
Alcino Cunha

specification and modeling
type system

Universidade do Minho & INESC TEC

2019/20

same origin policy

specification and modeling / same origin policy 3 / 51

same origin policy

Understand and verify the policy:

Resources can only access resources from the same origin

specification and modeling / same origin policy 4 / 51

end-points and http events

sig EndPoint {}

sig HTTPEvent {
from : set EndPoint,
to : set EndPoint

}

specification and modeling / same origin policy 5 / 51

end-points and http events

specification and modeling / same origin policy 6 / 51

end-points and http events

sig EndPoint {}

sig HTTPEvent {
from : set EndPoint,
to : set EndPoint

}

fact {
all h : HTTPEvent | one h.from and one h.to

}

multiplicities

specification and modeling /multiplicities 8 / 51

multiplicities in signature declarations

m ∈ { some , lone , one }

m sig A { }

≡

sig A { }

fact { m A }

specification and modeling /multiplicities 9 / 51

multiplicities in field declarations

m ∈ { set , some , lone , one }

sig A { r : m B }

≡

sig A { r : set B }

fact { all a : A | m a.r } if m , set

sig A { r : B } ≡ sig A { r : one B }

specification and modeling /multiplicities 10 / 51

multiplicities in field declarations

m, n ∈ { set , some , lone , one }

sig A { r : B m -> n C }

≡

sig A { r : B set -> set C}

fact { all a : A, b : B | n b.(a.r) } if n , set

fact { all a : A, c : C | m (a.r).c } if m , set

sig A { r : B -> C} ≡ sig A { r : B set -> set C}

specification and modeling /multiplicities 11 / 51

multiplicities in formulas

m, n ∈ { set , some , lone , one }

Φ in A m -> n B

sig A { r : B m -> n C }

≡

sig A { r : B set -> set C}

fact { all a : A | a.r in B m -> n C }

specification and modeling /multiplicities 12 / 51

bestiary

r in A -> some B // r is entire
r in A -> lone B // r is simple
r in A some -> B // r is surjective
r in A lone -> B // r is injective

r in A -> one B // r is a function (entire + simple)
r in A lone -> some B // r is a representation (entire + injective)
r in A some -> lone B // r is an abstraction (simple + surjective)

r in A lone -> one B // r is an injection (function + representation)
r in A some -> one B // r is an surjection (function + abstraction)

r in A one -> one B // r is a bijection (injection + surjection)

same origin policy

specification and modeling / same origin policy 14 / 51

end-points and http events

sig EndPoint {}

sig HTTPEvent {
from : one EndPoint,
to : one EndPoint

}

specification and modeling / same origin policy 15 / 51

end-points and http events

specification and modeling / same origin policy 16 / 51

servers and clients

sig EndPoint {}

sig Server in EndPoint {}
sig Client in EndPoint {}

fact {
no Server & Client
EndPoint = Server + Client

}

sub-typing

specification and modeling / sub-typing 18 / 51

extension signatures

All extensions of a signature are disjoint
Signatures that are not extended are known as atomic

sig A {}

sig B,C extends A {}

≡

sig A {}

sig B,C in A {}

fact { no B & C }

specification and modeling / sub-typing 19 / 51

abstract signatures

An abstract signature has no atoms outside its extensions

abstract sig A {}

sig B,C extends A {}

≡

sig A {}

sig B,C in A {}

fact { no B & C }

fact { A = B + C }

specification and modeling / sub-typing 20 / 51

enumerations

abstract sig A {}

one sig B,C,D extends A {}

≡

enum A {B,C,D}

same origin policy

specification and modeling / same origin policy 22 / 51

servers, clients, requests, and responses

abstract sig EndPoint {}
sig Server,Client extends EndPoint {}

abstract sig HTTPEvent {
from : one EndPoint,
to : one EndPoint

}
sig Request, Response extends HTTPEvent {}

fact {
Request.from + Response.to in Client
Request.to + Response.from in Server

}

specification and modeling / same origin policy 23 / 51

servers, clients, requests, and responses

themes

specification and modeling / themes 25 / 51

themes

Complex instances are di�icult to understand
It is possible to improve the visualisation with themes
I Di�erent colors and shapes for di�erent entities
I Hide irrelevant entities
I Project over a signature
I . . .
Good themes considerably simplify the validation task

same origin policy

specification and modeling / same origin policy 27 / 51

servers, clients, requests, and responses

overloading

specification and modeling /overloading 29 / 51

overloading

Relations can be overloaded

sig A { }
sig B extends A { r : set A }
sig C extends A { r : set A }

As long as domain signatures are disjoint

sig A { r : set A }
sig B extends A { r : set A }

same origin policy

specification and modeling / same origin policy 31 / 51

servers, clients, requests, and responses

abstract sig EndPoint {}
sig Server,Client extends EndPoint {}

abstract sig HTTPEvent {}
sig Request extends HTTPEvent {

from : one Client,
to : one Server

}
sig Response extends HTTPEvent {

from : one Server,
to : one Client

}

specification and modeling / same origin policy 32 / 51

redirects and linking requests to responses

abstract sig EndPoint {}
sig Server,Client extends EndPoint {}

abstract sig HTTPEvent {}
sig Request extends HTTPEvent {

from : one Client,
to : one Server,
response : lone Response

}
sig Response extends HTTPEvent {

from : one Server,
to : one Client,
embeds : set Request

}
sig Redirect extends Response {}

specification and modeling / same origin policy 33 / 51

redirects and linking requests to responses

type errors

specification and modeling / type errors 35 / 51

type errors

A good type system for modeling should support sub-typing and overloading
But what should be the type errors in this setting?

