Alcino Cunha

SPECIFICATION AND MODELING

FIRST-ORDER LOGIC

Universidade do Minho & INESC TEC

2019/20

FROM PROPOSITIONAL TO FIRST-ORDER LOGIC

- Introduces a domain of discourse
- Generalize propositional symbols to predicates
- Allows quantifiers and variables ranging over the domain

Propositional logic

 $File1_is_in_trash \land File2_is_in_trash$

File2_has_name_Name1

First-order logic

```
is_in_trash(File1) ∧ is_in_trash(File2)
has_name(File2, Name1)
∀x.is_in_trash(x)
```

PREDICATES (AKA SETS AND RELATIONS)

$$is_in_trash(File1) = T$$

$$is_in_trash(File2) = T$$

$$is_in_trash(_) = \bot$$

$$has_name(File1, Name1) = T$$

$$has_name(File2, Name2) = T$$

$$has_name(File2, Name3) = T$$

$$has_name(_,_) = \bot$$

VISUALISING SETS AND RELATIONS

SYNTAX

Category	Identifier
Variables	x, y, z,
Constants	a, b, c,
Functions	f, g, h,
Predicates	P, Q, R,
Terms	t, u, v,
Formulas	$\phi, \varphi, \psi, \dots$

SYNTAX

$$t ::= x$$

$$\mid c$$

$$\mid f(t_1, \dots, t_{ar(f)})$$

$$\phi ::= P(t_1, \dots, t_{ar(P)})$$

$$\mid t = u$$

$$\mid \top$$

$$\mid \bot$$

$$\mid \neg \phi$$

$$\mid \phi_1 \land \phi_2$$

$$\mid \phi_1 \land \phi_2$$

$$\mid \phi_1 \rightarrow \phi_2$$

$$\mid \phi_1 \rightarrow \phi_2$$

$$\mid \forall x.\phi$$

$$\mid \exists x.\phi$$

FIRST-ORDER STRUCTURES AND VARIABLE ASSIGNMENTS

- The semantics of a first-order formula is defined over a first-order structure (aka model) M = (D, I)
 - ▶ \mathcal{D} is a non-empty domain of interpretation (or discourse) with equality
 - \blacktriangleright I is the interpretation constants, functions, and predicates:
 - $\mathcal{I}(c) \in \mathcal{D}$
 - $I(f) \in \mathcal{D}^{\operatorname{ar}(f)} \to \mathcal{D}$
 - $I(P) \subseteq \mathcal{D}^{\operatorname{ar}(P)}$
- For interpreting (free) variables we also need an assignment \mathcal{A} :
 - $\mathcal{A}(x) \in \mathcal{D}$
- The fact that a formula ϕ is valid in a model \mathcal{M} with assignment \mathcal{A} is denoted by $\mathcal{M}, \mathcal{A} \models \phi$
- If the formula is closed we write just $\mathcal{M} \models \phi$, assuming \mathcal{A} to be the empty assignment

EXAMPLE

- Given $\mathcal{M} = (\mathcal{D}, \mathcal{I})$ with:
 - ▶ D = {File1, File2, Name1, Name2}
 - I(is_a_file) = {(File1), (File2)}
 - I(is_a_name) = {(Name1), (Name2)}
 - I(is_in_trash) = {(File1), (File2)}
 - I(has_name) = {(File2, Name1)}
- We have:

$$\mathcal{M} \models \forall x.is_a_file(x) \lor is_a_name(x)$$
$$\mathcal{M} \models \forall x.is_a_file(x) \rightarrow is_in_trash(x)$$
$$\mathcal{M} \not\models \forall x.is_a_file(x) \rightarrow \exists y.has_name(x,y)$$

