Alcino Cunha

SPECIFICATION AND MODELING

FIRST-ORDER LINEAR TEMPORAL LOGIC

Universidade do Minho & INESC TEC

2019/20

TRASH

SPECIFICATION AND MODELING / TRASH 3/23

TRASH

Open

Empty Trash

| Design a trash component such that:

e A deleted file can still be restored if the trash is not emptied

SPECIFICATION AND MODELING / TRASH

4l23

TRASH BEHAVIOUR

var sig File {}
var sig Trash in File {}

pred delete[f : File] { ...
pred restore[f : File] { ...

pred empty { ... }
pred do_nothing { ... }

fact {
no Trash
always (

(some f: File | delete[f] or restore[f]) or empty or do_nothing

SPECIFICATION AND MODELING / TRASH

SOME TRASH ASSERTIONS

s/23

assert restoreAfterDelete {

-- Every restored file was once deleted

always (all f : File | restore[f] implies once delete[f])
}

assert deleteAll {
-- If the trash contains all files and is emptied
-- then no files will ever exist afterwards
always ((File in Trash and empty) implies after (always no File))

}

FIRST-ORDER LINEAR TEMPORAL LOGIC

SPECIFICATION AND MODELING / FIRST-ORDER LINEAR TEMPORAL LOGIC 7123

FIRST-ORDER LINEAR TEMPORAL LOGIC

e Electrum includes temporal connectives from Linear Temporal Logic (LTL)
> Both future and past operators

e An LTL formula is interpreted in a state of a trace (infinite sequence of states)
> Aformulais valid in a trace iff it is valid in its initial state
> Aformula is valid in a system iff it is valid in all possible traces

SPECIFICATION AND MODELING / FIRST-ORDER LINEAR TEMPORAL LOGIC.

8/23

FUTURE OPERATORS

Electrum Math Meaning
always ¢ G O¢ ¢ is always true from now on
eventually ¢ Fp O ¢ ¢ will eventually be true
after ¢ X¢ O¢ ¢ will be true in the next state
¢ until v ¢ Uy w will eventually be true and ¢ is true until then
¢ releases y PRy w can only be false after ¢ is true

SPECIFICATION AND MODELING / FIRST-ORDER LINEAR TEMPORAL LOGIC.

9/23

PAST OPERATORS

Electrum Math Meaning
historically ¢ H¢ ¢ was always true
once ¢ (o)) ¢ was once true
before ¢ Yo ¢ was true in the previous state
¢ since y ¢Sy w was once true and ¢ has been true afterwards

¢ triggered y Ty

if ¢ was once true, then y has been true onwards

SPECIFICATION AND MODELING / FIRST-ORDER LINEAR TEMPORAL LOGIC. 10/23

SEMANTICS BY EXAMPLE

var lone sig A {}
var lone sig B {}

°_’ “ : = mo --------- "

SPECIFICATION AND MODELING / FIRST-ORDER LINEAR TEMPORAL LOGIC /23

SEMANTICS BY EXAMPLE

00000000 -

eventually some B

after (some A and some B)
some B releases some A
once some A
always (some B implies eventually some A)
eventually always some A

always eventually some A

SPECIFICATION AND MODELING / FIRST-ORDER LINEAR TEMPORAL LOGIC 12/23

SEMANTICS BY EXAMPLE

00000000

not always some A
not before some B
not always (some A implies eventually some B)
not eventually always some B

not always eventually some B

SPECIFICATION AND MODELING / FIRST-ORDER LINEAR TEMPORAL LOGIC 13/23

SEMANTICS BY EXAMPLE

always some A
once some B

not eventually some B

SPECIFICATION AND MODELING / FIRST-ORDER LINEAR TEMPORAL LOGIC /23

SEMANTICS BY EXAMPLE

before some B
some B until some A

not historically some A

TRASH

SPECIFICATION AND MODELING / TRASH 16/23

THE DESIRED TRASH ASSERTION

pred restoreEnabled[f : File] {
f in Trash

assert restoreIsPossibleBeforeEmpty {
-- a deleted file can still be restored if the trash is not emptied
always (all f:File | delete[f] implies
(empty releases restoreEnabled[f]))

SPECIFICATION AND MODELING / TRASH /23

SPECIFICATION AND MODELING / TRASH 18/23

THE DESIRED TRASH ASSERTION

pred restoreEnabled[f : File] {
f in Trash

assert restoreIsPossibleBeforeEmpty {
-- a deleted file can still be restored if the trash is not emptied
always (all f:File | delete[f] implies
after ((empty or restore[f]) releases restoreEnabled[f]))

FIRST-ORDER LINEAR TEMPORAL LOGIC

SPECIFICATION AND MODELING / FIRST-ORDER LINE/

AR TEMPORAL LOGIC

20/23

SYNTAX

G
Fo
X
Uy
$Ry
He
0¢
Yo
Sy
PTy

@’

SPECIFICATION AND MODELING / FIRST-ORDER LINEAR TEMPORAL LOGIC. 21/23

FIRST-ORDER TEMPORAL STRUCTURES

e The semantics of a first-order temporal formula is defined over a first-order
temporal structure (aka model) M = (D, n)
> 9P is a non-empty domain of interpretation (or discourse) with equality
> 7 is an infinite sequence of possible interpretations of the predicates (a trace)
> Given i € N, we have z(i)(P) € D>

e For interpreting (free) variables we still need an assignment A

e The fact that a formula ¢ is valid in the i-th state of a model M with assignment A
is denoted by M, A,i |= ¢

e Aformula ¢ is valid in a model M with assignment (A, denoted by M, A, i |= ¢,
if M, A,0=¢

s If the formula is closed we write just M |= ¢, assuming A to be the empty
assignment

EEEEEEEEEEEEEEEEEEEEEEEE | FIRST-ORDER LINEAR TEMPORAL

LLLLL

SEMANTICS

M, Ail=Ge
M A |=F¢
M, A,i =X
MA =P Uy
M A EdRY
M, A,il=H¢
M A i|=0¢
M, Ail=YP
MAiEPSy
MAi=EdTy

Vizi MA,jlI=¢

FG>i MA =P

M A i+1E¢

FG>iMAjEY AVisR<j.M,AR =)
Vizi.M,A,jlry VIAisk<j. M,A,k|=¢)

Yo<j<i M A,jE¢
o<j<i MA,jI=
i>oANM,Ai-1=¢
To<j<i MAjEEY AVj<RZi.M, AR)
Vo<j<i MAjEY VI <k<i. M, AkKEP)

SPECIFICATION AND MODELING / FIRST-ORDER LINEAR TEMPORAL LOGIC 23/23

SEMANTICS

M AP CY if M, A ilE VX, ..., Xa(o)-
D(xi, ... 9Xar(¢)) - Y(x, ..., Xar(d>))
M, A= Py ooy X)) 0ff (AlXy), ..., Alxy)) € w(i)(P)
M A= D (ty,....ty) iff M, A i+1]FP(t,....t,)

	Trash
	First-Order Linear Temporal logic
	Trash
	First-Order Linear Temporal Logic

