Deductive Program Verification with Why3

Jean-Christophe Filliâtre CNRS

EJCP

June 25, 2015
http://why3.lri.fr/ejcp-2015/

team VALS — http://vals.lri.fr/

team VALS — http://vals.lri.fr/

team VALS — http://vals.lri.fr/

Cirs

team VALS — http://vals.lri.fr/

 DE RECHERCHE in informatigue
centre de recherche SACLAY - ILE-DE.FRANCE

team VALS — http://vals.lri.fr/

 DE RECHERCHE in informatigue
centre de recherthe SACLAY - ILE-DE-FRANCE

Software is hard. - Don Knuth

why?

- wrong interpretation of specifications
- coding in a hurry
- incompatible changes
- software $=$ complex artifact
- etc.

a famous example: binary search

first publication in 1946
first publication without bug in 1962

Jon Bentley. Programming Pearls. 1986.

Writing correct programs
the challenge of binary search
Jon Bentley
in 2006, a bug was found in Java standard library's binary search
Joshua Bloch, Google Research Blog
"Nearly All Binary Searches and Mergesorts are Broken"
it had been there for 9 years

```
int mid = (low + high) / 2;
int midVal = a[mid];
```

may exceed the capacity of type int then provokes an access out of array bounds
a possible fix

$$
\text { int mid }=\text { low }+ \text { (high }- \text { low) / 2; }
$$

better programming languages

- better syntax

$$
\text { (e.g. avoid considering DO } 17 \mathrm{I}=1.10 \text { as an assignment) }
$$

- more typing
(e.g. avoid confusion between meters and yards)
- more warnings from the compiler (e.g. do not forget some cases)
- etc.
systematic and rigorous test is another, complementary answer
but test is
- costly
- sometimes difficult to perform
- and incomplete (except in some rare cases)

formal methods

formal methods propose a mathematical approach to software correctness
there are several aspects

- what we compute
- how we compute it
- why it is correct to compute it this way

what is a program?

the code is only one aspect ("how") and nothing else
"what" and "why" are not part of the code
there are informal requirements, comments, web pages, drawings, research articles, etc.

an example

- how: 2 lines of C
a[52514], b, c=52514,d,e,f=1e4,g,h;main()\{for(;b=c-=14;h=printf("\%04d", $e+d / f)$) for $(e=d \%=f ; g=--b * 2 ; d /=g) d=d * b+f *(h ? a[b]: f / 5), a[b]=d \%--g ;\}$

an example

- how: 2 lines of C

```
a[52514],b,c=52514,d,e,f=1e4,g,h;main(){for(;b=c-=14;h=printf("%04d",
e+d/f))for(e=d%=f;g=--b*2;d/=g)d=d*b+f*(h?a[b]:f/5),a[b]=d%--g;}
```

- what: 15,000 decimals of π
- why: lot of maths, including

$$
\pi=\sum_{i=0}^{\infty} \frac{(i!)^{2} 2^{i+1}}{(2 i+1)!}
$$

formal methods

formal methods propose a rigorous approach to programming, where we manipulate

- a specification written in some mathematical language
- a proof that the program satisfies this specification

specification

what do we intend to prove?

- safety: the program does not crash
- no illegal access to memory
- no illegal operation, such as division by zero
- termination
- functional correctness
- the program does what it is supposed to do

several approaches

model checking, abstract interpretation, etc.
this lecture introduces deductive verification

A. M. Turing. Checking a large routine. 1949.

Tony Hoare.
Proof of a program: FIND. Commun. ACM, 1971.

