» Compute the cut-point given by quadratic discriminant analysis

» Estimate the information gain
— 1If the Hoeffding bound between the two best attributes is verified
» The leaf becomes a decision node with two descendent leaves

« For each Attribute Att<=d | Att>d
— The cut point defines a contingency table. Class+ Pt P,
— The information gain is: !

Class - Pr P,

G(Am,) =info(p", p") =Y (p, *info(p].p;))
J

where

info(p*, p7)=-p*log, p* —p log, p

¢ The attributes are sorted by
information gain.
— G(X)>G(X,)> ..> G(X,)
¢ When should we transform a leaf into
a decision node?

— When there is a high probability that the
selected attribute is the wright one !

* The case of two classes.
* All candidate splits will have the form of Attribute; <= value;
— For each attribute, quadratic discriminant analysis defines the cut-point.
— Assume that for each class the attribute-values follows a univariate normal
distribution
— N(mean, standard deviation).
— Where p(i) is the probability that an example that fall at leaf 7 is from classe I
« The best cut-point is the solution of: PHINQ,,0,)=p-)N(x_.0)
— A quadratic equation with at most two solutions: d1, d2
* The solutions of the equation split the X-axis into three intervals:
(=o0;d1);(d1,d2);(d2;+e0)

— We choose between d1 or d2, the one that is closer to the sample means.

* Suppose we have made n independent observations of a random
variable r whose range is R.

* The Hoeffding bound states that:

— With probability 1-8

— The true mean of ris at least 7+¢& where €= o
— Independent of the probability distribution generating the examples.

2 1In(1/ 8)

* The heuristic used to choose test attributes is the information gain G(.)
— Select the attribute that maximizes the information gain.
— The range of information gain is log (#classes)
* Suppose that after seeing n examples, G(X,)>G(X,)> ...> G(X,)
* Given a desired 8, the Hoeffding bound ensures that Xa is the correct
choice if G(Xa)-G(Xb) > ¢.
— with probability 1- 8




* The tree is expanded: * We maintain a limited number of the most recent examples.
— When the difference of gains between the two best attributes * They are maintained on a double queue, that supports
satisfies the Hoeffding bound,

— Constant time for insertion of elements at the beginning of the sequence.
« A splitting test based on the best attribute is installed in the leaf

- . — Constant time for deletion of elements at the end of the sequence.
* The leaf becomes a decision node with two descendent

branches
— When two or more attributes have very similar gains * When the tree is expanded, two new leaves are generated.
« Even given a large number of examples, and — The sufficient statistics of these new leaves are initialized with the examples at
* The Hoeffding bound declares a rie. < >d the short term memory.

— Example: there are duplicate attributes.

¢ The leaf becomes a decision node, if VG<e<z
where 7is a user defined constant.

* How many examples should be required to trigger the
evaluation of the splitting decision criteria?

Ny = 1/(2%8) *log(2/ €)

¢ To classify a test example * Naive Bayes
— The example traverses the tree from the root to a leaf, — Based on Bayes Theorem
« Following the path given by the attribute values. « Assuming the independence of the attributes given the class label
— The leaf classifies the example. * We assume that, for each class, the attribute-values follow a normal distribution

— From the sufficient statistics stored at each leaf.

¢ The usual strategy:
— Naturally Incremental

— The test example is classified with the majority class from the training examples
that reached the leaf.
— Inincremental learning, that
* Maintain a set of sufficient statistics at each leaf

— A test example is classified in the class that maximizes:
 Only install a split test when there is evidence enough P(CL; 1 3) o< log(P(CL ) + Z log(@(x;,0.))

