Introduction to CBMC

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Arie Gurfinkel
November 19, 2012

based on slides by
Daniel Kroening

=== Software Engineering Institute | CarnegieMellon © 2012 Camegie Mellon Universiy

Bug Catching with SAT-Solvers

Main Idea: Given a program and a claim use a SAT-solver to find
whether there exists an execution that violates the claim.

Program > Analysis CNF SAT
—
Claim Engine Solver
SAT UNSAT
(counterexample exists) (no counterexample found)

Introduction to CBMC

; Software Engineering Institute | CarnegieMellon A Gurfinkel

© 2012 Carnegie Mellon University

Programs and Claims

- Arbitrary ANSI-C programs

« With bitvector arithmetic, dynamic memory, pointers, ...
- Simple Safety Claims

« Array bound checks (i.e., buffer overflow)

e Division by zero

« Pointer checks (i.e., NULL pointer dereference)

« Arithmetic overflow

o User supplied assertions (i.e., assert (i > 7J))

e etc

Introduction to CBMC

—= Software Engineering Institute | CarnegieMellon Ari Gurfinkel

© 2012 Carnegie Mellon University

Why use a SAT Solver?

- SAT Solvers are very efficient
- Analysis is completely automated
- Analysis as good as the underlying SAT solver

- Allows support for many features of a programming language

« bitwise operations, pointer arithmetic, dynamic memory, type casts

Introduction to CBMC

—= Software Engineering Institute | CarnegieMellon Ari Gurfinkel

© 2012 Carnegie Mellon University

A (very) simple example (1)

Program Constraints

int x; y =8,
int y=8,z=0,w=0; z=x7y-1:0, UNSAT
if (x) w=x?70:y+1, no counterexample

z =y - 1; z!=7, assertion always holds!
else w!=9

W=Y + 1; 4
assert (z == 7 ||

w == 9)
4

Introduction to CBMC

Software Engineering Institute ‘ CarnegieMellon Arie Gurfinkel

© 2012 Carnegie Mellon University

A (very) simple example (2)

Program Constraints

int x; y =8,
int y=8,z=0,w=0; z=x7y-1:0, SAT
if (x) w=x?70:y+1, counterexample found!

z =y - 1; z!=15,
else wl=9 y=8x=1,w=0,z=7

W=Y + 1; 4
assert (z == 5 ||

w == 9)
4

Introduction to CBMC

Software Engineering Institute ‘ CarnegieMellon Arie Gurfinkel

© 2012 Carnegie Mellon University

What about loops?!

- SAT Solver can only explore finite length executions!

- Loops must be bounded (i.e., the analysis is incomplete)

Program > Analysis CNF SAT
—

Claim Engine Solver

Bound (n) —T /\

SAT UNSAT

(counterexample exists) (no counterexample of

bound n is found)

Introduction to CBMC

; Software Engineering Institute | CarnegieMellon A Gurfinkel

© 2012 Carnegie Mellon University

CBMC: C Bounded Model Checker

- Developed at CMU by Daniel Kroening and Ed Clarke

- Available at: http://www.cprover.org/cbmc

« On Ubuntu: apt-get install cbmc

e With source code

- Supported platforms: Windows, Linux, OSX

- Has a command line, Eclipse CDT, and Visual Studio interfaces

- Scales to programs with over 30K LOC

- Found previously unknown bugs in MS Windows device drivers

Introduction to CBMC

—= Software Engineering Institute | CarnegieMellon Ari Gurfinkel

© 2012 Carnegie Mellon University

CBMC: Supported Language Features

ANSI-C is a low level language, not meant for verification
but for efficiency

Complex language features, such as

Bit vector operators (shifting, and, or,...)
Pointers, pointer arithmetic

Dynamic memory allocation: malloc/free
Dynamic data types: char s[n]

Side effects

float /double

Non-determinism

%% Software Engineering Institute | Carnegie Mellon

Introduction to CBMC
Arie Gurfinkel

© 2012 Carnegie Mellon University

—— Software Engineering Institute | Carnegie Mellon © 2012 Carnegle Melon University