checking a large routine (Turing, 1949)

checking a large routine (Turing, 1949)

$$
\begin{aligned}
& u \leftarrow 1 \\
& \text { for } r=0 \text { to } n-1 \text { do } \\
& \qquad \quad v \leftarrow u \\
& \text { for } s=1 \text { to } r \text { do } \\
& \quad u \leftarrow u+v
\end{aligned}
$$

checking a large routine (Turing, 1949)

$$
\begin{aligned}
& \text { precondition }\{n \geq 0\} \\
& u \leftarrow 1 \\
& \text { for } r=0 \text { to } n-1 \text { do } \\
& \quad v \leftarrow u \\
& \quad \text { for } s=1 \text { to } r \text { do } \\
& \quad u \leftarrow u+v
\end{aligned}
$$

postcondition $\{u=\operatorname{fact}(n)\}$

checking a large routine (Turing, 1949)

precondition $\{n \geq 0\}$
$u \leftarrow 1$
for $r=0$ to $n-1$ do invariant $\{u=\operatorname{fact}(r)\}$
$v \leftarrow u$
for $s=1$ to r do invariant $\{u=s \times \operatorname{fact}(r)\}$

$$
u \leftarrow u+v
$$

postcondition $\{u=\operatorname{fact}(n)\}$

verification condition

```
function fact(int) : int
axiom fact0: fact(0) \(=1\)
axiom factn: \(\forall \mathrm{n}\) :int. \(\mathrm{n} \geq 1 \rightarrow \operatorname{fact}(\mathrm{n})=\mathrm{n} * \operatorname{fact}(\mathrm{n}-1)\)
goal vc: \(\forall \mathrm{n}\) :int. \(\mathrm{n} \geq 0 \rightarrow\)
    ( \(0>\mathrm{n}-1 \rightarrow 1=\mathrm{fact}(\mathrm{n})) \wedge\)
    ( \(0 \leq \mathrm{n}-1 \rightarrow\)
        \(1=\operatorname{fact}(0) \wedge\)
        ( \(\forall\) u:int.
            \((\forall \mathrm{r}\) :int. \(0 \leq \mathrm{r} \wedge \mathrm{r} \leq \mathrm{n}-1 \rightarrow \mathrm{u}=\mathrm{fact}(\mathrm{r}) \rightarrow\)
            \((1>r \rightarrow u=\operatorname{fact}(r+1)) \wedge\)
            \((1 \leq r \rightarrow\)
            \(\mathrm{u}=1 * \operatorname{fact}(\mathrm{r}) \wedge\)
            ( \(\forall\) u1:int.
            \((\forall \mathrm{s}:\) int. \(1 \leq \mathrm{s} \wedge \mathrm{s} \leq \mathrm{r} \rightarrow \mathrm{u} 1=\mathrm{s} * \operatorname{fact}(\mathrm{r}) \rightarrow\)
                ( \(\forall\) u2:int.
                \(\mathrm{u} 2=\mathrm{u} 1+\mathrm{u} \rightarrow \mathrm{u} 2=(\mathrm{s}+1) * \operatorname{fact}(\mathrm{r}))) \wedge\)
                \((u 1=(r+1) * f a c t(r) \rightarrow u 1=f a c t(r+1))))) \wedge\)
            \((u=\operatorname{fact}((n-1)+1) \rightarrow u=\operatorname{fact}(n))))\)
```


verification condition

```
function fact(int) : int
axiom fact0: fact(0) = 1
```

goal vc: $\forall \mathrm{n}$:int. $\mathrm{n} \geq 0 \rightarrow$
$(0>n-1 \rightarrow 1=\operatorname{fact}(n)) \wedge$
what do we do with this mathematical statement?
we could perform a manual proof (as Turing and Hoare did) but it is long, tedious, and error-prone
so we turn to tools that mechanize mathematical reasoning

automated theorem proving

it is not possible to implement such a program
(Turing/Church, 1936, from Gödel)
full employment theorem for mathematicians

automated theorem proving

examples: Z3, CVC4, Alt-Ergo, Vampire, SPASS, etc.
if we only intend to check a proof, this is decidable

examples: Coq, Isabelle, PVS, HOL Light, etc.

