
© 2012 Carnegie Mellon University

Introduction to CBMC

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Arie Gurfinkel
November 19, 2012

based on slides by
Daniel Kroening

2

Introduction to CBMC
Arie Gurfinkel
© 2012 Carnegie Mellon University

Bug Catching with SAT-Solvers

Main Idea: Given a program and a claim use a SAT-solver to find
whether there exists an execution that violates the claim.

Program

Claim

Analysis

Engine

SAT

Solver

UNSAT

(no counterexample found)

SAT

(counterexample exists)

CNF

3

Introduction to CBMC
Arie Gurfinkel
© 2012 Carnegie Mellon University

Programs and Claims

•  Arbitrary ANSI-C programs

•  With bitvector arithmetic, dynamic memory, pointers, …

•  Simple Safety Claims

•  Array bound checks (i.e., buffer overflow)

•  Division by zero

•  Pointer checks (i.e., NULL pointer dereference)

•  Arithmetic overflow

•  User supplied assertions (i.e., assert (i > j))

•  etc

4

Introduction to CBMC
Arie Gurfinkel
© 2012 Carnegie Mellon University

Why use a SAT Solver?

•  SAT Solvers are very efficient

•  Analysis is completely automated

•  Analysis as good as the underlying SAT solver

•  Allows support for many features of a programming language

•  bitwise operations, pointer arithmetic, dynamic memory, type casts

5

Introduction to CBMC
Arie Gurfinkel
© 2012 Carnegie Mellon University

A (very) simple example (1)

int$x;$

int$y=8,z=0,w=0;$

if$(x)$$

$$z$=$y$–$1;$

else$

$$w$=$y$+$1;$

assert$(z$==7||$

$$$$$$$$w$==$9)$

y = 8,

z = x ? y – 1 : 0,

w = x ? 0 :y + 1,

z != 7,

w != 9

Program Constraints

UNSAT

no counterexample

assertion always holds!

6

Introduction to CBMC
Arie Gurfinkel
© 2012 Carnegie Mellon University

A (very) simple example (2)

int$x;$

int$y=8,z=0,w=0;$

if$(x)$$

$$z$=$y$–$1;$

else$

$$w$=$y$+$1;$

assert$(z$==5||$

$$$$$$$$w$==$9)$

y = 8,

z = x ? y – 1 : 0,

w = x ? 0 :y + 1,

z != 5,

w != 9

Program Constraints

SAT

counterexample found!

y = 8, x = 1, w = 0, z = 7

7

Introduction to CBMC
Arie Gurfinkel
© 2012 Carnegie Mellon University

What about loops?!

•  SAT Solver can only explore finite length executions!

•  Loops must be bounded (i.e., the analysis is incomplete)

 Program

Claim

Analysis

Engine

SAT

Solver

UNSAT

(no counterexample of

bound n is found)

SAT

(counterexample exists)

CNF

Bound (n)

8

Introduction to CBMC
Arie Gurfinkel
© 2012 Carnegie Mellon University

CBMC: C Bounded Model Checker

•  Developed at CMU by Daniel Kroening and Ed Clarke

•  Available at: http://www.cprover.org/cbmc

•  On Ubuntu: apt>get$install$cbmc$$

•  with$source$code

•  Supported platforms: Windows, Linux, OSX

•  Has a command line, Eclipse CDT, and Visual Studio interfaces

•  Scales to programs with over 30K LOC

•  Found previously unknown bugs in MS Windows device drivers

9

Introduction to CBMC
Arie Gurfinkel
© 2012 Carnegie Mellon University

CBMC: Supported Language Features

ANSI-C is a low level language, not meant for verification
but for efficiency

Complex language features, such as
•  Bit vector operators (shifting, and, or,…)

•  Pointers, pointer arithmetic

•  Dynamic memory allocation: malloc/free

•  Dynamic data types: char s[n]

