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SMV in a nutshell

A language for modelling finite state machines (FSMs)
Support for branching and linear time temporal logic
specifications
Simulation and automatic verification through model checking,
with counter-example generation
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Symbolic Model Verification

SMV language and analysis first proposed in ’93 by Ken
McMillan at CMU

Main insight: consider ranges of states rather than single states

Several extensions throughout the years
NuSMV2, an open source re-implementation from FBK

supports both CTL and LTL specifications
supports bounded SAT-based model checking
interactive mode and automatic verification

http://nusmv.fbk.eu/

http://nusmv.fbk.eu/
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Modelling: Structure

Organized in modules, declared by MODULE
a MODULE main must always be defined

Section VAR declares the state variables

VAR name1 : type1;
name2 : type2;
. . .

Supports simple finite types
Determines the number of states in the FSM



Introduction Modelling Simulation Specification Verification Bibliography

Supported variable types

Booleans values TRUE and FALSE, boolean
integers finite ranges of integers, n..m
scalars enumeration of symbolic values, {a,b,. . .}
words bit vectors, signed or unsigned word[n]

arrays sequences of values, possibly nested,
array n..m of type

modules other user defined modules
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What can’t be modelled?

By definition, model checking explores every possible state, so
state machine must be finite
State explosion is a critical issue, so even finite states should
be defined with care
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Heavy chair: Modelling v0

MODULE main
VAR

x : 0..10; -- range of integers
y : 0..10; -- range of integers
d : {n,s,e,w}; -- enumeration of symbolic values
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Modelling: Behaviour

Two alternative mechanisms
Restricted syntax through assignments (ASSIGN section)

Guarantees that it is always possible to determine a next state,
state machine without deadlocks

Direct specification of state machine (INIT/INVAR/TRANS
sections)

More flexible but may lead to senseless models

Both allow non-determinism
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Assignment syntax

Parallel variable assignment in ASSIGN section
Assignment to initial state and to the succeeding state, define
the transition

init(name) := expr1;
next(name) := expr2;

Alternatively, assignment to current state, define the invariant
name := expr;

For each variable, either assignment of invariant or init/next
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Basic expressions

relational equality =, inequality !=; <, >, <=, >= (for integers)
Boolean not !, and &, or |, exclusive or xor, implies ->, iff

<->

arithmetic +, -, *, integer division /, remainder mod
arrays access array[n]
sets union union, enumeration {a,. . .}, ranges n..m,

inclusion test in
control flow conditional guard?expr1:expr2, cases

case . . . esac
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Case statements

Useful to model alternative behaviour

case
guard1 : expression1;
guard2 : expression2;
. . .

esac;

Tested sequentially, the first to evaluate true is applied
Conditions must be exhaustive, one must always evaluate true
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Non-deterministic models

SMV supports non-deterministic behaviour, multiple valid
transitions for a state
Achieved by

not providing assignments to a variable (arbitrary value in each
state)
assign a value within a set, e.g., next(x) := {a,b,c};

Useful to model the environment, out of the control of the
system, or alternative / underspecified behaviour
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What can’t be modelled?

Single variable assignment
No circular dependencies
Guarantees that the assignments are implementable and a
total state machine constructed
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Heavy chair problem

How to model arbitrary application of actions?
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Heavy chair problem

How to model arbitrary application of actions?
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Heavy chair: Modelling v1

MODULE main
VAR

x : 0..5;
y : 0..5;
d : 0..3; -- easier to rotate

ASSIGN
init(x) := 3;
init(y) := 3;
init(d) := 0;
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Heavy chair: Modelling v1

MODULE main
VAR

x : 0..5;
y : 0..5;
d : 0..3; -- easier to rotate
op : {ltl,ltr,rtl,rtr,lbl,lbr,rbl,rbr}; -- random assignments

ASSIGN
init(x) := 3;
init(y) := 3;
init(d) := 0;
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Heavy chair: Modelling v1

MODULE main
VAR

x : 0..5;
y : 0..5;
d : 0..3; -- easier to rotate
op : {ltl,ltr,rtl,rtr,lbl,lbr,rbl,rbr}; -- random assignments