Why3, a tool for deductive verification

main idea: use as many theorem provers as possible (both automated and interactive)

- a programming language, WhyML
- polymorphism
- pattern-matching
- exceptions
- mutable data structures, with controlled aliasing
- a polymorphic logic
- algebraic data types
- recursive definitions
- (co)inductive predicates
http://why3.lri.fr/

three different ways of using Why3
- as a logical language (a convenient front-end to many theorem provers)
- as a programming language to prove algorithms (many examples in our gallery)
- as an intermediate language, to verify programs written in C, Java, Ada, etc.

some systems using Why3

Why3, bottom up

Part I

one logic to use them all

demo 1: the logic of Why3

logic of Why3 = polymorphic logic, with

- (mutually) recursive algebraic data types
- (mutually) recursive function/predicate symboles
- (mutually) (co)inductive predicates
- let-in, match-with, if-then-else
formal definition in
One Logic To Use Them All (CADE 2013)

declarations

- types
- abstract: type t
- alias: type $\mathrm{t}=$ list int
- algebraic: type list $\alpha=$ Nil | Cons α (list α)
- function / predicate
- uninterpreted: function f int : int
- defined: predicate non_empty (l: list α) $=1 \neq$ Nil
- inductive predicate
- inductive trans t t $=$...
- axiom / lemma / goal
- goal G: $\forall \mathrm{x}$: int. $\mathrm{x} \geq 0 \rightarrow \mathrm{x} * \mathrm{x} \geq 0$

theories

logic declarations organized in theories
a theory T_{1} can be

- used (use) in a theory T_{2}
- cloned (clone) in another theory T_{2}

theories

logic declarations organized in theories
a theory T_{1} can be

- used (use) in a theory T_{2}
- symbols of T_{1} are shared
- axioms of T_{1} remain axioms
- lemmas of T_{1} become axioms
- goals of T_{1} are ignored
- cloned (clone) in another theory T_{2}

theories

logic declarations organized in theories
a theory T_{1} can be

- used (use) in a theory T_{2}
- cloned (clone) in another theory T_{2}
- declarations of T_{1} are copied or substituted
- axioms of T_{1} remain axioms or become lemmas/goals
- lemmas of T_{1} become axioms

- goals of T_{1} are ignored

using theorem provers

there are many theorem provers

- SMT solvers: Alt-Ergo, Z3, CVC3, Yices, etc.
- TPTP provers: Vampire, Eprover, SPASS, etc.
- proof assistants: Coq, PVS, Isabelle, etc.
- dedicated provers, e.g. Gappa
we want to use all of them if possible
a technology to talk to provers
central concept: task
- a context (a list of declarations)
- a goal (a formula)

Alt-Ergo

Z3

Vampire

Alt-Ergo

Z3

Vampire

transformations

- eliminate algebraic data types and match-with
- eliminate inductive predicates
- eliminate if-then-else, let-in
- encode polymorphism, encode types
- etc.
efficient: results of transformations are memoized
a task journey is driven by a file
- transformations to apply
- prover's input format
- syntax
- predefined symbols / axioms
- prover's diagnostic messages
more details:
Expressing Polymorphic Types in a Many-Sorted Language (FroCos 2011)
Why3: Shepherd your herd of provers (Boogie 2011)

example: Z3 driver (excerpt)

```
printer "smtv2"
valid "^unsat"
invalid "`sat"
transformation "inline_trivial"
transformation "eliminate_builtin"
transformation "eliminate_definition"
transformation "eliminate_inductive"
transformation "eliminate_algebraic"
transformation "simplify_formula"
transformation "discriminate"
transformation "encoding_smt"
prelude "(set-logic AUFNIRA)"
theory BuiltIn
    syntax type int "Int"
    syntax type real "Real"
    syntax predicate (=) "(= %1 %2)"
    meta "encoding : kept" type int
end
```

Why3 has an OCaml API

- to build terms, declarations, theories, tasks
- to call provers
defensive API
- well-typed terms
- well-formed declarations, theories, and tasks

Why3 can be extended via three kinds of plug-ins

- parsers (new input formats)
- transformations (to be used in drivers)
- printers (to add support for new provers)