•  Side effects

•  float / double

•  Non-determinism

© 2012 Carnegie Mellon University

DEMO

11

Introduction to CBMC
Arie Gurfinkel
© 2012 Carnegie Mellon University

Using CBMC from Command Line

•  To see the list of claims

 cbmc --show-claims -I include file.c

•  To check a single claim

 cbmc --unwind n --claim x –I include file.c

•  For help

•  cbmc --help

12

Introduction to CBMC
Arie Gurfinkel
© 2012 Carnegie Mellon University

How does it work

Transform a programs into a set of equations

1.  Simplify control flow

2.  Unwind all of the loops

3.  Convert into Single Static Assignment (SSA)

4.  Convert into equations

5.  Bit-blast

6.  Solve with a SAT Solver

7.  Convert SAT assignment into a counterexample

13

Introduction to CBMC
Arie Gurfinkel
© 2012 Carnegie Mellon University

CBMC: Bounded Model Checker for C
A tool by D. Kroening/Oxford and Ed Clarke/CMU

Parser Static Analysis

CNF-gen SAT solver

CEX-gen CBMC

C Program

SAFE

UNSAFE + CEX

SAT

UNSAT CNF

goto-
program

equations

14

Introduction to CBMC
Arie Gurfinkel
© 2012 Carnegie Mellon University

Control Flow Simplifications

  All side effect are removed
•  e.g., j=i++ becomes j=i;i=i+1

•  Control Flow is made explicit
•  continue, break replaced by goto

•  All loops are simplified into one form

•  for, do while replaced by while

15

Introduction to CBMC
Arie Gurfinkel
© 2012 Carnegie Mellon University

Loop Unwinding

•  All loops are unwound
•  can use different unwinding bounds for different loops

•  to check whether unwinding is sufficient special “unwinding
assertion” claims are added

•  If a program satisfies all of its claims and all unwinding
assertions then it is correct!

•  Same for backward goto jumps and recursive functions

16

Introduction to CBMC
Arie Gurfinkel
© 2012 Carnegie Mellon University

Loop Unwinding

while() loops are unwound
iteratively

Break / continue replaced by
goto

void$f(...)${$
$$...$
$$while(cond)${$
$$$$Body;(
$$}$
$$Remainder;$
}$

17

Introduction to CBMC
Arie Gurfinkel
© 2012 Carnegie Mellon University

Loop Unwinding

while() loops are unwound
iteratively

Break / continue replaced by
goto

void$f(...)${$
$$...$
$$if(cond)${$
$$$$Body;(
$$$$while(cond)${$
$$$$$$Body;(
$$$$}$
$$}$
$$Remainder;$
}$

18

Introduction to CBMC
Arie Gurfinkel
© 2012 Carnegie Mellon University

Loop Unwinding

while() loops are unwound
iteratively

Break / continue replaced by
goto

void$f(...)${$
$$...$
$$if(cond)${$
$$$$Body;(
$$$$if(cond)${$
$$$$$$Body;(
$$$$$$while(cond)${$
$$$$$$$$Body;(
$$$$$$}$
$$$$}$
$$}$
$$Remainder;$
}$

19

Introduction to CBMC
Arie Gurfinkel
© 2012 Carnegie Mellon University

Unwinding assertion

while() loops are unwound
iteratively

Break / continue replaced by
goto

Assertion inserted after last
iteration: violated if
program runs longer than
bound permits

void$f(...)${$
$$...$
$$if(cond)${$
$$$$Body;(
$$$$if(cond)${$
$$$$$$Body;(
$$$$$$if(cond)${$
$$$$$$$$Body;(
$$$$$$$$while(cond)${$
$$$$$$$$$$Body;(
$$$$$$$$}$
$$$$$$}$
$$$$}$
$$}$
$$Remainder;$
}$

20

Introduction to CBMC
Arie Gurfinkel
© 2012 Carnegie Mellon University

Unwinding assertion

while() loops are unwound
iteratively

Break / continue replaced by
goto

Assertion inserted after last
iteration: violated if
program runs longer than
bound permits

Positive correctness result!

void$f(...)${$
$$...$
$$if(cond)${$
$$$$Body;(
$$$$if(cond)${$
$$$$$$Body;(
$$$$$$if(cond)${$
$$$$$$$$Body;(
$$$$$$$$assert(!cond);$
$
$$$$$$$$}$
$$$$$$}$
$$$$}$
$$}$
$$Remainder;$
}$

