
Alcino Cunha

specification and modeling
first-order logic

Universidade do Minho & INESC TEC

2019/20



specification and modeling 2 / 14

from propositional to first-order logic

Introduces a domain of discourse
Generalize propositional symbols to predicates
Allows quantifiers and variables ranging over the domain

Propositional logic

File1_is_in_trash ∧ File2_is_in_trash
File2_has_name_Name1

First-order logic

is_in_trash(File1) ∧ is_in_trash(File2)
has_name(File2, Name1)
[x.is_in_trash(x)



specification and modeling 3 / 14

predicates (aka sets and relations)

is_in_trash(File1) = >

is_in_trash(File2) = >

is_in_trash(_) = ⊥

has_name(File1, Name1) = >

has_name(File1, Name2) = >

has_name(File2, Name3) = >

has_name(_, _) = ⊥

is_in_trash = {(File1), (File2)}
has_name = {(File1, Name1), (File1, Name2), (File2, Name3)}



specification and modeling 4 / 14

visualising sets and relations



specification and modeling 5 / 14

syntax

Category Identifier

Variables x, y, z, ...
Constants a, b, c, ...
Functions f , g, h, ...
Predicates P, Q, R, ...

Terms t, u, v, ...
Formulas φ,ϕ,ψ , ...



specification and modeling 6 / 14

syntax

t ::= x
| c
| f (t1, ... , tar(f ))

φ ::= P(t1, ... , tar(P))

| t = u
| >

| ⊥

| ¬φ

| φ1 ∧ φ2

| φ1 ∨ φ2

| φ1 → φ2

| [x.φ
| \x.φ



specification and modeling 7 / 14

first-order structures and variable assignments

The semantics of a first-order formula is defined over a first-order structure (aka
model)M = (D,I)
I D is a non-empty domain of interpretation (or discourse) with equality
I I is the interpretation constants, functions, and predicates:
• I(c) ∈ D
• I(f ) ∈ Dar(f ) → D

• I(P) ⊆ Dar(P)

For interpreting (free) variables we also need an assignmentA:
I A(x) ∈ D
The fact that a formula φ is valid in a modelM with assignmentA is denoted by
M,A |= φ
If the formula is closed we write justM |= φ, assumingA to be the empty
assignment



specification and modeling 8 / 14

example

GivenM = (D,I) with:
I D = {File1, File2, Name1, Name2}
I I(is_a_file) = {(File1), (File2)}
I I(is_a_name) = {(Name1), (Name2)}
I I(is_in_trash) = {(File1), (File2)}
I I(has_name) = {(File2, Name1)}
We have:

M |= [x.is_a_file(x) ∨ is_a_name(x)
M |= [x.is_a_file(x) → is_in_trash(x)
M 6|= [x.is_a_file(x) → \y.has_name(x, y)



specification and modeling 9 / 14

semantics

ûxüM,A = A(x)
ûcüM,A = I(c)

ûf (t1, ... , tn)üM,A = I(f )(ût1üM,A, ... , ûtnüM,A)

M,A |= P(t1, ... , tn) i� (ût1üM,A, ... , ûtnüM,A) ∈ I(P)
M,A |= t = u i� ûtüM,A = ûuüM,A
M,A |= >
M,A 6|= ⊥
M,A |= ¬φ i� M,A 6|= φ

M,A |= φ1 ∧ φ2 i� M,A |= φ1 andM,A |= φ2

M,A |= φ1 ∨ φ2 i� M,A |= φ1 orM,A |= φ2

M,A |= φ1 → φ2 i� M,A 6|= φ orM,A |= φ2

M,A |= [x.φ i� M,A[x 7→ a] |= φ for all a ∈ D
M,A |= \x.φ i� M,A[x 7→ a] |= φ for some a ∈ D



specification and modeling 10 / 14

first-order logic syntax in alloy

Alloy Math

x1 -> ... -> xn in P P(x1, ... , xn)

x1 -> ... -> xn not in P ¬P(x1, ... , xn)

x = y x = y
x != y ¬(x = y)
not φ ¬φ

φ andψ φ ∧ψ

φ orψ φ ∨ψ

φ impliesψ φ → ψ

all x : P | φ [x · P(x) → φ

some x : P | φ \x · P(x) ∧ φ



specification and modeling 11 / 14

predicate declarations in alloy

Unary predicates are known as signatures or sets
I Declared with the sig keyword
I Sub-set signatures are declared with the in keyword
Predicates of higher arity are known as relations
I Declared inside signatures

sig Name {}
sig File {
name : set Name,
link : set File

}
sig Trash in File {}
sig Protected in File {}



specification and modeling 12 / 14

predicate declarations in alloy

Declarations induce a set of implicit “typing” constraints
I Top-level (non sub-set) signatures are disjoint
I Sub-set signatures are indeed sub-sets of the parent signature
I Relations only contain tuples of the correct signatures
Some special predicates are pre-defined
I univ is the union of all top-level signatures
I none is the empty set
I iden is the identity binary relation over univ



specification and modeling 13 / 14

formula examples

-- The trash is empty
all f : File | f not in Trash

-- Every file is either in the trash or protected
all f : File | f in Trash or f in Protected
all f : File | f in Trash implies f not in Protected

-- There are no links
all x,y : File | x->y not in link

-- Every file has at least one name
all x : File | some y : Name | x->y in name

-- Every file has at most one name
all x : File, y,z : Name | x->y in name and x->z in name implies y=z



specification and modeling 14 / 14

what about set inclusion and set operators?

Set inclusion and set operators can be defined in first-order logic
Set operators act like combinators that build more complex (unary) predicates out
of simpler ones

A ⊆ B ≡ [x.A(x) → B(x)

(A ∪ B)(x) ≡ A(x) ∨ B(x)

These (and other) combinators simplify the specification of constraints
They will be the subject of our next class about relational logic, the logic of Alloy!