* More appropriate and powerful techniques should be applied!
— We have implemented two other classification strategies:

* Naive Bayes

« Incremental Delta-Bar-Delta rule




Each leaf of a tree maintain a naive Bayes classifier

* A multi-class problem is decomposed into a set of two-class
¢ When evaluating the splitting criteria problems.
+ Afier secing n;, examples — A n class problem is decomposed into n(n-1)/2 binary problems.
- Ifthereis ?"e in the ﬁrsf evaluatlf:r.l . Predicted * A two-class problem for each possible pair of classes..
+ Following examples will be classified using the naive Bayes -

* A contingency table is constructed
— Naive Bayes prediction was TRUE or FALSE
* Next evaluation considers the predictions of naive Bayes as a o Fusion of classifiers
pseudo-attribute

« If this is the best attribute and satisfies the Hoeffding bound — To classify a test example:
— Itis chosen as test attribute

 Each decision tree classifies the example
» The outcomes are the prediction of naive Bayes - — Output a probability class distribution
« The outputs of all decision trees are aggregated using the sum rule.

o [ e — For each problem generate a decision tree
~ L

 Leading to a forest of decision trees.

Observed

LED Dataset * Goal
10 classes Classifying a test example - Onhl'w Learning in the context of non-stationary data
45 decision trees “Three classes A.B.C *  The Basic Idea:
«Three decision Trees — When there is a change in the class-distribution of the examples:
o ~Tl: (A-B), * The actual model does not correspond any more to the actual distribution
w2 oas ~T2: (A-C), ~ The error-rate increase
= -T3: (B-C)

»Suppose the outputs: N P
= b e »T1 (0.9,0.1), .
at7 A2 At s »T2(1,0),
- - »T3(0.6,0.4)
=l »The Sum Rule:

; J »(19,0.7,0.4) °
<é (b (é () (ii) L) é) ) »Final Prediction

|
01285 |14

>
g »(0.63,0.23,0.13)
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¢ At each node of the Tree maintain a naive-Bayes Classifier
— Directly derived from the statistics needed by the splitting criteria
— When an example traverse a node, the naive-Bayes classifies the example
— Given a sequence of training examples, the predictions of naive-Bayes are
Bernoulli experiments:
« TETFETFETTTF,...
* With
— pi=(#F/i)

» Where i is the number of trials

Viin the actual context

* Atexample j the actual model
classifies the example
— Compute the error and variance: p,
and s;
— If the error is |
« In-control the actual model is updated

— Incorporate the example in the A
decision model

« Warning zone:
— Maintain the actual model

— First Time: z
» the lower limit of the window
is: g
> Lyung =1

¢ Out-Control

— Re-learn a new model using as
training set the set of examples
[Lyarning: 11

— The algorithm maintains two registers

e Pi,and S ; such that P +S ; = min(p+s;)
— Minimum of the Error rate taking the variance of the estimator into account.
— Atexample j

 The error of the learning algorithm will be
— Out-control if p+s; > p;+ o * s,
— In-control if p+s; <p+ B * sy,
— Warning if p+ 0% 8,5, > Pits; > Pyt B ¥ s,
» The constants o. and B depend on the confidence level
» In our experiments p=2 and o =3

|,
Lo

= i Sl

Short Term Memory

Drift Level

Warning Level

Nr. Exemplos




* The algorithm has been implemented and evaluated.
« Four data streams
— Electricity Market Dataset
— Waveform. Two data streams (21 attributes, 40 attributes)
« Bayes Error 16%
— LED (24 attributes, 17 irrelevant)
« Bayes Error: 26%

— Balance Scale (4 Attributes, 3 Classes)
1 « Evaluation Criteria: error on an independent test set

Drift !
* Goals:
— Comparative study of UFFT versus a standard batch decision tree learner (C4.5)
« Error Rate

* Learning Times
« Tree Size

— Study the effect of Functional leaves in terms of error rate
— Sensitivity to

* Order of examples

* Noise

Waveformz| - Crror Waveformao - Crror IV
- - LED -Training Time mcss Balance - training Time
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« Using the majority class at leaves:

— The error rate decreases when training set size increases
« Using Functional leaves:

— We observe strong improvements of the error rate.

