
Deductive Program Verification with Why3

Jean-Christophe Filliâtre
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Software is hard. – Don Knuth

why?

• wrong interpretation of specifications

• coding in a hurry

• incompatible changes

• software = complex artifact

• etc.
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a famous example: binary search

first publication in 1946
first publication without bug in 1962

Jon Bentley. Programming Pearls.
1986.

Writing correct programs

the challenge of binary search

and yet...
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and yet

in 2006, a bug was found in Java standard library’s binary search

Joshua Bloch, Google Research Blog
“Nearly All Binary Searches and Mergesorts are Broken”

it had been there for 9 years
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the bug

...

int mid = (low + high) / 2;

int midVal = a[mid];

...

may exceed the capacity of type int

then provokes an access out of array bounds

a possible fix

int mid = low + (high - low) / 2;
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what can we do?

better programming languages

• better syntax
(e.g. avoid considering DO 17 I = 1. 10 as an assignment)

• more typing
(e.g. avoid confusion between meters and yards)

• more warnings from the compiler
(e.g. do not forget some cases)

• etc.
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test

systematic and rigorous test is another, complementary answer

but test is

• costly

• sometimes difficult to perform

• and incomplete (except in some rare cases)
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formal methods

formal methods propose a mathematical approach to software
correctness
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what is a program?

there are several aspects

• what we compute

• how we compute it

• why it is correct to compute it this way
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what is a program?

the code is only one aspect (“how”) and nothing else

“what” and “why” are not part of the code

there are informal requirements, comments, web pages, drawings,
research articles, etc.
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an example

• how: 2 lines of C

a[52514],b,c=52514,d,e,f=1e4,g,h;main(){for(;b=c-=14;h=printf("%04d",

e+d/f))for(e=d%=f;g=--b*2;d/=g)d=d*b+f*(h?a[b]:f/5),a[b]=d%--g;}

• what: 15,000 decimals of π

• why: lot of maths, including

π =
∞∑
i=0

(i !)2 2i+1

(2i + 1)!
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formal methods

formal methods propose a rigorous approach to programming,
where we manipulate

• a specification written in some mathematical language

• a proof that the program satisfies this specification
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specification

what do we intend to prove?

• safety: the program does not crash
• no illegal access to memory
• no illegal operation, such as division by zero
• termination

• functional correctness
• the program does what it is supposed to do
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several approaches

model checking, abstract interpretation, etc.

this lecture introduces deductive verification

program
+

specification

verification
conditions

proof
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this is not new

A. M. Turing. Checking a large routine. 1949.

STOP

r′ = 1
u′ = 1 v′ = u TEST r − n s′ = 1 u′ = u + v s′ = s + 1

r′ = r + 1 TEST s − r

21 / 130



this is not new

Tony Hoare.
Proof of a program: FIND.
Commun. ACM, 1971.

k

≤ v v ≥ v
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checking a large routine (Turing, 1949)

STOP

r′ = 1
u′ = 1 v′ = u TEST r − n s′ = 1 u′ = u + v s′ = s + 1

r′ = r + 1 TEST s − r

u ← 1
for r = 0 to n − 1 do

v ← u
for s = 1 to r do

u ← u + v
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checking a large routine (Turing, 1949)

STOP

r′ = 1
u′ = 1 v′ = u TEST r − n s′ = 1 u′ = u + v s′ = s + 1
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checking a large routine (Turing, 1949)

STOP

r′ = 1
u′ = 1 v′ = u TEST r − n s′ = 1 u′ = u + v s′ = s + 1

r′ = r + 1 TEST s − r

precondition {n ≥ 0}
u ← 1
for r = 0 to n − 1 do

v ← u
for s = 1 to r do

u ← u + v
postcondition {u = fact(n)}
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checking a large routine (Turing, 1949)

STOP

r′ = 1
u′ = 1 v′ = u TEST r − n s′ = 1 u′ = u + v s′ = s + 1

r′ = r + 1 TEST s − r

precondition {n ≥ 0}
u ← 1
for r = 0 to n − 1 do invariant {u = fact(r)}

v ← u
for s = 1 to r do invariant {u = s × fact(r)}

u ← u + v
postcondition {u = fact(n)}
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verification condition

function fact(int) : int

axiom fact0: fact(0) = 1

axiom factn: ∀ n:int. n ≥ 1 → fact(n) = n * fact(n-1)

goal vc: ∀ n:int. n ≥ 0 →
(0 > n - 1 → 1 = fact(n)) ∧
(0 ≤ n - 1 →

1 = fact(0) ∧
(∀ u:int.

(∀ r:int. 0 ≤ r ∧ r ≤ n - 1 → u = fact(r) →
(1 > r → u = fact(r + 1)) ∧
(1 ≤ r →
u = 1 * fact(r) ∧
(∀ u1:int.