API and plug-ins

Your code

Why3 API

summary

- numerous theorem provers are supported
- SMT, TPTP, proof assistants, etc.
- user-extensible system
- input languages
- transformations
- output syntax
- proofs
- are preserved
- can be replayed
more details:
Preserving User Proofs Across Specification Changes (VSTTE 2013)

Part II

program verification

demo 2: an historical example

A. M. Turing. Checking a Large Routine. 1949.

demo 2: an historical example

A. M. Turing. Checking a Large Routine. 1949.

demo (access code)

demo 3: another historical example

$$
\begin{aligned}
f(n)= \begin{cases}n-10 & \text { si } n>100 \\
f(f(n+11)) & \text { sinon. }\end{cases} \\
\text { demo (access code) }
\end{aligned}
$$

demo 3: another historical example

$$
\begin{aligned}
& f(n)= \begin{cases}n-10 & \text { si } n>100, \\
f(f(n+11)) & \text { sinon. }\end{cases} \\
& \text { demo (access code) }
\end{aligned}
$$

$$
\begin{aligned}
& e \leftarrow 1 \\
& \text { while } e>0 \text { do } \\
& \text { if } n>100 \text { then } \\
& n \leftarrow n-10 \\
& e \quad \leftarrow e-1 \\
& \text { else } \\
& \qquad \begin{array}{l}
n \leftarrow n+11 \\
e
\end{array}+e+1
\end{aligned}
$$

demo (access code)

Recapitulation

- pre/postcondition

$$
\begin{aligned}
& \text { let foo x y } \mathrm{z} \\
& \text { requires }\{P\} \text { ensures }\{\mathrm{Q}\} \\
& \quad=\ldots
\end{aligned}
$$

- loop invariant

$$
\begin{aligned}
& \text { while ... do invariant }\{I\} \ldots \text { done } \\
& \text { for } i=\ldots \text { do invariant }\{I(i)\} \ldots \text { done }
\end{aligned}
$$

Recapitulation

termination of a loop (resp. a recursive function) is ensured by a variant

$$
\text { variant }\{t\} \text { with } R
$$

- R is a well-founded order relation
- t decreases for R at each step (resp. each recursive call)
by default, t is of type int and R is the relation

$$
y \prec x \stackrel{\text { def }}{=} y<x \wedge 0 \leq x
$$

as shown with function 91, proving termination may require to establish functional properties as well
another example:

- Floyd's cycle detection (tortoise and hare algorithm)
now, it's up to you
suggested exercises
- Euclidean division (exo_eucl_div.mlw)
- Factorial (exo_fact.mlw)
- Fast exponentiation (exo_power.mlw)

Part III

arrays

only one kind of mutable data structure:

records with mutable fields

for instance, references are defined this way
type ref $\alpha=\{$ mutable contents : $\alpha\}$
and ref, !, and $:=$ are regular functions
the library introduces arrays as follows:

```
type array }\alpha\mathrm{ model {
    length: int;
    mutable elts: map int }
}
```

where

- map is the logical type of purely applicative maps
- keyword model means type array α is an abstract data type in programs

operations on arrays

we cannot define operations over type array α
(it is abstract) but we can declare them
examples:

```
val ([]) (a: array \alpha) (i: int) : \alpha
    requires { 0 \leqi< length a }
    ensures { result = Map.get a.elts i }
val ([]\leftarrow) (a: array \alpha) (i: int) (v: \alpha) : unit
    requires {0\leqi< length a }
    writes { a.elts }
    ensures { a.elts = Map.set (old a.elts) i v }
```

and other operations such as create, append, sub, copy, etc.

arrays in the logic

when we write a[i] in the logic

- it is mere syntax for Map.get a.elts i
- we do not prove that i is within array bounds (a.elts is a map over all integers)

demo 4: Boyer-Moore's majority

given a multiset of N votes

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \text { A } & \text { A } & \text { A } & \text { C } & \text { C } & \text { B } & \text { B } & \text { C } & \text { C } & \text { C } & \text { B } & \text { C } & \text { C } \\
\hline
\end{array}
$$

determine the majority, if any

an elegant solution

due to Boyer \& Moore (1980)
linear time
uses only three variables

MJRTY-A Fast Majority Vote Algorithm'

Robert S. Boyer and J Strother Moore
Computer Sciences Department
University of Texas at Austin
and
Computational Logic, Inc. 1717 West Sixth Street, Suite 290

Austin, Texas

Abstract

A new algorithm is presented for determining which, if any, of an arbitrary number of candidates has received a majority of the votes cast in an election.