— The performance of any Functional model is quite similar to a standard batch
tree learner.

— The error rate is almost constant
* Anytime classifier

* Design of experiments

0.400 — Dataset: Waveform 40
0375 « Fixed training set: 300,000
:222 « Train UFFT with different
! permutations of the
™ 0-300 training set
T 0275
& 0250 — Changes in the order of the
s examples
5 0225 .
0.200 : : oc : * Fixed Test set: 250,000
0475 ¢ The performance of UFFT has low
0.150 dependence from the order of the examples
0.125 — Naive Bayes & IDBD with very low
0.100 sensitivity to the order of the sample

2.8 5 6 7 8 91011 1213 — Majority class is the most effected.

[& Majoriy Class % 1DBD & Naive Bayes|

* Design of Experiments:

0900

sas0 — Dataset: LED24

0800 — Test Dataset without noise

07507 * 100.000 examples

0700 .

o604 — Training set

0600 * 200.000 examples

05507 * Noise in Training set varying from 0%
05007 to 50%

0.450-] .

04004 * The performance of UFFT is

0350 dependent of the classification strategy
03007 at leaves:

0250

0200 — MC and NB similar behaviors

0150 * Less effected

01007 « IDBD very sensible

0050

0000

0 1 2 3 4 5 10 15 20 25 30 & 40 50

Error Rate

Noise (%)

Artificial Data:
1 800 1600 2400
Attl > 0.5 Attl < 0.5 Attl1 <04
Attl > Att2 Attl < Att2 Attl < 2.5 * Att2
Evaluation:
(Independent Test set drawn from concept3): Drift Occurs Drift Detect
Drift Detection: 3%

Without Drift Detection: 16%

et et
W o ow oW w0 ow o
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Streaming Ensemble Algorithm for large scale classification,
N. Street,Y.Kim KDDO1

UFFT | UFFT-ND CVEDT VEDT VFDTe
Error 12.99 15.89 1472 16.06 14.40
Lest - 0 0.002 0 0.0001

e

* Two sets of experiments:
— Predicting last week
— Predicting last day

« Error-rates using the decision tree available in R (CART like):

Test Set All Data Last Year
Last Day 18.7% 12.5%
Last Week 23.5% 22.4%

» The data was collected from the Australian New South Wales
Electricity Market
— The electricity price is not fixed
* The price is set every 5 minutes
« Itis affected by demand and supply of the market

— The dataset covers the period from 7 May 1996 till 5 December 1998
 Contains 45312 examples
« Attributes
— Day of Week
— NSW electricity demand
— Victorian electricity demand
— Scheduled electricity transfer

— Class Label:
» Change (UP, DOWN) of the price related to a moving average of the last 24 hours.

* A Lower Bound for the generalization error:
« Exhaustive search of the best training set
« looking to the error in the test set
¢ Training set:
« Last week: 3548 examples
* Test Error: 19%
e Last day: 3836 examples
* Test Error: 10.4%

/5196 5/12/98 s o ﬂ

|
Test set g i ' \
Ly

Training Sets . ‘. - p2 = - - -
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Test Set | Lower Bound | All Data Last Year Drift Detection
Last Day 10.4% 18.7% 12.5% 10.4%
Last Week 19.0% 23.5% 22.4% 19.9%

UFFT: Incremental, online forest of trees for data-streams
— Processes each example in constant time and memory
— Single scan over the data
— Functional Leaves
+ Anytime Classifier
The experimental section suggests:

— Performance similar to a batch decision tree learner when using Functional
leaves.

— No need for pruning.
+ Decisions with statistical support.
— Resilience to the order of examples, noise
— Robust to detect concept drift
¢ Future Work

— Multivariate decision nodes

Trace of the online error of a decision tree:
* Using drift detection
» Without using drift detection

S F
=
e

More information:
http://www.liacc.up.pt/~jgama
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