Alcino Cunha

SPECIFICATION AND MODELING

RELATIONAL MODEL FINDING

Universidade do Minho \& INESC TEC
2019/20

ARCHITECTURE

KODKOD

KODKOD

- Kodkod is a relational model finder
- A Kodkod problem consists of
- a universe declaration: a set of atoms \mathcal{U}
- relation declarations: for each relation r an arity $\operatorname{ar}(r)$ and lower and upper bounds (r_{L} and r_{U})
- a relational logic formula ϕ
- Kodkod finds values (a model) for the relations satisfying the given bounds and ϕ

FROM ALLOY TO KODKOD AND BACK

- Facts are added to the problem formula
- Formulas to be checked are negated and added to the problem formula
- The formula is valid if its negation is unsatisfiable
- The main issue is how to infer (tight) bounds from scopes
- Only atomic signatures and fields are declared
- Non atomic signatures are aliased to disjunction of atomic ones
- Upper bounds can be shared between disjoint atomic signatures
- Further constraints must be added to ensure structural semantics
- Atom names become meaningless
- When building Alloy instance from Kodkod instance atoms must be renamed

ALLOY EXAMPLE

```
abstract sig HTTPEvent {}
sig Request extends HTTPEvent {
    response : lone Response
}
sig Response extends HTTPEvent {}
sig Redirect extends Response {}
run {response.Redirect in HTTPEvent} for 3 but exactly 1 Redirect
```


KODKOD TRANSLATION

$$
\{A, B, C\}
$$

```
Request :1 {} {(A),(B)}
$Response :1 {} {(A),(B)}
Redirect :1 {(C)} {(C)}
response :2 {} {(A,A),(A,B),(A,C),(B,A),(B,B),(B,C)}
```

no Request \& (\$Response+Redirect)
all x : Request | lone x.response and x.response in (\$Response+Redirect) response.univ in Request
response.Redirect in (Request+\$Response+Redirect)

BOOLEAN SATISFIABILITY

- The boolean satisfiability problem (SAT) is the problem of determining if a propositional logic formula has a (valid) model
- SAT was the first problem to be proven NP-complete
- But modern SAT solvers can handle formulas with tens of thousands of variables efficiently

FROM KODKOD TO SAT AND BACK

- A relation r of arity $k=\operatorname{ar}(r)$ can be represented by a k-dimensional matrix $|\mathcal{U}|^{k}$ of propositional variables

$$
r\left[i_{1}, \ldots, i_{k}\right]= \begin{cases}T & \text { if }\left\langle\mathcal{U}_{i_{1}}, \ldots, \mathcal{U}_{i_{k}}\right\rangle \in r_{L} \\ x_{i_{1}, \ldots, i_{k}} & \text { if }\left\langle\mathcal{U}_{i^{\prime}}, \ldots, \mathcal{U}_{i_{k}}\right\rangle \in r_{U} \backslash r_{L} \\ \perp & \text { otherwise }\end{cases}
$$

- Relational operators implemented by matrix operations and boolean connectives
- Composition is the product
- Union is the sum
- Intersection is Hadamard product
- Closure iterates $|\mathcal{U}|$ products
- Inclusion is implication

KODKOD EXAMPLE

$$
\{A, B, C\}
$$

```
Request :1 {} {(A),(B)}
$Response :1 {} {(A),(B)}
Redirect :1 {(C)} {(C)}
response :2 {} {(A,A),(A,B),(A,C),(B,A),(B,B),(B,C)}
```

no Request \& (\$Response+Redirect)
all x : Request | lone x.response and x.response in (\$Response+Redirect)
response.univ in Request
response.Redirect in (Request+\$Response+Redirect)

SAT TRANSLATION

response.Redirect in (Request+\$Response+Redirect)

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
\mathrm{r}_{A, A} & \mathrm{r}_{A, B} & \mathrm{r}_{A, C} \\
\mathrm{r}_{B, A} \mathrm{r}_{B, B} & \mathrm{r}_{B, C} \\
\perp & \perp & \perp
\end{array}\right] \cdot\left[\begin{array}{c}
\perp \\
\perp \\
\mathrm{T}
\end{array}\right] \subseteq\left[\begin{array}{c}
\mathrm{x}_{A} \\
\mathrm{x}_{B} \\
\perp
\end{array}\right]+\left[\begin{array}{c}
\mathrm{y}_{A} \\
\mathrm{y}_{B} \\
\perp
\end{array}\right]+\left[\begin{array}{c}
\perp \\
\perp \\
\mathrm{T}
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& \left(r_{A, C} \rightarrow x_{A} \vee y_{A}\right) \wedge\left(r_{B, C} \rightarrow x_{B} \vee y_{B}\right) \wedge(\perp \rightarrow T)
\end{aligned}
$$

QUANTIFIERS

- Since the universe is finite, quantifiers can be handled by expansion

```
all x : Request | lone x.response
\equiv
lone \(\{(A)\}\). response and lone \(\{(B)\} . r e s p o n s e\)
```

- Unfortunately, this technique yields no witnesses to existential quantifiers

```
some x : Request | some x.response
```

三
some $\{(A)\}$. response or some $\{(B)\} . r e s p o n s e$

SKOLEMIZATION

- Skolemization is a technique that replaces existentially quantified variables by new free variables.
- Free variables are implicitly existentially quantified
- Generates smaller but equisatisfiable formulas
some x : Request | some x.response
\cong
\$x:1 \{\} \{(A),(B)\}
one $\$ x$ and some $\$ x . r e s p o n s e$
- Skolemized variables are witnesses of the quantifier and are very useful in visualisation
- Skolemization can also be applied to higher-order existential quantifications

SYMMETRY BREAKING

- Kodkod performs several optimisations to decrease SAT complexity
- The most significant is symmetry breaking
- Since atoms are uninterpreted (almost) any permutation of an instance is also a valid instance
- A symmetry-breaking formula is conjoined to the problem formula
- It tries to capture most symmetries but for efficiency reasons the technique is not complete
- Besides improving efficiency, symmetry breaking is also great for validation
- Without it the user would be overwhelmed with isomorphic instances