Unwinding
assertion

21

Introduction to CBMC
Arie Gurfinkel
© 2012 Carnegie Mellon University

Example: Sufficient Loop Unwinding

void$f(...)${$
$$j$=$1$
$$if(j$<=$2)${$
$$$$j$=$j$+$1;$
$$$$if(j$<=$2)${$
$$$$$$j$=$j$+$1;$
$$$$$$if(j$<=$2)${$
$$$$$$$$j$=$j$+$1;$
$$$$$$$$assert(!(j$<=$2));$
$$$$$$$$}$
$$$$$$}$
$$$$}$
$$}$
$$Remainder;$
}$

void$f(...)${$
$$j$=$1$
$$while$(j$<=$2)$
$$$$j$=$j$+$1;$
$$Remainder;$
}$

unwind = 3

22

Introduction to CBMC
Arie Gurfinkel
© 2012 Carnegie Mellon University

Example: Insufficient Loop Unwinding

void$f(...)${$
$$j$=$1$
$$if(j$<=$10)${$
$$$$j$=$j$+$1;$
$$$$if(j$<=$10)${$
$$$$$$j$=$j$+$1;$
$$$$$$if(j$<=$10)${$
$$$$$$$$j$=$j$+$1;$
$$$$$$$$assert(!(j$<=$10));$
$$$$$$$$}$
$$$$$$}$
$$$$}$
$$}$
$$Remainder;$
}$

void$f(...)${$
$$j$=$1$
$$while$(j$<=$10)$
$$$$j$=$j$+$1;$
$$Remainder;$
}$

unwind = 3

23

Introduction to CBMC
Arie Gurfinkel
© 2012 Carnegie Mellon University

Transforming Loop-Free Programs Into Equations (1)

Easy to transform when every variable is only assigned once!

x = a;

y = x + 1;

z = y – 1;

Program Constraints

x = a &&

y = x + 1 &&

z = y – 1 &&

24

Introduction to CBMC
Arie Gurfinkel
© 2012 Carnegie Mellon University

Transforming Loop-Free Programs Into Equations (2)

When a variable is assigned multiple times,

use a new variable for the RHS of each assignment

Program SSA Program

25

Introduction to CBMC
Arie Gurfinkel
© 2012 Carnegie Mellon University

What about conditionals?

Program SSA Program

if (v)

 x = y;

else

 x = z;

w = x;

if (v0)

 x0 = y0;
else

 x1 = z0;

w1 = x??;

What should ‘x’
be?

26

Introduction to CBMC
Arie Gurfinkel
© 2012 Carnegie Mellon University

What about conditionals?

For each join point, add new variables with selectors

Program SSA Program

if (v)

 x = y;

else

 x = z;

w = x;

if (v0)

 x0 = y0;
else

 x1 = z0;

x2 = v0 ? x0 : x1;

w1 = x2

27

Introduction to CBMC
Arie Gurfinkel
© 2012 Carnegie Mellon University

Adding Unbounded Arrays

Arrays are updated “whole array” at a time

A[1] = 5;

A[2] = 10;

A[k] = 20;

A1=λ i : i == 1 ? 5 : A0[i]

A2=λ i : i == 2 ? 10 : A1[i]

A3=λ i : i == k ? 20 : A2[i]

Examples: A2[2] == 10 A2[1]==5 A2[3] == A0[3]

A3[2] == (k==2 ? 20 : 10)

Uses only as much space as there are uses of the array!

28

Introduction to CBMC
Arie Gurfinkel
© 2012 Carnegie Mellon University

Example

29

Introduction to CBMC
Arie Gurfinkel
© 2012 Carnegie Mellon University

Pointers

While unwinding, record right hand side of assignments to pointers

This results in very precise points-to information

•  Separate for each pointer

•  Separate for each instance of each program location

Dereferencing operations are expanded into
case-split on pointer object (not: offset)

•  Generate assertions on offset and on type

Pointer data type assumed to be part of bit-vector logic

•  Consists of pair <object, offset>

30

Introduction to CBMC
Arie Gurfinkel
© 2012 Carnegie Mellon University

Pointer Typecast Example

void$*p;$

int$i;$

char$c;$

int$main$(void)${$

$$int$input1,$intput2,$z;$

$$p$=$input1$?$(void*)&i$:$(void*)$&c;$

$$if$(input2)$

$$$$$z$=$*(int*)p;$

$$else$

$$$$$z$=$*(char*)p;$}$

31

Introduction to CBMC
Arie Gurfinkel
© 2012 Carnegie Mellon University

Dynamic Objects

Dynamic Objects:

