
Alcino Cunha

specification and modeling
ltl model checking

Universidade do Minho & INESC TEC

2019/20

linear temporal logic

specification and modeling / linear temporal logic 3 / 16

syntax

φ ::= p
| >

| ⊥

| ¬φ

| φ1 ∧ φ2

| φ1 ∨ φ2

| φ1 → φ2

| Gφ
| Fφ
| Xφ
| φ U ψ
| φ R ψ

specification and modeling / linear temporal logic 4 / 16

semantics

Defined over a model (transition system) M
For non first-order LTL, M is just a Kripke structure (S, I, R, L)
I S is a finite set of states
I I ⊆ S is the set of initial states
I R ⊆ S × S is a total transition relation
I L : S→ 2A is a function that labels each state with the set of atomic propositions valid

in that state (draw from domain A)
A formula is valid i� it holds in all paths of M

M |= φ i� [π ∈ M · π |= φ

model checking

specification and modeling /model checking 6 / 16

a language theoretic approach to ltl model checking

Considering the set of states S as an alphabet Σ, the language of M, denoted L(M),
is the set of all paths of M

L(M) = {π | π ∈ M}

The language of a LTL formulaφ, denoted L(φ), is the set of all paths that satisfyφ

L(φ) = {π | π |= φ}

A formula is valid in a model i� the language of the model is contained in the
language of the formula

M |= φ i� L(M) ⊆ L(φ)

Alternatively we have

M |= φ i� L(M) ∩ L(¬φ) = ∅

specification and modeling /model checking 7 / 16

büchi automata

In general, the language L(φ) cannot be captured by a transition system
I We need the related concept of Büchi automaton
A Non-deterministic Büchi automaton (NBA) is a tuple (S, Σ, R, I, F) where
I S is a set of states
I Σ is a alphabet
I R ⊆ S × Σ × S is a transition relation
I I ⊆ S is a set of initial states
I F ⊆ S is a set of accepting (or final) states
A valid path in a NBA must visit an accepting state infinitely o�en
The language of an NBA is the set of all valid paths

specification and modeling /model checking 8 / 16

from kripke structures to büchi automata

Given a Kripke structure M it is possible to construct a NBAAM such that
L(AM) = L(M)
I Using as alphabet conjunctions of atomic propositions Σ = 2A
I Adding a new separate initial state
I A transition is possible i� transition label matches the next state label
I All states are accepting

specification and modeling /model checking 9 / 16

example

specification and modeling /model checking 10 / 16

from ltl formulas to büchi automata

Given a LTL formula in negation normal form it is possible to construct a NBAAφ
such that L(Aφ) = L(φ)
I Using as alphabet conjunctions of atomic propositions Σ = 2A

specification and modeling /model checking 11 / 16

example

F a

specification and modeling /model checking 12 / 16

example

G a

specification and modeling /model checking 13 / 16

example

G F a

specification and modeling /model checking 14 / 16

checking emptiness of language intersection

Checking the emptiness of language intersection can be reduced to checking the
emptiness of the product automaton

M |= φ i� L(M) ∩ L(¬φ) = ∅ i� L(AM ⊗ A¬φ) = ∅

Since all states ofAM are accepting, the product ofAM = (SM, Σ, RM, IM, SM) and
A¬φ = (S¬φ, Σ, R¬φ, I¬φ, F¬φ) can be computed as follows

AM ⊗ A¬φ = (SM × S¬φ, Σ, R, IM × I¬φ, SM × F¬φ)

where
((s, q), a, (s′, q′)) ∈ R i� (s, a, s′) ∈ RM ∧ (q, a, q′) ∈ R¬φ

specification and modeling /model checking 15 / 16

example

M |= F b i� L(AM ⊗ AG¬b) = ∅

specification and modeling /model checking 16 / 16

checking (non) emptiness of automaton

1. Compute the Strongly Connected Components (SCCs) and check if a SCC containing
an accepting state is reachable from the initial state
I Requires storing the entire automaton in memory

2. Determine reachable states using Depth-First Search (DFS) and if an accepting state
is reachable run a nested DFS to determine if it there is a cycle
I Better for on-the-fly model checking

3. Use a (fair) CTL model checking procedure to check if EG> is valid assuming the
system is fair to the accepting states
I Enables symbolic model checking for LTL

	Linear Temporal Logic
	Model Checking

