Alcino Cunha

SPECIFICATION AND MODELING

ELECTRUM OVERVIEW

Universidade do Minho & INESC TEC

2019/20

SPECIFICATION AND MODELING 2/22

TRASH

Open

Empty Trash

| Design a trash component such that:

e A deleted file can still be restored if the trash is not emptied

SPECIFICATION AND MODELING 3/22

TASKS

e Design of the structure and behavior (operations) of the component
s Validate this design by simulation
e Elicit and verify expected properties

SPECIFICATION AND MODELING 422

TRANSITION SYSTEMS

delete[a] delete[b]

restore[a] restore[b]

SPECIFICATION AND MODELING

STATE

5/22

e Astate is an assignment of values to variables

e In abstract design, it is useful to rely on standard mathematical structures to
describe states

‘Alloy

e Values are sets and relations

e Inhabited by (tuples of) uninterpreted atoms
e Sets are declared with the sig keyword

"Electrum

e Mutable sets (state variables) are also declared with the var keyword

SPECIFICATION AND MODELING 6/22

TRASH STATE

var sig File {}
var sig Trash in File {}

SPECIFICATION AND MODELING

EXPLICIT MODELING OF TRANSITION SYSTEMS

7122

e Atransition system can be modeled explicitly:
> Define which are the initial states

> Define how the next state(s) can be obtained from the current one

e In formal software design, all states are usually required to always have at least
one successor

‘SMV

The transition system is explicitly modeled with a DSL
The verification tool can detect deadlocks

SPECIFICATION AND MODELING 8/22

IMPLICIT BEHAVIOR SPECIFICATION

e The behaviour of a transition system can be abstracted by its set of infinite traces
> This is known as a linear model of time

e This set of traces can be modeled implicitly:
> By a property that “recognises” the valid traces among all possibles sequences of states
> This property can be specified with a linear temporal logic
> |deally combined with a first order logic to specify properties of states

‘Electrum

The transition system is implicitly modeled with a linear temporal logic
specification enclosed in a fact
The (infinite) traces satisfying this specification are also known as instances

SPECIFICATION AND MODELING

9/22

FIRST ORDER LOGIC

Alloy Math
not -
and A
or \%
implies -
all x : e |l p VYx-x€e—p

some X : e |

P

dx-x€eeAp

SPECIFICATION AND MODELING 10/22

SET OPERATORS

Alloy Math
in c
+ U
& N
- \

SPECIFICATION AND MODELING

/22

LINEAR TEMPORAL LOGIC

Electrum Meaning

always p pisalways true from now on
after p p is true in the next state
once p p was once true

e' the value of e in the next state

SPECIFICATION AND MODELING

12/22

AN ELECTRUM PATTERN FOR BEHAVIOR SPECIFICATION

fact init { ... }
fact transitions { always (eventi or event2 or ...) }

e The specification of every event typically involves:
> Guard - a state formula that checks if the event can occur
> Effect - a formula with primes specifying how some state variables change
> Frame - a formula with primes stating what does not change

SPECIFICATION AND MODELING

13/22

TRASH BEHAVIOR

fact init { no Trash }

fact transitions {

always (
// delete file
(some f: File | f not in Trash and -- guard
Trash' = Trash + f and -- effect
File' = File) or -- frame

// restore file
... or
// empty trash

SPECIFICATION AND MODELING w/22

TRASH BEHAVIOR REFACTORED WITH PREDICATES

pred delete[f : File] {
f not in Trash
Trash' = Trash + f
File' = File

}
pred restore[f : File]l { ... }
pred empty { ... }

fact transitions {
always (
(some f: File | delete[f] or restore[f]) or empty

SPECIFICATION AND MODELING 15/22

SIMULATION

Models include analysis commands

A run command asks for an instance (checking the consistency of the facts)
e Further instances can be obtained by an interactive exploration mode akin to
simulation

All commands have a scope that bounds the size of the signatures

s The default is 3, but can be changed with the for keyword

SPECIFICATION AND MODELING 6/22

SPECIFICATION AND MODELING 17122

TRASH BEHAVIOR FIXED

pred delete[f : File] { ... }
pred restore[f : File]l { ... }
pred empty { ... }
pred do_nothing {

Trash' = Trash

File' = File

fact transitions {
always (
(some f: File | delete[f] or restore[f]) or empty or do_nothing

SPECIFICATION AND MODELING 8/22

ASSERTIONS

e In Electrum, the same first order temporal logic is used for
> modeling
> specification of expected properties — assertions

e The latter can be enclosed in named assert paragraphs

SPECIFICATION AND MODELING

19/22

EXAMPLE ASSERTIONS

assert restoreAfterDelete {
-- Every restored file was once deleted

always (all f : File | restore[f] implies once delete[f])
}

assert deleteAll {
-- If the trash contains all files and is emptied
-- then no files will ever exist afterwards
always ((File in Trash and empty) implies always no File)

}

SPECIFICATION AND MODELING 20/22

VERIFICATION

e check commands are used to verify assertions
e The verification is fully automatic, but limited to the specified scope
e The set of counter-examples can also be explored like instances

SPECIFICATION AND MODELING /22

SPECIFICATION AND MODELING 2/22

FIXED ASSERTION

assert deleteAll {
-- If the trash contains all files and is emptied
-- then no files will ever exist afterwards
always ((File in Trash and empty) implies after (always no File))

}