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \mathrm{A} & \mathrm{~A} & \mathrm{~A} & \mathrm{C} & \mathrm{C} & \mathrm{~B} & \mathrm{~B} & \mathrm{C} & \mathrm{C} & \mathrm{C} & \mathrm{~B} & \mathrm{C} & \mathrm{C} \\
\hline \uparrow & \\
\hline \uparrow & & & & & & & & & & \\
\hline
\end{array}
$$

$$
\begin{aligned}
\text { cand } & =\mathrm{A} \\
\mathrm{k} & =1
\end{aligned}
$$

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline A & A & A & C & C & B & B & C & C & C & B & C & C \\
\hline & \uparrow & & & & & & & & & \\
\hline
\end{array}
$$

$$
\begin{aligned}
\text { cand } & =\mathrm{A} \\
\mathrm{k} & =2
\end{aligned}
$$

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline A & A & A & C & C & B & B & C & C & C & B & C & C \\
\hline & & \uparrow & & & & & & & & \\
\hline
\end{array}
$$

$$
\begin{aligned}
\mathrm{cand} & =\mathrm{A} \\
\mathrm{k} & =3
\end{aligned}
$$

$$
\begin{aligned}
\text { cand } & =\mathrm{A} \\
\mathrm{k} & =2
\end{aligned}
$$

$$
\begin{aligned}
\text { cand } & =\mathrm{A} \\
\mathrm{k} & =1
\end{aligned}
$$

$$
\begin{aligned}
\text { cand } & =\mathrm{A} \\
\mathrm{k} & =0
\end{aligned}
$$

$$
\begin{aligned}
\text { cand } & =\mathrm{B} \\
\mathrm{k} & =1
\end{aligned}
$$

$$
\begin{aligned}
\text { cand } & =B \\
\mathrm{k} & =0
\end{aligned}
$$

$$
\begin{aligned}
\text { cand } & =\mathrm{C} \\
\mathrm{k} & =1
\end{aligned}
$$

$$
\begin{aligned}
\text { cand } & =\mathrm{C} \\
\mathrm{k} & =2
\end{aligned}
$$

$$
\begin{aligned}
\text { cand } & =\mathrm{C} \\
\mathrm{k} & =1
\end{aligned}
$$

$$
\begin{aligned}
\text { cand } & =\mathrm{C} \\
\mathrm{k} & =2
\end{aligned}
$$

$$
\begin{aligned}
\text { cand } & =\mathrm{C} \\
\mathrm{k} & =3
\end{aligned}
$$

$$
\begin{aligned}
\text { cand } & =\mathrm{C} \\
\mathrm{k} & =3
\end{aligned}
$$

then we check if C indeed has majority, with a second pass (in that case, it has: $7>13 / 2$)