•  malloc / free

•  Local variables of functions

Auxiliary variables for each dynamically allocated object:

•  Size (number of elements)

•  Active bit

•  Type

malloc sets size (from parameter) and sets active bit

free asserts that active bit is set and clears bit

Same for local variables: active bit is cleared upon leaving the function

© 2006 Carnegie Mellon University

Modeling with CBMC

33
Time-Bounded Verification
Gurfinkel, Chaki, Strichman

© 2011 Carnegie Mellon University

From Programming to Modeling

Extend C programming language with 3 modeling features

Assertions
•  assert(e) – aborts an execution when e is false, no-op otherwise

Non-determinism
•  nondet_int() – returns a non-deterministic integer value

Assumptions
•  assume(e) – “ignores” execution when e is false, no-op otherwise

void$assert$(_Bool$b)${if(!b)$$exit();$}$

int$nondet_int$()${$int$x;$return$x;$}$

void$assume$(_Bool$e)${$while$(!e)$;$$}$

34
Time-Bounded Verification
Gurfinkel, Chaki, Strichman

© 2011 Carnegie Mellon University

Example

int$x,$y;$
void$main$(void)$
{$
$$x$=$nondet_int$();$
$
$$assume$(x$>$10);$
$$y$=$x$+$1;$
$$$
$$assert$(y$>$x);$
}$

possible overflow

assertion fails

35

Introduction to CBMC
Arie Gurfinkel
© 2012 Carnegie Mellon University

Using nondet for modeling

Library spec:

 “foo is given non-deterministically, but is taken until returned”

CMBC stub:

 int$nondet_int$();$

intis_foo_taken=$0;$

int$grab_foo$()${$

$$if$(!is_foo_taken)$

$$$$is_foo_taken$=$nondet_int$();$

$$return$is_foo_taken;$}$

void$return_foo$()$

{is_foo_taken=$0;$}$

36

Introduction to CBMC
Arie Gurfinkel
© 2012 Carnegie Mellon University

Assume-Guarantee Reasoning (1)

Is foo correct? intfoo(int*$p)${$…$}$

void$main(void)${$

$$…$

$$foo(x);$

$$…$

$$foo(y);$

$$…$

}$

Check by splitting
on the argument of
foo$

37

Introduction to CBMC
Arie Gurfinkel
© 2012 Carnegie Mellon University

Assume-Guarantee Reasoning (2)

(A) Is foo correct assuming p is not NULL?

intfoo(int*$p)${$__CPROVER_assume(p!=NULL);$…$}$

(G)Is foo guaranteed to be called with a non-NULL argument?
void$main(void)${$

$$…$

$$assert$(x!=NULL);//$foo(x);$$$$$$$$$$$$

$$…$

$$assert$(y!=NULL);$//foo(y);$

$$…}$

38

Introduction to CBMC
Arie Gurfinkel
© 2012 Carnegie Mellon University

Dangers of unrestricted assumptions

Assumptions can lead to vacuous satisfaction

if$(x$>$0)${$

$$__CPROVER_assume$(x$<$0);$

$$assert$(0);$}$This program is passed by CMBMC!

Assume must either be checked with assert or used as an idiom:

x$=$nondet_int$();$

y$=$nondet_int$();$

__CPROVER_assume$(x$<$y);$

39
Time-Bounded Verification
Gurfinkel, Chaki, Strichman

© 2011 Carnegie Mellon University

Example: Prophecy variables

int$x,$y,$v;$
void$main$(void)$
{$
$$v$=$nondet_int$();$
$$x$=$v;$
$
$$x$=$x$+$1;$
$$y$=$nondet_int$();$
$$assume$(v$==$y);$
$
$$assert$(x$==y+$1);$$$

}$

v is a prophecy variable

it guesses the future value of y

assume blocks executions with a

wrong guess

syntactically: x is changed before y

semantically: x is changed after y

© 2012 Carnegie Mellon University

Context-Bounded Analysis
with CBMC

41
Time-Bounded Verification
Gurfinkel, Chaki, Strichman

© 2011 Carnegie Mellon University

Context-Bounded Analysis (CBA)