Using CBMC from Command Line

- To see the list of claims

cbmc —--show-claims -I include file.c

- To check a single claim

cbmc —-—-unwind n —--claim x —I include file.c

- For help

« cbmc --help

Introduction to CBMC

; Software Engineering Institute | CarnegieMellon A Gurfinkel

© 2012 Carnegie Mellon University

How does it work

Transform a programs into a set of equations

1. Simplify control flow

2. Unwind all of the loops

3. Convert into Single Static Assignment (SSA)
4. Convert into equations

5. Bit-blast

6. Solve with a SAT Solver

7. Convert SAT assignment into a counterexample

Introduction to CBMC

; Software Engineering Institute | CarnegieMellon A Gurfinkel

© 2012 Carnegie Mellon University

CBMC: Bounded Model Checker for C

A tool by D. Kroening/Oxford and Ed Clarke/CMU

goto-
CP

rogram > Parser ———— > Static Analysis

l equations
SAFE
<————SAT solver€———— CNF-gen
l SAT
UNSAFE + CEX
<« CEX-gen CBMC

=== Software Engineering Institute

Carnegie Mellon

Introduction to CBMC
Arie Gurfinkel

© 2012 Carnegie Mellon University

Control Flow Simplifications

e All side effect are removed

e e.g., Jj=1i++becomes j=i;i=i+1

. Control Flow is made explicit

e continue, break replaced by goto

- All loops are simplified into one form

e for,do while replaced by while

Introduction to CBMC

—= Software Engineering Institute | CarnegieMellon Ari Gurfinkel

© 2012 Carnegie Mellon University

Loop Unwinding

- All loops are unwound

e can use different unwinding bounds for different loops

« to check whether unwinding is sufficient special “unwinding
assertion” claims are added

- If a program satisfies all of its claims and all unwinding
assertions then it is correct!

- Same for backward goto jumps and recursive functions

Introduction to CBMC

Software Engineering Institute ‘ CarnegieMellon Arie Gurfinkel

© 2012 Carnegie Mellon University

Loop Unwinding

void f(...) { while() loops are unwound
e iteratively
while(cond) { Break / continue replaced by
goto
}
Remainder;

}

‘ Introduction to CBMC

Sortware £ngineering institute | CarnegieMellon Arie Gurfinkel

© 2012 Carnegie Mellon University

Loop Unwinding

void f(...) { while() loops are unwound

e iteratively

if(cond) { Break / continue replaced by
goto

while(cond) {

}
}

Remainder;

‘ Introduction to CBMC

Sortware £ngineering institute | CarnegieMellon Arie Gurfinkel

© 2012 Carnegie Mellon University

Loop Unwinding

void f(...) { while() loops are unwound

e iteratively
if(cond) { Break / continue replaced by
goto

if(cond) {
while(cond) {

}
}
}

Remainder;

‘ Introduction to CBMC

Sortware £ngineering institute | CarnegieMellon Arie Gurfinkel

© 2012 Carnegie Mellon University

Unwinding assertion

void f(...) {
i(cond) {
if(cond) {
if(cond) {

while(cond) {

}
}

Remainder;

while() loops are unwound
iteratively

Break / continue replaced by
goto

Assertion inserted after last
iteration: violated if
program runs longer than
bound permits

Introduction to CBMC

Sortware £ngineering institute | CarnegieMellon Arie Gurfinkel

© 2012 Carnegie Mellon University

Unwinding assertion

void f(...) { while() loops are unwound
e iteratively
if(cond) { Break / continue replaced by
goto
if
A{EDIE)) | Assertion inserted after last
iteration: violated if
if(cond) {

program runs longer than
bound permits

assert(!cond); "
(); Positive correctness result!

