
Alcino Cunha

specification and modeling
first-order linear temporal logic

Universidade do Minho & INESC TEC

2019/20



trash



specification and modeling / trash 3 / 23

trash

Design a trash component such that:

A deleted file can still be restored if the trash is not emptied



specification and modeling / trash 4 / 23

trash behaviour

var sig File {}
var sig Trash in File {}

pred delete[f : File] { ... }
pred restore[f : File] { ... }
pred empty { ... }
pred do_nothing { ... }

fact {
no Trash
always (
(some f: File | delete[f] or restore[f]) or empty or do_nothing

)
}



specification and modeling / trash 5 / 23

some trash assertions

assert restoreAfterDelete {
-- Every restored file was once deleted
always (all f : File | restore[f] implies once delete[f])

}

assert deleteAll {
-- If the trash contains all files and is emptied
-- then no files will ever exist afterwards
always ((File in Trash and empty) implies after (always no File))

}



first-order linear temporal logic



specification and modeling / first-order linear temporal logic 7 / 23

first-order linear temporal logic

Electrum includes temporal connectives from Linear Temporal Logic (LTL)
I Both future and past operators
An LTL formula is interpreted in a state of a trace (infinite sequence of states)
I A formula is valid in a trace i� it is valid in its initial state
I A formula is valid in a system i� it is valid in all possible traces



specification and modeling / first-order linear temporal logic 8 / 23

future operators

Electrum Math Meaning

always φ Gφ � φ φ is always true from now on
eventually φ Fφ ^ φ φ will eventually be true

after φ Xφ # φ φ will be true in the next state
φ untilψ φ U ψ ψ will eventually be true and φ is true until then

φ releasesψ φ R ψ ψ can only be false a�er φ is true



specification and modeling / first-order linear temporal logic 9 / 23

past operators

Electrum Math Meaning

historically φ Hφ φ was always true
once φ Oφ φ was once true
before φ Yφ φ was true in the previous state
φ sinceψ φ S ψ ψ was once true and φ has been true a�erwards

φ triggeredψ φ T ψ if φ was once true, thenψ has been true onwards



specification and modeling / first-order linear temporal logic 10 / 23

semantics by example

var lone sig A {}
var lone sig B {}



specification and modeling / first-order linear temporal logic 11 / 23

semantics by example

eventually some B

after (some A and some B)

some B releases some A

once some A

always (some B implies eventually some A)

eventually always some A

always eventually some A



specification and modeling / first-order linear temporal logic 12 / 23

semantics by example

not always some A

not before some B

not always (some A implies eventually some B)

not eventually always some B

not always eventually some B



specification and modeling / first-order linear temporal logic 13 / 23

semantics by example

always some A

once some B

not eventually some B



specification and modeling / first-order linear temporal logic 14 / 23

semantics by example

before some B

some B until some A

not historically some A



trash



specification and modeling / trash 16 / 23

the desired trash assertion

pred restoreEnabled[f : File] {
f in Trash

}

assert restoreIsPossibleBeforeEmpty {
-- a deleted file can still be restored if the trash is not emptied
always (all f:File | delete[f] implies

(empty releases restoreEnabled[f]))
}



specification and modeling / trash 17 / 23



specification and modeling / trash 18 / 23

the desired trash assertion

pred restoreEnabled[f : File] {
f in Trash

}

assert restoreIsPossibleBeforeEmpty {
-- a deleted file can still be restored if the trash is not emptied
always (all f:File | delete[f] implies

after ((empty or restore[f]) releases restoreEnabled[f]))
}



first-order linear temporal logic



specification and modeling / first-order linear temporal logic 20 / 23

syntax

φ ::= Gφ
| Fφ
| Xφ
| φ U ψ
| φ R ψ
| Hφ
| Oφ
| Yφ
| φ S ψ
| φ T ψ
| ...

Φ ::= Φ′

| ...



specification and modeling / first-order linear temporal logic 21 / 23

first-order temporal structures

The semantics of a first-order temporal formula is defined over a first-order
temporal structure (aka model)M = (D, π)
I D is a non-empty domain of interpretation (or discourse) with equality
I π is an infinite sequence of possible interpretations of the predicates (a trace)
I Given i ∈ Î, we have π(i)(P) ⊆ Dar(P)

For interpreting (free) variables we still need an assignmentA
The fact that a formula φ is valid in the i-th state of a modelM with assignmentA
is denoted byM,A, i |= φ
A formula φ is valid in a modelM with assignmentA, denoted byM,A, i |= φ,
i�M,A, 0 |= φ
If the formula is closed we write justM |= φ, assumingA to be the empty
assignment



specification and modeling / first-order linear temporal logic 22 / 23

semantics

M,A, i |= Gφ i� [j ≥ i .M,A, j |= φ
M,A, i |= Fφ i� \j ≥ i .M,A, j |= φ
M,A, i |= Xφ i� M,A, i + 1 |= φ

M,A, i |= φ U ψ i� \j ≥ i . (M,A, j |= ψ ∧ [i ≤ k < j .M,A, k |= φ)
M,A, i |= φ R ψ i� [j ≥ i . (M,A, j |= ψ ∨ \i ≤ k < j .M,A, k |= φ)

M,A, i |= Hφ i� [0 ≤ j ≤ i .M,A, j |= φ
M,A, i |= Oφ i� \0 ≤ j ≤ i .M,A, j |= φ
M,A, i |= Yφ i� i > 0 ∧M,A, i − 1 |= φ

M,A, i |= φ S ψ i� \0 ≤ j ≤ i . (M,A, j |= ψ ∧ [j < k ≤ i .M,A, k |= φ)
M,A, i |= φ T ψ i� [0 ≤ j ≤ i . (M,A, j |= ψ ∨ \j < k ≤ i .M,A, k |= φ)



specification and modeling / first-order linear temporal logic 23 / 23

semantics

M,A, i |= Φ ⊆ Ψ i� M,A, i |= [x1, ... , xar(Φ).

Φ(x1, ... , xar(Φ)) → Ψ(x1, ... , xar(Φ))

M,A, i |= P(x1, ... , xn) i� (A(x1), ... ,A(xn)) ∈ π(i)(P)
M,A, i |= Φ′(t1, ... , tn) i� M,A, i + 1 |= Φ(t1, ... , tn)

...


	Trash
	First-Order Linear Temporal logic
	Trash
	First-Order Linear Temporal Logic