ASSIGN
init(x) := 3;
init(y) := 3;
init(d) := 0;
next(x) := case op in {ltr,lbl} : x-1;

op in {rtl,rbr} : x+1;
TRUE : x; -- default cases

esac;
next(y) := case op in {ltl,rtr} : y-1;

op in {lbr,rbl} : y+1;
TRUE : y;

esac;
next(d) := case op in {rtr,rbr,ltr,lbr} : (d+1) mod 4;

TRUE : (d+3) mod 4;
esac;
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Input variables

Environment input that is not controlled by the system is
better defined through input variables

For instance, which action will be selected at each step

Same syntax for declarations but in IVAR section
Always randomly assigned, cannot be controlled by the model
assignments and constraints
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Heavy chair: Modelling v2

MODULE main
VAR

x : 0..5;
y : 0..5;
d : 0..3; -- easier to rotate

IVAR
op : {ltl,ltr,rtl,rtr,lbl,lbr,rbl,rbr}; -- random assignments

ASSIGN
init(x) := 3;
init(y) := 3;
init(d) := 0;
next(x) := case op in {ltr,lbl} : x-1;

op in {rtl,rbr} : x+1;
TRUE : x; -- default cases

esac;
next(y) := case op in {ltl,rtr} : y-1;

op in {lbr,rbl} : y+1;
TRUE : y;

esac;
next(d) := case op in {rtr,rbr,ltr,lbr} : (d+1) mod 4;

TRUE : (d+3) mod 4;
esac;
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Finite heavy chair model
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Finite heavy chair model
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Finite heavy chair model
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Finite heavy chair model
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Finite heavy chair model

A limit was set on the size of the board
Operations must act within these states
Must test whether an action is valid in each state
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Macros

Identifiers defined in a DEFINE section that can be re-used
Do not generate additional variables and do not affect the
model checker, simply replaced
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Heavy chair: Modelling v3

MODULE main
VAR x : 0..n; y : 0..n; -- parametrized size

d : 0..3;
IVAR op : {ltl,ltr,rtl,rtr,lbl,lbr,rbl,rbr};
DEFINE n := 10 -- size of the board

ASSIGN
init(x) := n/2; init(y) := n/2; -- middle of the board
init(d) := 0;
next(x) := case

op in {ltr,lbl} : x-1;
op in {rtl,rbr} : x+1;
TRUE : x; esac;

next(y) := case
op in {ltl,rtr} : y-1;
op in {lbr,rbl} : y+1;
TRUE : y; esac;

next(d) := case
op in {rtr,rbr,ltr,lbr} : (d+1) mod 4;
TRUE : (d+3) mod 4; esac;
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Heavy chair: Modelling v3

MODULE main
VAR x : 0..n; y : 0..n; -- parametrized size

d : 0..3;
IVAR op : {ltl,ltr,rtl,rtr,lbl,lbr,rbl,rbr};
DEFINE n := 10 -- size of the board

inv := (x = 0 & op in {ltr,lbl}) | (x = n & op in {rtl,rbr}) |
(y = 0 & op in {ltl,rtr}) | (y = n & op in {lbr,rbl});

-- whether a valid action
ASSIGN

init(x) := n/2; init(y) := n/2; -- middle of the board
init(d) := 0;
next(x) := case inv : x; -- sequential tests

op in {ltr,lbl} : x-1; -- if stuck, do nothing
op in {rtl,rbr} : x+1;
TRUE : x; esac;

next(y) := case inv : y;
op in {ltl,rtr} : y-1;
op in {lbr,rbl} : y+1;
TRUE : y; esac;

next(d) := case inv : d;
op in {rtr,rbr,ltr,lbr} : (d+1) mod 4;
TRUE : (d+3) mod 4; esac;
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Frozen variables

Sometimes a variable has multiple possible values in the initial
state but remains unchanged throughout the trace

For instance, the initial selection of a configuration, like the
size of the board

Same syntax for declarations but in FROZEN section
After the initial state, cannot be controlled by the model
constraints
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Direct modelling

Alternative method for modelling, define the states and
transitions of the FSM directly
Any state and transition that satisfies a predicate will belong
to the FSM
More expressive and flexible