Unwinding

} assertion

}

Remainder;

‘ Introduction to CBMC

Sortware £ngineering institute | CarnegieMellon Arie Gurfinkel

© 2012 Carnegie Mellon University

Example: Sufficient Loop Unwinding

void f(...) { void f(...) {
j=1 j=1
while (j <= 2) if(j <= 2) {
Remainder; if(j <= 2) {
! 7
if(j <= 2) {
unwind = 3 assert(!(J <= 2));
}
}
}
}
Remainder;
}

Software Engineering Institutl® [CArnegic ivienon it BTIRIE)

© 2012 Carnegie Mellon University

Example: Insufficient Loop Unwinding

void f(...) { void f(...) {
j=1 j=1
while (j <= 10) if(j <= 10) {
Remainder; if(j <= 10) {
! 7
if(j <= 10) {
unwind = 3 assert(!(j <= 10));
}
}
}
}
Remainder;
}

Software Engineering Institutl® [CArnegic ivienon it BTIRIE)

© 2012 Carnegie Mellon University

Transforming Loop-Free Programs Into Equations (1)

Easy to transform when every variable is only assigned once!

Program Constraints

X = a; X =a &&
y = X + 1; y=x+1&&
z =y — 1; jl> z=y—-1&&
4 /4

Introduction to CBMC

; Software Engineering Institute | CarnegieMellon A Gurfinkel

© 2012 Carnegie Mellon University

Transforming Loop-Free Programs Into Equations (2)

When a variable is assigned multiple times,

use a new variable for the RHS of each assignment

Program SSA Program
X=X+Y; X1=X0*yo0;
X=X*2; P X=X 1 %2,
ali]=100; ai1lip]=100;

/4 /4

Introduction to CBMC

; Software Engineering Institute | CarnegieMellon A Gurfinkel

© 2012 Carnegie Mellon University

What about conditionals?

Program SSA Program
if (v) if (vy)

X = Y Xo = Yo
else else

X = 7; P X, = 2, What should ‘X’

be?
W = X; W, = X727,
4 4

Introduction to CBMC

; Software Engineering Institute | CarnegieMellon A Gurfinkel

© 2012 Carnegie Mellon University

What about conditionals?

Program SSA Program
if (v) 1t (vy)
X =Y Xo T Yo;
else else
X = Z; p X, = Zj
X, = Vg ? X, X7
W = X; W, = X,
7 7

For each join point, add new variables with selectors

Introduction to CBMC

; Software Engineering Institute | CarnegieMellon A Gurfinkel

© 2012 Carnegie Mellon University

Adding Unbounded Arrays

_ _) ope) 1= p(a)
vala] = e P Va = AL { vo—1[7] : otherwise
Arrays are updated “whole array” at a time
A[1] = 5; A=Niti==175:A
A[2] = 10; A=hi:i==27210:A]
AlK] = 20: A=A i i==k?20:Ai]
SXAMPIEST Af21==10 AJMI=S5 AJ3]==Al3]

A;[2] == (k==2 7 20 : 10)
Uses only as much space as there are uses of the array!

Introduction to CBMC

Software Engineering Institute ‘ CarnegieMellon Arie Gurfinkel

© 2012 Carnegie Mellon University

Example

int main() {

int x, y;

y=38;

if (%)
A

else

i

y++;

)

assert
(y==7 ||
y:=9);

int main() {

int x, y;

y1=38;

if (xg)
yo=y1-1;

else

y3=y1t+1;

Y4= X0 7y2:y3;
assert

y1 = 3
yop =y1 — 1
y3 =y1 + 1

Ya =207Y2 : Y3)

(ya =7Vys =9)

4

Introduction to CBMC
Arie Gurfinkel

© 2012 Carnegie Mellon University

Pointers

While unwinding, record right hand side of assignments to pointers
This results in very precise points-to information

« Separate for each pointer

« Separate for each instance of each program location

Dereferencing operations are expanded into
case-split on pointer object (not: offset)

