Alcino Cunha

SPECIFICATION AND MODELING

CTL MODEL CHECKING

Universidade do Minho & INESC TEC

2019/20

COMPUTATION TREE LOGIC

ϕ	::=	р	
		Т	\perp
		$ eg \phi$	
		$\phi_{\scriptscriptstyle 1} \wedge \phi_{\scriptscriptstyle 2}$	$\phi_1 \lor \phi_2$
		$\phi_1 ightarrow \phi_2$	
		AG $oldsymbol{\phi}$	EG $oldsymbol{\phi}$
		AF $oldsymbol{\phi}$	EF $oldsymbol{\phi}$
		AX $oldsymbol{\phi}$	EX $oldsymbol{\phi}$
		ϕ AU ψ	ϕ EU ψ
		ϕ ar ψ	ϕ er ψ

SEMANTICS

- Defined over a model (transition system) M
- Technically, M should be a Kripke structure (S, I, R, L)
 - S is a finite set of states
 - $I \subseteq S$ is the set of initial states
 - $R \subseteq S \times S$ is a total transition relation
 - ► $L: S \rightarrow 2^A$ is a function that labels each state with the set of atomic propositions valid in that state (draw from domain A)
- A formula is valid iff it holds in all initial states

$$M \models \phi$$
 iff $\forall s \in I \cdot M, s \models \phi$

• A formula is valid in a state iff it holds in the (infinite) computation tree unrolled from that state

MINIMAL SYNTAX

• All CTL formulas can be expressed using \top , \neg , \lor , EX, EU, and EG

 $| \equiv \neg T$ $\phi \wedge \psi \equiv \neg (\neg \phi \vee \neg \psi)$ $\phi \to \psi \equiv \neg \phi \lor \psi$ $AX \phi \equiv \neg EX \neg \phi$ $\mathsf{EF}\phi \equiv \top \mathsf{EU}\phi$ AG $\phi \equiv \neg EF \neg \phi$ $\mathsf{AF}\,\phi\equiv\neg\,\mathsf{EG}\,\neg\phi$ ϕ AR $\psi \equiv \neg(\neg \phi \text{ EU } \neg \psi)$ $\phi \text{ ER } \psi \equiv \text{EG } \psi \lor (\psi \text{ EU } (\phi \land \psi))$ ϕ AU $\psi \equiv \neg(\neg \phi \text{ ER } \neg \psi)$

MODEL CHECKING

(UNBOUNDED) MODEL CHECKING

 Given a Kripke structure M = (S, I, R, L) and a temporal formula φ, the goal of a model checking procedure is to find the set of all states in M that satisfy φ

$$\llbracket \phi \rrbracket_M \equiv \{ s \in S \mid M, s \models \phi \}$$

EXPLICIT VS SYMBOLIC MODEL CHECKING

Explicit model checking

- Sets and transitions are encoded extensionally
- Semantics of temporal operators is implemented by graph traversals

$$M \models \phi$$
 iff $I \subseteq \llbracket \phi \rrbracket_M$

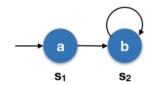
Symbolic model checking

- Sets and transitions are encoded intentionally by propositional formulas
- Semantics of temporal operators is implemented by fixpoint computations

$$M \models \phi \quad \text{iff} \quad I \to \llbracket \phi \rrbracket_M$$

EXPLICIT CTL MODEL CHECKING

EXPLICIT REPRESENTATION OF THE KRIPKE STRUCTURE



$$I = \{s_1\}$$

R = {(s_1, s_2), (s_2, s_2)}

PROPOSITIONAL CONNECTIVES AND NEXT

$$\llbracket p \rrbracket = \{ s \in S \mid p \in L(s) \}$$
$$\llbracket \top \rrbracket = S$$
$$\llbracket \neg \phi \rrbracket = S - \llbracket \phi \rrbracket$$
$$\llbracket \phi \lor \psi \rrbracket = \llbracket \phi \rrbracket \cup \llbracket \psi \rrbracket$$
$$\llbracket EX \phi \rrbracket = \{ s \in S \mid \exists s' \in \llbracket \phi \rrbracket \cdot (s, s') \in R \}$$