Easier to group variable assignments together
More prone to errors, harder to detect non-total transitions or
empty initial states

If empty transition, all universal properties trivially true
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Direct modelling

Defining constraints for direct modelling
INIT The initial states are exactly those that pass these

constraints
INVAR The states of the machine are exactly those that pass these

constraints
TRANS The transitions of the machine are exactly those whose

input and output states pass these constraints
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Heavy chair: Modelling v4

MODULE main
VAR . . .
IVAR . . .
DEFINE . . .
INIT

x = n / 2 & x = y & d = 0;
TRANS

(op = ltr -> next(x) = x-1 & next(y) = y & next(d) = (d+1) mod 4) &
(op = lbl -> next(x) = x-1 & next(y) = y & next(d) = (d+3) mod 4) &
(op = rtl -> next(x) = x+1 & next(y) = y & next(d) = (d+1) mod 4) &
(op = rbr -> next(x) = x+1 & next(y) = y & next(d) = (d+3) mod 4) &
(op = lbr -> next(x) = x & next(y) = y+1 & next(d) = (d+1) mod 4) &
(op = rbl -> next(x) = x & next(y) = y+1 & next(d) = (d+3) mod 4) &
(op = ltl -> next(x) = x & next(y) = y-1 & next(d) = (d+1) mod 4) &
(op = rtr -> next(x) = x & next(y) = y-1 & next(d) = (d+3) mod 4) &
!inv
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Modelling software systems

Besides the program variables, the model must also encode
which statement is to be executed next
This is usually encoded by an additional variable that denotes
the location, or the program counter, of the execution
Input variables (IVAR) can be used to model the process
scheduler of the operating system
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Peterson’s mutual exclusion algorithm

Shared state

bool flag[2] = {false, false};
int turn;

Process 0

idle: flag[0] = true;
want: turn = 1;
wait: while (flag[1] && turn == 1)

{ /* busy wait */ }
crit: // critical section

flag[0] = false;

Process 1

idle: flag[1] = true;
want: turn = 0;
wait: while (flag[0] && turn == 0)

{ /* busy wait */ }
crit: // critical section

flag[1] = false;

https://en.wikipedia.org/wiki/Peterson%27s_algorithm

https://en.wikipedia.org/wiki/Peterson%27s_algorithm


Introduction Modelling Simulation Specification Verification Bibliography

Peterson’s algorithm: Modelling v1

MODULE main
VAR

flg : array 0..1 of boolean; // program variables
trn : 0..1; // program variables

IVAR
run : 0..1; // process scheduler

ASSIGN
next(trn) :=

init(pc[0]) := idle;
next(pc[0]) :=

init(flg[0]) := FALSE;
next(flg[0]) :=

. . .
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Peterson’s algorithm: Modelling v1

MODULE main
VAR

flg : array 0..1 of boolean; // program variables
trn : 0..1; // program variables
pc : array 0..1 of {idle,want,wait,crit}; // program counter

IVAR
run : 0..1; // process scheduler

ASSIGN
next(trn) := case run=0 & pc[0]=want: 1;

run=1 & pc[1]=want: 0;
TRUE : trn; esac;

init(pc[0]) := idle;
next(pc[0]) := case run=0 & pc[0]=idle : want;

run=0 & pc[0]=want : wait;
run=0 & pc[0]=wait & !(flg[1] & trn=1): crit;
run=0 & pc[0]=crit : idle;
TRUE : pc[0]; esac;

init(flg[0]) := FALSE;
next(flg[0]) := case run=0 & pc[0]=idle: TRUE;

run=0 & pc[0]=crit: FALSE;
TRUE : flg[0]; esac;

. . .
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Modules

SMV supports modularized and hierarchical systems
A defined module may be instantiated multiple times inside
another one
Parameters are passed by reference, either to complete
modules or variables

reference to the current module passed by self
variables inside modules accessed by .