« Generate assertions on offset and on type

Pointer data type assumed to be part of bit-vector logic

« Consists of pair <object, offset>

Introduction to CBMC

—= Software Engineering Institute | CarnegieMellon Ari Gurfinkel

© 2012 Carnegie Mellon University

Pointer Typecast Example

void *p;
int 1;
char c;
int main (void) {
int inputl, intput2, z;
p = inputl ? (void*)&i : (void*) &c;
if (input2)
z = *(int*)p;

else

z = *(char*)p; } l;;7

Introduction to CBMC

Software Engineering Institute ‘ CarnegieMellon Arie Gurfinkel

© 2012 Carnegie Mellon University

Dynamic Objects

Dynamic Objects:
e malloc/ free

« Local variables of functions
Auxiliary variables for each dynamically allocated object:
« Size (number of elements)
« Active bit
« Type
malloc sets size (from parameter) and sets active bit

free asserts that active bit is set and clears bit

Same for local variables: active bit is cleared upon leaving the function

Introduction to CBMC

—= Software Engineering Institute | CarnegieMellon Ari Gurfinkel

© 2012 Carnegie Mellon University

Modeling with CBMC

=== Software Engineering Institute | CarnegieMellon © 2006 Camegie Mellon Universiy

From Programming to Modeling

Extend C programming language with 3 modeling features

Assertions
e assert(e) — aborts an execution when e is false, no-op otherwise

void assert (_Bool b) { if (!b) exit(); }
Non-determinism
e nondet_int() — returns a non-deterministic integer value

int nondet_int () { int x; return x; }

Assumptions
e assume(e) — “ignores” execution when e is false, no-op otherwise

void assume (_Bool e) { while (!e) ; }

© 2011 Carnegie Mellon Univers

Time-Bounded Verification

—== Software Engineering Institute ‘ CarnegieMellon ~ Gunkel Chaki Stichman

113

Example

int x, y;
void main (void)
{

X = nondet_int ();

assume (x > 10);
y = X + 1;

assert (y > x); possible overflow

} assertion fails

Time-Bounded Verification

=== Software Engineering Institute | CarnegieMellon Gurfnkel Chaki, Strichman

© 2011 Carnegie Mellon University

Using nondet for modeling

Library spec:

“foo is given non-deterministically, but is taken until returned”

CMBC stub:

int nondet_int ();
int is foo_taken = 0;
int grab_foo () {
if (!is_foo_taken)
is foo_taken = nondet_int ();

return is_foo taken; }

void return_foo ()

{ is_foo_taken = 0; }

y

Introduction to CBMC

Software Engineering Institute ’ CarnegieMellon Arie Gurfinkel

© 2012 Carnegie Mellon University

Assume-Guarantee Reasoning (1)

Is foo correct? int foo (int* p) { .. }

void main(void) {

Check by splitting
on the argument of foo(x);
foo

foo(y);

Introduction to CBMC

— Software Engineering Institute | Carnegie Mellon Arie Gurfinkel

© 2012 Carnegie Mellon University

Assume-Guarantee Reasoning (2)

(A) Is foo correct assuming p is not NULL?

int foo (int* p) { _ CPROVER assume(p!=NULL); .. } J

(G)ls foo guaranteed to be called with a non-NULL argument?

void main(void) {

assert (x!=NULL);// foo(x);

assert (y!=NULL); //foo(y);
o

Introduction to CBMC

— Software Engineering Institute ‘ Carnegie Mellon Arie Gurfinkel

© 2012 Carnegie Mellon University

Dangers of unrestricted assumptions

Assumptions can lead to vacuous satisfaction

This program is passed by CMBMC!

if (x > 90) {
__CPROVER _assume (x < 0);
assert (0); }

4

Assume must either be checked with assert or used as an idiom:

X = nondet_int ();
y = nondet_int ();
CPROVER_assume (x < y);

v

Introduction to CBMC

— Software Engineering Institute ’ Carnegie Mellon Arie Gurfinkel

© 2012 Carnegie Mellon University

Example: Prophecy variables

int x, y, v; v is a prophecy variable
?EOid main (void) it guesses the future value of y

v = nondet_int ();

X = V;

assume blocks executions with a

X =X + 1; wrong guess

y = nondet_int ();

assume (v == y);

assert (x ==y + 1); syntactically: x is changed before y
} semantically: x is changed affery

Time-Bounded Verification

=== Software Engineering Institute | CarnegieMellon Gurfnkel Chaki, Strichman

© 2011 Carnegie Mellon University

Context-Bounded Analysis
with CBMC

=== Software Engineering Institute | CarnegieMellon © 2012 Camegie Mellon Universiy