Fortran

```
SUBROUTINE MJRTY(A, N, BOOLE, CAND)
INTEGER N
INTEGER A
LOGICAL BOOLE
INTEGER CAND
INTEGER I
INTEGER K
DIMENSION A(N)
K = 0
THE FOLLOWING DO IMPLEMENTS THE PAIRING PHASE. CAND IS
THE CURRENTLY LEADING CANDIDATE AND K IS THE NUMBER OF
UNPAIRED VOTES FOR CAND.
DO 100 I = 1, N
IF ((K .EQ. O)) GOTO 50
IF ((CAND .EQ. A(I))) COTO 75
K = (K - 1)
GOTO 100
CAND = A (I)
K=1
GOTO 100
75 K = (K + 1)
100 CONTINUE
IF ((K .EQ. O)) GOTO 300
BOOLE = .TRUE.
IF ((K .GT. (IN/2))) RETURN
WE NOW ENTER THE COUNTING PHASE. BOOLE IS SET TO TRUE
IN ANTICIPATION OF FINDING CAND IN THE MAJORITY. K IS
USED AS THE RUNNING TALLY FOR CAND. WE EXIT AS SOON
AS K EXCEEDS N/2.
K = O
DO 200 I = 1, N
IF ((CAMD .NE. A(I))) GOTO 200
K = (K + 1)
IF ((K .GT. (N/2))) RETURN
CONTINUE
BOOLE = .FALSE
RETURN
END
```

```
let mjrty (a: array candidate) =
    let n = length a in
    let cand = ref a[0] in let k = ref 0 in
    for i = 0 to n-1 do
        if !k = 0 then begin cand := a[i]; k := 1 end
        else if !cand = a[i] then incr k else decr k
    done;
    if !k = O then raise Not_found;
    try
        if 2 * !k > n then raise Found; k := 0;
        for i = 0 to n-1 do
            if a[i] = !cand then begin
            incr k; if 2 * !k > n then raise Found
        end
        done;
        raise Not_found
    with Found }
        !cand
    end
```

- precondition

$$
\begin{aligned}
& \text { let mjrty (a: array candidate) } \\
& \text { requires }\{1 \leq \text { length a }\}
\end{aligned}
$$

- postcondition in case of success
ensures

$$
\{2 * \text { numeq a result } 0 \text { (length a) }>\text { length a }\}
$$

- postcondition in case of failure
raises \{ Not_found \rightarrow
$\forall c:$ candidate.
2 * numeq a c 0 (length a) \leq length a $\}$

loop invariants

first loop

```
for i = 0 to n-1 do
    invariant { 0 \leq !k \leq numeq a !cand 0 i }
    invariant { 2 * (numeq a !cand 0 i - !k) \leq i - !k }
    invariant { \forall c: candidate. c }\not=!\mathrm{ !cand }
    2* numeq a c 0 i < i - !k }
```

second loop

```
for i = 0 to n-1 do
    invariant { !k = numeq a !cand 0 i }
    invariant { 2* !k \leq n }
```


verification conditions express

- safety
- access within array bounds
- termination
- user annotations
- loop invariants are initialized and preserved
- postconditions are established
fully automated proof

extraction to OCaml

WhyML code can be translated to OCaml code why3 extract -D ocaml64 -D mjrty -T mjrty.Mjrty -o .
two drivers used here

- a library driver for 64-bit OCaml (maps type int to Zarith, type array to OCaml's arrays, etc.)
- a custom driver for this example, namely
module mjrty.Mjrty
syntax type candidate "char"
end

extraction to OCaml

then we can link extracted code with hand-written code ocamlopt ... zarith.cmxa why3extract.cmxa
mjrty__Mjrty.ml test_mjrty.ml

exercise: two-way sort

sort an array of Boolean, using the following algorithm

```
let two_way_sort (a: array bool) =
    let i = ref O in
    let j = ref (length a - 1) in
    while !i < !j do
    if not a[!i] then
        incr i
    else if a[!j] then
        decr j
    else begin
        let tmp = a[!i] in
        a[!i] \leftarrow a[!j];
        a[!j] \leftarrow tmp;
        incr i;
        decr j exercise: exo_two_way.mlw
        end
    done
```


exercise: Dutch national flag

an array contains elements of the following enumerated type

$$
\text { type color }=\text { Blue | White | Red }
$$

sort it, in such a way we have the following final situation:

$$
\begin{array}{|l|l|l|}
\hline \ldots \text {. Blue ... } & \text {.. White Red ... } \\
\hline
\end{array}
$$

exercise: Dutch national flag

```
let dutch_flag (a:array color) (n:int) =
    let b = ref 0 in
    let i = ref 0 in
    let r = ref n in
    while !i < !r do
            match a[!i] with
            | Blue }
            swap a !b !i;
            incr b;
            incr i
            | White }
            incr i
            | Red }
                decr r;
                swap a !r !i
            end
    done
\begin{tabular}{|c|c|c|c|}
\hline Blue & White & \(\ldots\) & Red \\
\hline & \(\uparrow\) & \(\uparrow\) & \(\uparrow\) \\
\hline & ! b & ! i & ! r \\
\hline
\end{tabular}
                            exercise: exo_flag.mlw
```