The composition is synchronous
assignments in all modules are executed at once, a step of the
system is a step on every module
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Peterson’s algorithm: Modelling v2

MODULE proc(id,alt,m) // id, other process flag, the main scheduler
VAR flg : boolean;

pc : {idle,want,wait,crit};
ASSIGN

init(pc) := idle;
next(pc) := case . . .

m.run=id & pc=wait & !(alt & m.trn!=id): crit;
. . . esac;

init(flg) := FALSE;
next(flg) := case m.run=id & pc=idle: TRUE;

m.run=id & pc=crit: FALSE;
TRUE : flg; esac;
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Peterson’s algorithm: Modelling v2

MODULE proc(id,alt,m) // id, other process flag, the main scheduler
VAR flg : boolean;

pc : {idle,want,wait,crit};
ASSIGN

init(pc) := idle;
next(pc) := case . . .

m.run=id & pc=wait & !(alt & m.trn!=id): crit;
. . . esac;

init(flg) := FALSE;
next(flg) := case m.run=id & pc=idle: TRUE;

m.run=id & pc=crit: FALSE;
TRUE : flg; esac;

MODULE main
VAR trn : 0..1;

p0 : proc(0,p1.flg,self);
p1 : proc(1,p0.flg,self);

IVAR run : 0..1;
ASSIGN

next(trn) := case run=0 & p0.pc=want: 1;
run=1 & p1.pc=want: 0;
TRUE : trn; esac;
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Simulation

Models can be interactively simulated in NuSMV
States are iteratively chosen (randomly or by the user)
according to the defined model
Multiple traces may be generated in the same session

State m.n means step n at trace m
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Minimal simulation example

Simulation run
$ NuSMV -int chair.smv -- start interactive mode
NuSMV> go -- process the model
NuSMV> pick_state -v -- pick an initial state
NuSMV> simulate -k 2 -v -- advance two steps
NuSMV> show_trace -- print the trace

By default, unchanged variables are omitted
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Minimal simulation example

Simulation output
<!-- ################### Trace number: 1 ################### -->

Trace Description: Simulation Trace
Trace Type: Simulation

-> State: 1.1 <-
x = 5
y = 5
d = 0
m = 0
n = 10
inv = FALSE

-> Input: 1.2 <-
op = ltl

-> State: 1.2 <-
y = 4
d = 1

-> Input: 1.3 <-
op = rtr

-> State: 1.3 <-
y = 3
d = 0
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Useful simulation commands

$ NuSMV -int Start NuSMV in interactive mode

go Read the model and initialize the system for verification

show_vars Show the state variables and their types

reset Reset the process when the file changed

quit Quit NuSMV
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Useful simulation commands

pick_state Select an initial state

-i Ask the user to select the state from a list
-v Print the selected state and variables

simulate Generate a sequence of states from the current

-i Ask the user to select the steps from a list
-v Print the selected states and variables
-k The number of steps to be generated

print_current_state Prints the name of the current state

-v Print the selected states and variables

show_traces Prints the generated traces

-v Print the state variables
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Specification

Support for both linear and branching models of time
LTL (through LTLSPEC) and CTL (through CTLSPEC)
specifications
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CTL

Supported CTL operators:
EX f there exists a path where f holds in the

succeeding state
EG f there exists a path where f always holds
EF f there exists a path where f eventually holds
AX f in all paths f holds in the succeeding state
AG f in all paths f always holds
AF f in all paths f eventually holds

E[f U g] there exists a path where f holds until g does
A[f U g] in all paths f holds until g does
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LTL

Supported LTL operators (including past-time):
X f f holds in the succeeding state
G f f always holds
F f f eventually holds

f U g f holds until g does
f V g g always holds or until f does

Y f f held in the previous state
H f f always held in the past
O f f once held in the past

f S g f held since g did
f T g g always held or since g did
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Heavy chair: Specification

Back to the heavy chair puzzle
G (x = n/2 & y = (n/2)+1 & d = 0)?
G ! (x = n/2 & y = (n/2)+1 & d = 0)?
F (x = n/2 & y = (n/2)+1 & d = 0)?
F ! (x = n/2 & y = (n/2)+1 & d = 0)?

AG (x = n/2 & y = (n/2)+1 & d = 0)?
EG (x = n/2 & y = (n/2)+1 & d = 0)?
AF (x = n/2 & y = (n/2)+1 & d = 0)?
EF (x = n/2 & y = (n/2)+1 & d = 0)?
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Peterson’s algorithm: Specification

Back to the heavy chair puzzle
G !(pc[0]=crit & pc[1]=crit)?
pc[0]=want -> F pc[0]=crit?
G (pc[0]=want -> F pc[0]=crit)?