Context-Bounded Analysis (CBA)

Explore all executions of TWO threads that have at most R context-
switches (per thread)

T, | | | L |

Context-Swtich

(T, preempted by T,) Context-Swtich
(T, preempted by T,)

Context-Swtich

(T, preempted by T,)

Time-Bounded Verification

=== Software Engineering Institute | CarnegieMellon Gurinkel. Chaki Stichman

© 2011 Carnegie Mellon University

CBA via Sequentialization

1. Reduce concurrent program P to a sequential (non-deterministic)
program P’ such that “P has error” iff “P’ has error”

2. Check P’ with CBMC

Two-Thread Concurrent
Program in C Sequential Program

v M

UNSAFE +
K
CEX ©

Time-Bounded Verification

=== Software Engineering Institute | CarnegieMellon Gurinkel. Chaki Stichman

© 2011 Carnegie Mellon University

Key Idea

1. Divide execution into rounds

based on context switches

2. Execute executions of each context separately, starting from a

symbolic state

3. Run all parts of Thread 1 first, then all parts of Thread 2
4. Connect executions from Step 2 using assume-statements

| []

Round 0

Round 1 Round 2

=== Software Engineering Institute

Time-Bounded Verification

Cal'neg'ie Mell()n Gurfinkel, Chaki, Strichman

© 2011 Carnegie Mellon University

Sequentialization in Pictures

v [
9l0]] [|ol1]] | [9l2]
Tl Tl Tl
T2 T2
I R

Guess initial value of each global in each round

Execute task bodies

Check that initial value of round i+1 is the final value of round i

Introduction to CBMC

; Software Engineering Institute | CarnegieMellon A Gurfinkel

© 2011 Carnegie Mellon University

CBA Sequentialization in a Nutshel

Sequential Program for execution of R rounds (i.e., context switches):
1. for each global variable g, let g[r] be the value of g in round r
2. execute thread bodies sequentially
— first thread 1, then thread 2
— for global variables, use g[r] instead of g when running in round r
— non-deterministically decide where to context switch
— at a context switch jump to a new round (i.e., incr)
3. check that initial value of round r+1 is the final value of round r
4. check user assertions

o _— Time-Bounded Verification

== Software Engineering Institute | CarnegieMellon Gurine. Chaki Sticman

© 2011 Carnegie Mellon University

CBA Sequentialization 1/2

var
int round; // current round
int g[R], i_g[R]; // global and initial global
Bool saved assert = 1; // local assertions
void main () initShared ()
initShared (); for each global var g, g[@] = init_value (g);
initGlobals(); initGlobals ()
for r in [1,R): //for each round
for t in [O,N) : // for each thread for each global g: g[r] = i_g[r] = nondet();
round = 0;
T’t(); checkAssumtpions ()
. . for r in [@,R-1):
checkAssumpFlons (?, o e
checkAssertions (); assume (g[r] == i_g[r+1]);

checkAssertions ()
assert (saved_assert);

Time-Bounded Verification

=== Software Engineering Institute | CarnegieMellon Gurfnkel Chaki, Strichman

© 2011 Carnegie Mellon University

CBA Sequentialization: Task Body 2/2

void T’ ()
Same as T,, but each statement ‘st’ is replaced with:

contextSwitch (t); st[g < g[round]];
and ‘assert(e)’ is replaced with:

saved assert = e;

void contextSwitch ()
int oldRound;

if (nondet ()) return; // non-det do not context switch

oldRound = round;
round = nondet_int ();
assume (oldRound < round <= R-1);

For more details, see
Akash Lal and Tom Reps. “Reducing Concurrent Analysis Under a Context Bound to Sequential Analysis”,

in Proceedings of Computer Aided Verification, 2008.

Time-Bounded Verification

=== Software Engineering Institute | CarnegieMellon Gurfnkel Chaki, Strichman

© 2011 Carnegie Mellon University

—== Software Engineering Institute | Carnegie Mellon

Introduction to CBMC

; Software Engineering Institute | CarnegieMellon A Gurfinkel

© 2012 Carnegie Mellon University