Explore all executions of TWO threads that have at most R context-
switches (per thread)

T1

T2

Context-Swtich

(T1 preempted by T2)

Context-Swtich

(T2 preempted by T1) Context-Swtich

(T1 preempted by T2)

42
Time-Bounded Verification
Gurfinkel, Chaki, Strichman

© 2011 Carnegie Mellon University

CBA via Sequentialization

1.  Reduce concurrent program P to a sequential (non-deterministic)
program P’ such that “P has error” iff “P’ has error”

2.  Check P’ with CBMC

Sequentialization CBMC

Two-Thread Concurrent
Program in C Sequential Program

OK UNSAFE +
CEX

43
Time-Bounded Verification
Gurfinkel, Chaki, Strichman

© 2011 Carnegie Mellon University

R

Key Idea

1.  Divide execution into rounds based on context switches
2.  Execute executions of each context separately, starting from a

symbolic state
3.  Run all parts of Thread 1 first, then all parts of Thread 2
4.  Connect executions from Step 2 using assume-statements

T1

T2

Round 0 Round 1 Round 2

44

Introduction to CBMC
Arie Gurfinkel
© 2011 Carnegie Mellon University

Sequentialization in Pictures

Guess initial value of each global in each round

Execute task bodies

•  T1!

•  T2

Check that initial value of round i+1 is the final value of round i

g[0] g[1] g[2]

T1!T1!T1!

T2! T2!

45
Time-Bounded Verification
Gurfinkel, Chaki, Strichman

© 2011 Carnegie Mellon University

CBA Sequentialization in a Nutshel

Sequential Program for execution of R rounds (i.e., context switches):
1.  for each global variable g, let g[r] be the value of g in round r
2.  execute thread bodies sequentially
–  first thread 1, then thread 2
–  for global variables, use g[r] instead of g when running in round r
–  non-deterministically decide where to context switch
–  at a context switch jump to a new round (i.e., inc r)

3.  check that initial value of round r+1 is the final value of round r
4.  check user assertions

46
Time-Bounded Verification
Gurfinkel, Chaki, Strichman

© 2011 Carnegie Mellon University

CBA Sequentialization 1/2

void$main(()$
$$initShared$();$
$$initGlobals();$
$
$$fortin$[0,N)$:$//$for$each$thread$
$$$$$$$round$=$0;$
$$$$$$$T’t();$
$$checkAssumptions$();$
$$checkAssertions$();$$

initShared$()$
foreach$global$var$g,$g[0]$=$init_value$(g);$

initGlobals$()$
$$forrin$[1,R):$//for$each$round$
$$$$for$each$global$g:$g[r]$=$i_g[r]$=$nondet();$

checkAssumtpions$()$
$$forrin$[0,R>1):$$
$$$$for$each$global$g:$
$$$$$$assume$(g[r]$==$i_g[r+1]);$$$

var$
((int$round;$$$$$$$$$$$$$$$$$$$$$$$//$current$round$
$$int$g[R],$i_g[R];$$$$$$$$$$$$$$$$//$global$and$initial$global$
$$Bool$saved_assert$=$1;$$$$$$$$$$$//$local$assertions$

checkAssertions$()$
$$assert$(saved_assert);(

47
Time-Bounded Verification
Gurfinkel, Chaki, Strichman

© 2011 Carnegie Mellon University

CBA Sequentialization: Task Body 2/2
void$T’t(()$
$$SameasTt,buteach$statement$‘st’isreplaced$with:$
$$$$$contextSwitch$(t);$st[g$←$g[round]];$
$$and$‘assert(e)’$is$replaced$with:$
$$$$$saved_assert$=$e;$

void$contextSwitch(()$
$$int$oldRound;$
$
$$if$(nondet$())$return;$$//$non>det$donotcontext$switch$
$
$$oldRound$=$round;$
$$round$=$nondet_int$();$
$$assume$(oldRound$<$round$<=$R>1);$

For more details, see

Akash Lal and Tom Reps. “Reducing Concurrent Analysis Under a Context Bound to Sequential Analysis”,

in Proceedings of Computer Aided Verification, 2008.

48

Introduction to CBMC
Arie Gurfinkel
© 2012 Carnegie Mellon University