AG !(pc[0]=crit & pc[1]=crit)?
AG (pc[0]=want -> EF pc[0]=crit)?
AG (pc[0]=want -> AF pc[0]=crit)?
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Fairness

Some systems are only correct if a certain realistic fairness
conditions are met

For instance, the scheduler will not prioritize the same process
indefinitely

Can be encoded in LTL but not CTL
NuSMV provides special JUSTICE f constraints

Formula f will be true infinitely often in all fair paths
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Peterson’s algorithm: Specification

MODULE main
VAR

flg : array 0..1 of boolean; // program variables
trn : 0..1; // program variables
pc : array 0..1 of {idle,want,wait,crit}; // program counter

IVAR
run : 0..1; // process scheduler

ASSIGN
. . .
. . .

LTLSPEC G (pc[0]=want -> F pc[0]=crit)
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Peterson’s algorithm: Specification

MODULE main
VAR

flg : array 0..1 of boolean; // program variables
trn : 0..1; // program variables
pc : array 0..1 of {idle,want,wait,crit}; // program counter

IVAR
run : 0..1; // process scheduler

ASSIGN
. . .
. . .

LTLSPEC G (pc[0]=want -> F pc[0]=crit)
JUSTICE run=1
JUSTICE run=2
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Verification

The model checker can automatically checker whether
specifications hold

From the command-line: NuSMV chair.smv
In interactive mode: check_ltlspec or check_ctlspec
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Counter-examples traces

The model checker attempts to verify the property and present
a counter-example otherwise
Counter examples to F/AG properties must be infinite; a trace
with a loop is returned
Traces are not necessarily minimal (LTL checking in particular
requires looping traces)
Counter-examples to existential properties E cannot be shown,
as would entail presenting all traces (just the initial states)
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Heavy chair: Verification

LTLSPEC F (x = n / 2 & y = n / 2 & d = 0)

Counter-example reported
-- specification F ((x = n / 2 & y = n / 2) & d = 0) is true
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Heavy chair: Verification

LTLSPEC F (x = n / 2 & y = n / 2 & d = 1)

Counter-example reported
-- specification F ((x = n / 2 & y = n / 2) & d = 1) is false
-- as demonstrated by the following execution sequence
Trace Description: LTL Counterexample
Trace Type: Counterexample

-- Loop starts here
-> State: 1.1 <-

x = 5
y = 5
d = 0

-> Input: 1.2 <-
op = ltl

-> State: 1.2 <-
y = 4
d = 1

-> Input: 1.3 <-
op = rbl

-> State: 1.3 <-
y = 5
d = 0
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Model finding

This mechanism can also be used to search for solutions to
problems, by asking to falsify their inverse
For instance, if state is reachable:

G !state? no, here’s a witness leading to state
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Heavy chair: Model finding

LTLSPEC G !(x = n/2 & y = n/2 & d = 2)

Witness to x = n/2 & y = n/2 & d = 2
-- specification G !((x = n / 2 & y = n / 2) & d = 2) is false
-- as demonstrated by the following execution sequence
Trace Description: LTL Counterexample
Trace Type: Counterexample

-> State: 1.1 <-
x = 5
y = 5
d = 0

-> Input: 1.2 <-
op = ltl

-> State: 1.2 <-
y = 4
d = 1
...

-> Input: 1.6 <-
op = rbl

-> State: 1.6 <-
y = 4
d = 1
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Useful links

NuSMV Homepage.
http://nusmv.fbk.eu/

NuSMV Tutorial.
http://nusmv.fbk.eu/NuSMV/tutorial/v26/tutorial.pdf

NuSMV User Manual.
http://nusmv.fbk.eu/NuSMV/userman/v26/nusmv.pdf

http://nusmv.fbk.eu/
http://nusmv.fbk.eu/NuSMV/tutorial/v26/tutorial.pdf
http://nusmv.fbk.eu/NuSMV/userman/v26/nusmv.pdf
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