SEMANTICS

$$\begin{bmatrix} x \end{bmatrix}_{\mathcal{M},\mathcal{R}} = \mathcal{A}(x) \\ \begin{bmatrix} c \end{bmatrix}_{\mathcal{M},\mathcal{R}} = I(c) \\ \begin{bmatrix} f(t_1, \dots, t_n) \end{bmatrix}_{\mathcal{M},\mathcal{R}} = I(f)(\llbracket t_1 \rrbracket_{\mathcal{M},\mathcal{R}}, \dots, \llbracket t_n \rrbracket_{\mathcal{M},\mathcal{R}}) \\ \mathcal{M}, \mathcal{R} \models P(t_1, \dots, t_n) \quad \text{iff} \quad (\llbracket t_1 \rrbracket_{\mathcal{M},\mathcal{R}}, \dots, \llbracket t_n \rrbracket_{\mathcal{M},\mathcal{R}}) \in I(P) \\ \mathcal{M}, \mathcal{R} \models t = u \quad \text{iff} \quad \llbracket t \rrbracket_{\mathcal{M},\mathcal{R}} = \llbracket u \rrbracket_{\mathcal{M},\mathcal{R}} \\ \mathcal{M}, \mathcal{R} \models \top \\ \mathcal{M}, \mathcal{R} \models \bot \\ \mathcal{M}, \mathcal{R} \models \varphi \quad \text{iff} \quad \mathcal{M}, \mathcal{R} \models \phi \\ \mathcal{M}, \mathcal{R} \models \phi_1 \land \phi_2 \quad \text{iff} \quad \mathcal{M}, \mathcal{R} \models \phi_1 \text{ and } \mathcal{M}, \mathcal{R} \models \phi_2 \\ \mathcal{M}, \mathcal{R} \models \phi_1 \lor \phi_2 \quad \text{iff} \quad \mathcal{M}, \mathcal{R} \models \phi_1 \text{ or } \mathcal{M}, \mathcal{R} \models \phi_2 \\ \mathcal{M}, \mathcal{R} \models \phi_1 \to \phi_2 \quad \text{iff} \quad \mathcal{M}, \mathcal{R} \models \phi \text{ or } \mathcal{M}, \mathcal{R} \models \phi_2 \\ \mathcal{M}, \mathcal{R} \models \forall x.\phi \quad \text{iff} \quad \mathcal{M}, \mathcal{R}[x \mapsto a] \models \phi \text{ for all } a \in \mathcal{D} \\ \mathcal{M}, \mathcal{R} \models \exists x.\phi \quad \text{iff} \quad \mathcal{M}, \mathcal{R}[x \mapsto a] \models \phi \text{ for some } a \in \mathcal{D} \\ \end{array}$$

FIRST-ORDER LOGIC SYNTAX IN ALLOY

Alloy	Math
$x_1 \to \to x_n$ in <i>P</i>	$P(x_1,\ldots,x_n)$
$x_1 \to \to x_n$ not in P	$\neg P(x_1,\ldots,x_n)$
<i>x</i> = <i>y</i>	x = y
x != y	$\neg(x = y)$
not $oldsymbol{\phi}$	$ eg \phi$
$oldsymbol{\phi}$ and $oldsymbol{\psi}$	$\boldsymbol{\phi}\wedge\boldsymbol{\psi}$
$oldsymbol{\phi}$ or ψ	$\boldsymbol{\phi} \vee \boldsymbol{\psi}$
$oldsymbol{\phi}$ implies $oldsymbol{\psi}$	$\phi ightarrow \psi$
all $x : P \mid \boldsymbol{\phi}$	$\forall x \cdot P(x) \rightarrow \phi$
some $x : P \mid \phi$	$\exists x \cdot P(x) \land \phi$

PREDICATE DECLARATIONS IN ALLOY

- Unary predicates are known as signatures or sets
 - Declared with the sig keyword
 - Sub-set signatures are declared with the in keyword
- Predicates of higher arity are known as relations
 - Declared inside signatures

```
sig Name {}
sig File {
   name : set Name,
   link : set File
}
sig Trash in File {}
sig Protected in File {}
```

PREDICATE DECLARATIONS IN ALLOY

- Declarations induce a set of implicit "typing" constraints
 - Top-level (non sub-set) signatures are disjoint
 - Sub-set signatures are indeed sub-sets of the parent signature
 - Relations only contain tuples of the correct signatures
- Some special predicates are pre-defined
 - univ is the union of all top-level signatures
 - none is the empty set
 - iden is the identity binary relation over univ

FORMULA EXAMPLES

-- The trash is empty all f : File | f not in Trash

-- Every file is either in the trash or protected
all f : File | f in Trash or f in Protected
all f : File | f in Trash implies f not in Protected

-- There are no links
all x,y : File | x->y not in link

-- Every file has at least one name all x : File | some y : Name | x->y in name

-- Every file has at most one name
all x : File, y,z : Name | x->y in name and x->z in name implies y=z

WHAT ABOUT SET INCLUSION AND SET OPERATORS?

- Set inclusion and set operators can be defined in first-order logic
- Set operators act like combinators that build more complex (unary) predicates out of simpler ones

 $A \subseteq B \equiv \forall x.A(x) \to B(x)$ $(A \cup B)(x) \equiv A(x) \lor B(x)$

- These (and other) combinators simplify the specification of constraints
- They will be the subject of our next class about relational logic, the logic of Alloy!