$$\begin{bmatrix} \phi & \mathsf{EU} & \psi \end{bmatrix} = \\ T \leftarrow \begin{bmatrix} \psi \end{bmatrix} \\ U \leftarrow \begin{bmatrix} \psi \end{bmatrix} \\ while T \neq \emptyset \\ choose \ s \in T \\ T \leftarrow T - \{s\} \\ for \ t \in R.s \\ if \ t \notin U \land t \in \llbracket \phi \end{bmatrix} \\ U \leftarrow U \cup \{t\} \\ T \leftarrow T \cup \{t\} \\ return \ U$$

ALWAYS

• To determine $\llbracket \mathsf{EG} \phi \rrbracket_M$ it suffices to restrict *M* to the states that satisfy ϕ

 $M_{\phi} = (\llbracket \phi \rrbracket, I \cap \llbracket \phi \rrbracket, R \cap (\llbracket \phi \rrbracket \times \llbracket \phi \rrbracket), L \cap (\llbracket \phi \rrbracket \times A))$

- M, s ⊨ EG φ iff s ∈ [[φ]] and there exists a path in M_φ from s to some node in a nontrivial strongly connected component of M_φ
- A Strongly Connected Component (SCC) is a maximal subgraph where every node is reachable from every other
- A SCC is also *nontrivial* if it has at least one path (more than one node or one node with a self-loop)
- The nontrivial SCCs of M_{ϕ} can be computed efficiently with Tarjan's algorithm

$$\mathsf{scc}(\mathsf{M}_{\phi}) \subseteq 2^{\llbracket \phi \rrbracket}$$

ALWAYS

$$\begin{bmatrix} \mathsf{EG} \phi \end{bmatrix} = \\ T \leftarrow \bigcup_{C \in \mathsf{scc}}(M_{\phi}) \\ G \leftarrow T \\ \text{while } T \neq \emptyset \\ \text{choose } s \in T \\ T \leftarrow T - \{s\} \\ \text{for } t \in R_{\phi}.s \\ \text{if } t \notin G \\ G \leftarrow G \cup \{t\} \\ T \leftarrow T \cup \{t\} \\ \text{return } G$$

FAIRNESS

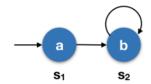
- A typical fairness constraint imposes arphi to be recurrently true
- This constraint cannot be expressed in CTL
- CTL semantics must be adapted to handle fairness

 $M \models \overline{\phi}$ iff $M \models \phi$ and ϕ is recurrently true in M

- To model check $\overline{EG\phi}$ it suffices to restrict the model to fair SCCs, namely those where ϕ is valid in some state
- Given that
 - A path is fair iff any of its suffixes is fair
 - ► $\overline{EG \top}$ holds in a state iff there is a fair path starting at that state to model check $\overline{\phi}$ EU $\overline{\psi}$ it suffices to check $\overline{\phi}$ EU ($\overline{\psi} \land \overline{EG \top}$) instead
- Similarly for the remaining operators

SYMBOLIC CTL MODEL CHECKING

SYMBOLIC REPRESENTATION OF THE KRIPKE STRUCTURE



$$I = a \land \neg b$$

$$R = (a \land \neg b \land \neg a' \land b') \lor (\neg a \land b \land \neg a' \land b')$$

18 / 24

PROPOSITIONAL CONNECTIVES

$$\llbracket p \rrbracket = p$$
$$\llbracket \top \rrbracket = \top$$
$$\llbracket \neg \phi \rrbracket = \neg \llbracket \phi \rrbracket$$
$$\llbracket \phi \lor \psi \rrbracket = \llbracket \phi \rrbracket \lor \llbracket \psi \rrbracket$$