Formula Result

some Request.response OK
some Redirect.response Error
no Redirect.embeds ??

some HTTPEvent.response ??
no (Request + Redirect).response ??

some HTTPEvent.to ??

specification and modeling / type errors 36 / 51

type errors

An expression may trigger an irrelevance error
I If it can be replaced by the empty relation without a�ecting the meaning of the

enclosing formula
An overloaded relation may trigger an ambiguity error
I If it cannot be decided which case it refers to

Expression Result Why

some Request.response OK
some Redirect.response Error Redirect.response is irrelevant
no Redirect.embeds OK

some HTTPEvent.response OK
no (Request + Redirect).response Error Redirect is irrelevant

some HTTPEvent.to Error to is ambiguous

specification and modeling / type errors 37 / 51

types

The type of an expression is a set of tuples of atomic types
The type characterises the upper-bound of the expression - which tuples may be
contained in it
For every non abstract signature we assume the existence of an atomic type
containing its remainder
I $Response is the remainder of Response
I It contains the atoms of Response that are not in Redirect

Overloaded relations are treated as the union of all cases
I to is an alias to Request<:to + Response<:to

specification and modeling / type errors 38 / 51

type inference

The type inference mechanism determines the type of all relational expressions
I If the type is empty the expression is irrelevant and an error is reported
I In an overloaded relation, only one of the disjunct cases can be relevant, otherwise an

ambiguity error is reported
The type inference mechanism is guided by the abstract syntax tree and proceeds
in two phases
I A first bottom-up phase computes the bounding types Φ ↑ T
I These are refined by the second top-down phase to compute the relevance types Φ ↓ T

specification and modeling / type errors 39 / 51

bounding type inference

The bounding types of the declared signatures and relations are inferred from their
declarations
The bounding types of compound expressions are computed from the bounding
types of sub-expressions using the same operator

specification and modeling / type errors 40 / 51

bounding type inference

Request ↑ {(Request)}

Redirect ↑ {(Redirect)}

Request + Redirect ↑ {(Request),(Redirect)}

response ↑ {(Request,Redirect),(Request,$Response)}

(Request + Redirect).response ↑ {(Redirect),($Response)}

specification and modeling / type errors 41 / 51

relevance type inference

The relevance type of the outermost expression is equal to its bounding type
The relevance type of sub-expressions are computed by determining which tuples
of its bounding type contributed to the relevance type of the parent expression

specification and modeling / type errors 42 / 51

relevance type inference

(Request + Redirect).response ↓ {(Redirect),($Response)}

response ↑ {(Request,Redirect),(Request,$Response)}

Request + Redirect ↑ {(Request),(Redirect)}

response ↓ {(Request,Redirect),(Request,$Response)}

Request + Redirect ↓ {(Request)}

Request ↑ {(Request)}

Redirect ↑ {(Redirect)}

Request ↓ {(Request)}

Redirect ↓ {}

same origin policy

specification and modeling / same origin policy 44 / 51

redirects and linking requests to responses

fact RequestResponse {
-- Every response is associated with exactly one request
all r : Response | one response.r

-- Every response is to the endpoint its request was from,
-- and from the endpoint its request was to
all r : Response | r.to = response.r.from and

r.from = response.r.to

-- A request cannot be embedded in a response to itself
all r : Request | r not in r.^(response.embeds)

}

specification and modeling / same origin policy 45 / 51

tracking origins

abstract sig HTTPEvent {
origin : one EndPoint

}

specification and modeling / same origin policy 46 / 51

tracking origins

fact Origin {
-- A redirect has the same origin as the original request
all r : Redirect | r.origin = (response.r).origin
-- The origin of other responses is the server they came from
all r : Response-Redirect | r.origin = r.from

-- The origin of a non-embedded request is the endpoint it came from
all r : Request | no embeds.r implies r.origin in r.from
-- Otherwise it is the same origin of the embedding response
all r : Response, e : r.embeds | e.origin = r.origin

}

specification and modeling / same origin policy 47 / 51

tracking origins

pred EnforceOrigins [s : Server] {
-- A server enforces the origin header if
-- it allows incoming requests only if they originate
-- at that server or at the client that sent the request
all r : Request {

r.to = s implies r.origin = r.to or r.origin = r.from
}

}

specification and modeling / same origin policy 48 / 51

tracking causality

sig Server extends EndPoint {
causes : set HTTPEvent

}

specification and modeling / same origin policy 49 / 51

tracking causality

fact Causality {
-- An event is caused by a server if and only if
-- it is from that server, or is embedded in a response
-- that the server causes
all e : HTTPEvent, s : Server {

e in s.causes
iff
(e.from = s
or
some r : Response | e in r.embeds and r in s.causes)

}
}

specification and modeling / same origin policy 50 / 51

checking security

assert Secure {
-- Assuming the client never sends requests directly
-- to "bad" servers, a "good" server that is enforcing the origin
-- header cannot receive a request caused by a "bad" server
all good, bad : Server {

(EnforceOrigins[good] and
no r : Request | r.to = bad and r.origin in Client)
implies
no r : Request | r.to = good and r in bad.causes

}
}
check Secure for 5 HTTPEvent, 3 EndPoint

specification and modeling / same origin policy 51 / 51

counter-example

	Same Origin Policy
	Multiplicities
	Same Origin Policy
	Sub-typing
	Same Origin Policy
	Themes
	Same Origin Policy
	Overloading
	Same Origin Policy
	Type errors
	Same Origin Policy