Part IV

specifying / implementing a data structure

example

say we want to implement a queue with bounded capacity
type queue α
val create: int \rightarrow queue α
val push: $\alpha \rightarrow$ queue $\alpha \rightarrow$ unit
val pop: queue $\alpha \rightarrow \alpha$

ring buffer

it can be implemented with an array

$$
\begin{aligned}
& \text { type buffer } \alpha=\{ \\
& \text { mutable first: int; } \\
& \text { mutable len }: \text { int; } \\
& \text { data : array } \alpha \text {; }
\end{aligned}
$$

\}
len elements are stored, starting at index first

they may wrap around the array bounds

to give a specification to queue operations, we would like to model the queue contents, say, as a sequence of elements
one way to do it is to use ghost code

ghost code

may be inserted for the purpose of specification and/or proof
rules are:

- ghost code may read regular data (but can't modify it)
- ghost code cannot modify the control flow of regular code
- regular code does not see ghost data
in particular, ghost code can be removed without observable modification (and is removed during OCaml extraction)

ghost field

we add two ghost fields to model the queue contents

```
type queue \alpha={
    ghost capacity: int;
    ghost mutable sequence: Seq.seq }\alpha\mathrm{ ;
}
```


ghost field

then we use them in specifications

```
val create (n: int) (dummy: \alpha) : queue \alpha
    requires { n > 0 }
    ensures { result.capacity = n }
    ensures { result.sequence = Seq.empty }
val push (q: queue \alpha) (x: \alpha) : unit
    requires { Seq.length q.sequence < q.capacity }
    writes { q.sequence }
    ensures { q.sequence = Seq.snoc (old q.sequence) x }
val pop (q: queue \alpha) : \alpha
    requires { Seq.length q.sequence > 0 }
    writes { q.sequence }
    ensures { result = (old q.sequence)[0] }
    ensures { q.sequence = (old q.sequence)[1 ..] }
```


abstraction

we are already able to prove some client code using the queue
let harness () =
let $\mathrm{q}=$ create 100 in
push q 1;
push q 2 ;
push q 3;
let $\mathrm{x}=\mathrm{pop} \mathrm{q}$ in assert $\{\mathrm{x}=1\}$;
let $\mathrm{x}=\mathrm{pop} \mathrm{q}$ in assert $\{\mathrm{x}=2\}$;
let $\mathrm{x}=\mathrm{pop} \mathrm{q}$ in assert $\{\mathrm{x}=3\}$;
()

gluing invariant

we link the regular fields and the ghost fields with a type invariant

```
type buffer \alpha =
invariant {
    self.capacity = Array.length self.data ^
    0 \leq self.first < self.capacity ^
    0
    self.len = Seq.length self.sequence ^
    i: int. 0 \leq i < self.len }
        (self.first + i < self.capacity }
            Seq.get self.sequence i = self.data[self.first + i]) ^
            (0 \leq self.first + i - self.capacity }
            Seq.get self.sequence i = self.data[self.first + i
                                    - self.capacity])
```

)

semantics

such a type invariant holds at function boundaries
thus

- it is assumed at function entry
- it must be ensured
- when a function is called
- at function exit, for values returned or modified
ghost code is added to set ghost fields accordingly
example:

```
let push (b: buffer \(\alpha\) ) (x: \(\alpha\) ) : unit
    ghost b.sequence \(\leftarrow\) Seq.snoc b.sequence \(x\);
    let \(\mathrm{i}=\mathrm{b} . \mathrm{first}+\mathrm{b} . l \mathrm{len}\) in
    let \(\mathrm{n}=\) Array.length b.data in
    b.data[if \(\mathrm{i} \geq \mathrm{n}\) then \(\mathrm{i}-\mathrm{n}\) else i\(] \leftarrow \mathrm{x}\);
    b.len \(\leftarrow \mathrm{b} .1 \mathrm{en}+1\)
```


exercise: ring buffer

implement other operations

- length
- clear
- head
on ring buffers and prove them correct

Part V

purely applicative programming

other data structures

a key idea of Hoare logic:

