
Alcino Cunha

specification and modeling
electrum overview

Universidade do Minho & INESC TEC

2019/20

specification and modeling 2 / 22

trash

Design a trash component such that:

A deleted file can still be restored if the trash is not emptied

specification and modeling 3 / 22

tasks

Design of the structure and behavior (operations) of the component
Validate this design by simulation
Elicit and verify expected properties

specification and modeling 4 / 22

transition systems

specification and modeling 5 / 22

state

A state is an assignment of values to variables
In abstract design, it is useful to rely on standard mathematical structures to
describe states

Alloy

Values are sets and relations
Inhabited by (tuples of) uninterpreted atoms
Sets are declared with the sig keyword

Electrum

Mutable sets (state variables) are also declared with the var keyword

specification and modeling 6 / 22

trash state

var sig File {}
var sig Trash in File {}

specification and modeling 7 / 22

explicit modeling of transition systems

A transition system can be modeled explicitly:
I Define which are the initial states
I Define how the next state(s) can be obtained from the current one
In formal so�ware design, all states are usually required to always have at least
one successor

SMV

The transition system is explicitly modeled with a DSL
The verification tool can detect deadlocks

specification and modeling 8 / 22

implicit behavior specification

The behaviour of a transition system can be abstracted by its set of infinite traces
I This is known as a linear model of time
This set of traces can be modeled implicitly:
I By a property that “recognises” the valid traces among all possibles sequences of states
I This property can be specified with a linear temporal logic
I Ideally combined with a first order logic to specify properties of states

Electrum

The transition system is implicitly modeled with a linear temporal logic
specification enclosed in a fact
The (infinite) traces satisfying this specification are also known as instances

specification and modeling 9 / 22

first order logic

Alloy Math

not ¬

and ∧

or ∨

implies →

all x : e | p [x · x ∈ e→ p
some x : e | p \x · x ∈ e ∧ p

specification and modeling 10 / 22

set operators

Alloy Math

in ⊆

+ ∪

& ∩

- \

no e e = ∅
some e e , ∅

specification and modeling 11 / 22

linear temporal logic

Electrum Meaning

always p p is always true from now on
after p p is true in the next state
once p p was once true

.

e' the value of e in the next state

specification and modeling 12 / 22

an electrum pattern for behavior specification

fact init { ... }
fact transitions { always (event1 or event2 or ...) }

The specification of every event typically involves:
I Guard - a state formula that checks if the event can occur
I E�ect - a formula with primes specifying how some state variables change
I Frame - a formula with primes stating what does not change

specification and modeling 13 / 22

trash behavior

fact init { no Trash }

fact transitions {
always (
// delete file
(some f: File | f not in Trash and -- guard

Trash' = Trash + f and -- effect
File' = File) or -- frame

// restore file
... or
// empty trash
...

)
}

specification and modeling 14 / 22

trash behavior refactored with predicates

pred delete[f : File] {
f not in Trash
Trash' = Trash + f
File' = File

}
pred restore[f : File] { ... }
pred empty { ... }

fact transitions {
always (
(some f: File | delete[f] or restore[f]) or empty

)
}

specification and modeling 15 / 22

simulation

Models include analysis commands
A run command asks for an instance (checking the consistency of the facts)
Further instances can be obtained by an interactive exploration mode akin to
simulation
All commands have a scope that bounds the size of the signatures
The default is 3, but can be changed with the for keyword

specification and modeling 16 / 22

specification and modeling 17 / 22

trash behavior fixed

pred delete[f : File] { ... }
pred restore[f : File] { ... }
pred empty { ... }
pred do_nothing {
Trash' = Trash
File' = File

}

fact transitions {
always (
(some f: File | delete[f] or restore[f]) or empty or do_nothing

)
}

specification and modeling 18 / 22

assertions

In Electrum, the same first order temporal logic is used for
I modeling
I specification of expected properties – assertions
The latter can be enclosed in named assert paragraphs

specification and modeling 19 / 22

example assertions

assert restoreAfterDelete {
-- Every restored file was once deleted
always (all f : File | restore[f] implies once delete[f])

}

assert deleteAll {
-- If the trash contains all files and is emptied
-- then no files will ever exist afterwards
always ((File in Trash and empty) implies always no File)

}

specification and modeling 20 / 22

verification

check commands are used to verify assertions
The verification is fully automatic, but limited to the specified scope
The set of counter-examples can also be explored like instances

specification and modeling 21 / 22

specification and modeling 22 / 22

fixed assertion

assert deleteAll {
-- If the trash contains all files and is emptied
-- then no files will ever exist afterwards
always ((File in Trash and empty) implies after (always no File))

}

