Alcino Cunha

SPECIFICATION AND MODELING

FIRST-ORDER LOGIC

Universidade do Minho & INESC TEC

2019/20

SPECIFICATION AND MODELING

FROM PROPOSITIONAL TO FIRST-ORDER LOGIC

e Introduces a domain of discourse
s Generalize propositional symbols to predicates
e Allows quantifiers and variables ranging over the domain

| Propositional logic

Filea_is_in_trash A File2_is_in_trash
File2_has_name_Name1

‘First-order logic

is_in_trash(File1) A is_in_trash(File2)
has_name(File2, Name1)
Vx.is_in_trash(x)

SPECIFICATION AND MODELING

PREDICATES (AKA SETS AND RELATIONS)

e I B S

is_in_trash(File1)
is_in_trash(File2)
is_in_trash() =
has_name(File1,Name1) =
has_name(File1, Name2)
has_name(File2, Name3)
has_name(_,_)

is_in_trash {(File1), (File2)}
has_name = {(File1,Name1),(File1, Name2),(File2, Name3)}

SPECIFICATION AND MODELING

4l

VISUALISING SETS AND RELATIONS

-- . o
- .-

is_in_trash

PR Rl 'Y
* .
' ’

*

~----’

has_name

SPECIFICATION AND MODELING

SYNTAX

Category Identifier
Variables XV, 2, ...
Constants ab,c,...
Functions f,g,h, ...
Predicates P, Q,R, ...
Terms t,u,v,...
Formulas ¢, ¢, v, ...

SPECIFICATION AND MODELIN

6/

SYNTAX

X
C

f(t19 AR tar(f))

P(t1’ ceey tar(P))
t=u

SPECIFICATION AND MODELING

FIRST-ORDER STRUCTURES AND VARIABLE ASSIGNMENTS

e The semantics of a first-order formula is defined over a first-order structure (aka
mode) M = (D, 1)
> 9P is a non-empty domain of interpretation (or discourse) with equality
> 1 isthe interpretation constants, functions, and predicates:
o« I(c)eD
o I(f) e D) - D
o I(P)c D¥P)
e For interpreting (free) variables we also need an assignment A:
> Ax)e D
e The fact that a formula ¢ is valid in a model M with assignment ‘A is denoted by
MAE
e Ifthe formula is closed we write just M |= ¢, assuming A to be the empty
assignment

SPECIFICATION AND MODELING

8/

EXAMPLE

s Given M = (D, I) with:
> D = {File1, File2, Name1, Name2}
> JI(is_a_file) = {(File1),(File2)}
> I (is_a_name) = {(Name1), (Name2)}
> I (is_in_trash) = {(File1),(File2)}
» T (has_name) = {(File2, Name1)}

s We have:

M = Vx.is_a_file(x) V is_a_name(x)
M |= Vx.is_a_file(x) — is_in_trash(x)
M £ ¥x.is_a_file(x) — dy.has_name(x, y)

nnnnnnnnnnnnnnnnnnnnnn

SEMANTICS

[pm, 7
[clpm.a

[[f(t1a) tn)]]M,?l

M, A = P(ty, ..., ty)
MAREt=u
MAET
MAE L
M A |= -
M A E ¢ AP,
MA|=¢d, VP,
M A ¢ — ¢,
M, A |= Vx.¢
M A |= 3Ix.¢

Ax)
I(c)
I(f)([[t‘l]]M,ﬂ’ ceey [[tn]]M,ﬂ)

([[t1]]M,ﬂ’ cees |[tn]]M,ﬂ) € I(P)
[tIm.a = [ullm.a

M, A E P

M, A = ¢and M, A = ¢,
MAEG, or M, A |= ¢,
MAEPor M, A |= ¢,

M, A[x > a] |= ¢pforallae D
M, A[x — a] £ ¢ forsomea € D

SPECIFICATION AND MODELING

10/ 14

FIRST-ORDER LOGIC SYNTAX IN ALLOY

Alloy Math
X; =>...=>X,in P P(Xq, ..., Xn)
X, =>...=>X, not inP =P(Xq, ..., Xn)
X=y X=y
xl=y —(x=y)
not ¢ —¢
¢ and y Py
pory pVy
¢ implies y -y
allx:P| ¢ Vx-P(x) = ¢
somex : P| ¢ x - P(x) A @

SPECIFICATION AND MODELING

PREDICATE DECLARATIONS IN ALLOY

e Unary predicates are known as signatures or sets
> Declared with the sig keyword
> Sub-set signatures are declared with the in keyword

e Predicates of higher arity are known as relations
> Declared inside signatures

sig Name {}
sig File {
name : set Name,
link : set File
}
sig Trash in File {}
sig Protected in File {}

SPECIFICATION AND MODELING

PREDICATE DECLARATIONS IN ALLOY

e Declarations induce a set of implicit “typing” constraints
> Top-level (non sub-set) signatures are disjoint
> Sub-set signatures are indeed sub-sets of the parent signature
> Relations only contain tuples of the correct signatures
e Some special predicates are pre-defined
> univ is the union of all top-level signatures
> none is the empty set
> iden is the identity binary relation over univ

SPECIFICATION AND MODELING 13/

FORMULA EXAMPLES

-- The trash is empty
all f : File | f not in Trash

-- Every file is either in the trash or protected
all f : File | f in Trash or f in Protected
all f : File | f in Trash implies f not in Protected

-- There are no links
all x,y : File | x->y not in link

-- Every file has at least one name
all x : File | some y : Name | x->y in name

-- Every file has at most one name
all x : File, y,z : Name | x->y in name and x->z in name implies y=z

SPECIFICATION AND MODELING w1

WHAT ABOUT SET INCLUSION AND SET OPERATORS?

Set inclusion and set operators can be defined in first-order logic
Set operators act like combinators that build more complex (unary) predicates out
of simpler ones

A C B = Vx.A(x) — B(x)

(AU B)(x) = A(x) V B(x)

These (and other) combinators simplify the specification of constraints
They will be the subject of our next class about relational logic, the logic of Alloy!