ALWAYS

• From the EG expansion rule

$$\mathsf{EG}\,\phi\equiv\phi\wedge\mathsf{EX}(\mathsf{EG}\,\phi)$$

a greatest fixpoint algorithm can be directly obtained

```
\llbracket \mathsf{E}\mathsf{G} \phi \rrbracket = \mathsf{v}\mathsf{Z} \cdot \phi \land \llbracket \mathsf{E}\mathsf{X} \mathsf{Z} \rrbracket\llbracket \mathsf{E}\mathsf{G} \phi \rrbracket = \mathsf{G} \leftarrow \top
repeat
\mathsf{G}' \leftarrow \mathsf{G}
\mathsf{G} \leftarrow \llbracket \phi \rrbracket \land \llbracket \mathsf{E}\mathsf{X} \mathsf{G} \rrbracket
until \mathsf{G} \equiv \mathsf{G}'
return \mathsf{G}
```

UNTIL

• From the EU expansion rule

$$\phi \text{ EU } \psi \equiv \psi \lor (\phi \land \text{ EX}(\phi \text{ EU } \psi))$$

a smallest fixpoint algorithm can be directly obtained

```
\llbracket \phi \text{ EU } \psi \rrbracket = \mu Z \cdot \psi \lor (\phi \land \llbracket \text{EX } Z \rrbracket)\llbracket \phi \text{ EU } \psi \rrbracket = U \leftarrow \bot
repeat
U' \leftarrow UU \leftarrow \llbracket \psi \rrbracket \lor (\llbracket \phi \rrbracket \land \llbracket \text{EX } U \rrbracket)until U \equiv U'
return U
```

NEXT

- In symbolic model checking the transition relation *R* is a propositional formula with normal and primed (propositional) variables
- EX ϕ is valid in a state if there is some adjacent state where ϕ is valid

 $\llbracket \mathsf{EX}\,\phi \rrbracket = \exists \overline{x}' \cdot \mathsf{R} \land \llbracket \phi \rrbracket'$

- $[\![\phi]\!]'$ is the formula obtained from $[\![\phi]\!]$ by replacing all variables by the respective primed version
- The existential quantifier can be eliminated by expansion

$$\exists x \cdot \phi \equiv \phi[\top/x] \lor \phi[\bot/x]$$

$$R = (a \land \neg b \land \neg a' \land b') \lor (\neg a \land b \land \neg a' \land b')$$

$$\llbracket \mathsf{EX} b \rrbracket = \exists a', b' \cdot R \land b'$$

$$= \exists a', b' \cdot R$$

$$= \exists a' \cdot R[\top/b'] \lor R[\bot/b']$$

$$= \exists a' \cdot (a \land \neg b \land \neg a') \lor (\neg a \land b \land \neg a')$$

$$= (a \land \neg b) \lor (\neg a \land b)$$

$$\llbracket \mathsf{EX} a \rrbracket = \exists a', b' \cdot R \land a'$$

$$= \exists a', b' \cdot (a \land \neg b \land \neg a' \land b' \land a') \lor \dots$$

$$= \bot$$

FAIRNESS

• To model check EG ϕ under fairness constraint φ a different expansion rule (and fixpoint algorithm) is required

$$\overline{\mathsf{EG}\,\phi} \equiv \overline{\phi} \land \mathsf{EX}(\overline{\phi} \ \mathsf{EU} \ (\varphi \land \overline{\mathsf{EG}\,\phi}))$$

- Likewise to explicit model checking, to model check φ EU ψ symbolically it suffices to check φ EU (ψ ∧ EG ⊤) instead
- Similarly for the remaining operators

EFFICIENCY

- Symbolic model checking requires procedures to check the validity and equivalence of propositional formulas
- These can be implemented efficiently using SAT or Ordered Binary Decision Diagrams
- In most situations symbolic model checking is much faster then explicit model checking