> any types and symbols from the logic can be used in programs
note: we already used type int this way

algebraic data types

we can do so with algebraic data types
in the library, we find
type bool = True | False
type option $\alpha=$ None | Some α
type list $\alpha=$ Nil | Cons α (list α)
(in bool.Bool)
(in option.Option)
(in list.List)
let us consider binary trees

```
type elt
```

type tree $=$
| Empty
| Node tree elt tree
and the following problem

same fringe

given two binary trees, do they contain the same elements when traversed in order?

specification

```
function elements (t: tree) : list elt = match t with
    | Empty }->\mathrm{ Nil
    | Node l x r }->\mathrm{ elements l ++ Cons x (elements r)
end
let same_fringe (t1 t2: tree) : bool
    ensures {result=True }\leftrightarrow\mathrm{ elements t1 = elements t2 }
    =
    ...
```


a solution

one solution: look at the left branch as
a list, from bottom up

a solution

one solution: look at the left branch as a list, from bottom up

demo (access code)

exercise: inorder traversal

type elt
type tree $=$ Null | Node tree elt tree
inorder traversal of t, storing its elements in array a

```
let rec fill (t: tree) (a: array elt) (start: int) : int =
    match t with
    | Null }
        start
    | Node l x r }
        let res = fill l a start in
        if res }=\mathrm{ length a then begin
        a[res] \leftarrow x;
        fill r a (res + 1)
        end else
            res
    end
```


Part VI

machine arithmetic

machine arithmetic

let us model signed 32-bit arithmetic
two possibilities:

- ensure absence of arithmetic overflow
- model machine arithmetic faithfully (i.e. with overflows)
a constraint:
we do not want to loose arithmetic capabilities of SMT solvers

32-bit arithmetic

we introduce a new type for 32-bit integers
type int32
its integer value is given by
function toint int32 : int
main idea: within annotations, we only use type int (thus a program variable x : int32 always appears as toint x in annotations)

32-bit arithmetic

we define the range of 32 -bit integers

```
function min_int: int = - 0x8000_0000 (* -2^31
function max_int: int = 0x7FFF_FFFF (* 2^31-1 *)
```

when we use them...

```
axiom int32_domain:
    |}\mathrm{ : int32. min_int }\leq\mathrm{ toint }\textrm{x}\leq\mathrm{ max_int
```

... and when we build them

```
val ofint (x: int) : int32
    requires { min_int }\leq\textrm{x}\leqmax_int 
    ensures { toint result = x }
```


32-bit arithmetic

then each program expression such as

$$
x+y
$$

is translated into

$$
\text { ofint (toint } x) \text { (toint } y \text {) }
$$

this ensures the absence of arithmetic overflow
(but we get a large number of additional verification conditions)

binary search

let us consider searching for a value in a sorted array using binary search
let us show the absence of arithmetic overflow
demo (access code)
we found a bug
the computation

$$
\text { let } m=(!1+!u) / 2 \text { in }
$$

may provoke an arithmetic overflow
(for instance with a 2-billion elements array)
a possible fix is

$$
\text { let } m=!1+(!u-!1) / 2 \text { in }
$$

conclusion

three different ways of using Why3

- as a logical language
(a convenient front-end to many theorem provers)
- as a programming language to prove algorithms (currently 120 examples in our gallery)
- as an intermediate language (for the verification of C, Java, Ada, etc.)

things not covered in this lecture

- how aliases are controlled
- how verification conditions are computed
- how formulas are sent to provers
- how pointers/heap are modeled
- how floating-point arithmetic is modeled
- etc.
see http://why3.lri.fr for more details