(∀ s:int. 1 ≤ s ∧ s ≤ r → u1 = s * fact(r) →
(∀ u2:int.

u2 = u1 + u → u2 = (s + 1) * fact(r))) ∧
(u1 = (r + 1) * fact(r) → u1 = fact(r + 1))))) ∧

(u = fact((n - 1) + 1) → u = fact(n))))
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verification condition

function fact(int) : int

axiom fact0: fact(0) = 1

goal vc: ∀ n:int. n ≥ 0 →
(0 > n - 1 → 1 = fact(n)) ∧
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and then

what do we do with this mathematical statement?

we could perform a manual proof (as Turing and Hoare did)
but it is long, tedious, and error-prone

so we turn to tools that mechanize mathematical reasoning
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automated theorem proving

mathematical
statement

automated
prover

true

false
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no hope

it is not possible to implement such a
program
(Turing/Church, 1936, from Gödel)

full employment theorem for
mathematicians

Kurt Gödel

31 / 130



automated theorem proving

mathematical
statement

automated
prover

true

false

I don’t know

loops forever

examples: Z3, CVC4, Alt-Ergo, Vampire, SPASS, etc.
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interactive theorem proving

if we only intend to check a proof, this is decidable

mathematical
statement

proof

proof
assistant

true

false

examples: Coq, Isabelle, PVS, HOL Light, etc.
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Why3, a tool for deductive verification

main idea: use as many theorem provers as possible
(both automated and interactive)

program
+

property

mathematical
statement

prover 1

prover 2

prover 3

...
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Why3 in a nutshell

• a programming language, WhyML
• polymorphism
• pattern-matching
• exceptions
• mutable data structures,

with controlled aliasing

• a polymorphic logic
• algebraic data types
• recursive definitions
• (co)inductive predicates

http://why3.lri.fr/

file.why

file.mlw

WhyML

VCgen

Why

transform/translate

print/run

Coq Alt-Ergo CVC3 Z3 etc.
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applications

three different ways of using Why3

• as a logical language
(a convenient front-end to many theorem provers)

• as a programming language to prove algorithms
(many examples in our gallery)

• as an intermediate language,
to verify programs written in C, Java, Ada, etc.
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some systems using Why3

GNATprove

Krakatoa

Frama-C

Jessie

WP

Easycrypt

Why3

WhyML logic proof assistants

SMT solvers

ATP systems

other provers

Ada

Java

C

prob.
pgms
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Why3, bottom up

file.why

file.mlw

WhyML

VCgen

Why

transform/translate

print/run

Coq Alt-Ergo CVC3 Z3 etc.
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Part I

one logic to use them all
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demo 1: the logic of Why3
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summary

logic of Why3 = polymorphic logic, with

• (mutually) recursive algebraic data types

• (mutually) recursive function/predicate symboles

• (mutually) (co)inductive predicates

• let-in, match-with, if-then-else

formal definition in
One Logic To Use Them All (CADE 2013)
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declarations

• types
• abstract: type t
• alias: type t = list int
• algebraic: type list α = Nil | Cons α (list α)

• function / predicate
• uninterpreted: function f int : int
• defined: predicate non empty (l: list α) = l 6= Nil

• inductive predicate
• inductive trans t t = ...

• axiom / lemma / goal
• goal G: ∀ x: int. x ≥ 0 → x*x ≥ 0
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theories

logic declarations organized in theories

a theory T1 can be

• used (use) in a theory T2

• cloned (clone) in another theory T2

theory

end

theory

end

theory

end
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theories

logic declarations organized in theories

a theory T1 can be

• used (use) in a theory T2

• symbols of T1 are shared
• axioms of T1 remain axioms
• lemmas of T1 become axioms
• goals of T1 are ignored

• cloned (clone) in another theory T2

theory

end

theory

end

theory

end
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theories

logic declarations organized in theories

a theory T1 can be

• used (use) in a theory T2

• cloned (clone) in another theory T2

• declarations of T1 are copied or substituted
• axioms of T1 remain axioms or become

lemmas/goals
• lemmas of T1 become axioms
• goals of T1 are ignored

theory

end

theory

end

theory

end
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using theorem provers

there are many theorem provers

• SMT solvers: Alt-Ergo, Z3, CVC3, Yices, etc.

• TPTP provers: Vampire, Eprover, SPASS, etc.

• proof assistants: Coq, PVS, Isabelle, etc.

• dedicated provers, e.g. Gappa

we want to use all of them if possible
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under the hood

a technology to talk to provers

central concept: task

• a context (a list of declarations)

• a goal (a formula) goal
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workflow

theory

end

theory

end

theory

end

Alt-Ergo

Z3

Vampire
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workflow

theory

end

theory

end

theory

end

goal

Alt-Ergo

Z3

Vampire
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workflow

theory

end

theory

end

theory

end

goal goal

Alt-Ergo

Z3

Vampire

T1
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workflow

theory

end

theory

end

theory

end

goal goal goal

Alt-Ergo

Z3

Vampire

T1 T2
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workflow

theory

end

theory

end

theory

end

goal goal goal

Alt-Ergo

Z3

Vampire

T1 T2 P

52 / 130



transformations

• eliminate algebraic data types and match-with

• eliminate inductive predicates

• eliminate if-then-else, let-in

• encode polymorphism, encode types

• etc.

efficient: results of transformations are memoized
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driver

a task journey is driven by a file

• transformations to apply

• prover’s input format
• syntax
• predefined symbols / axioms

• prover’s diagnostic messages

more details:
Expressing Polymorphic Types in a Many-Sorted Language (FroCos 2011)

Why3: Shepherd your herd of provers (Boogie 2011)
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example: Z3 driver (excerpt)

printer "smtv2"

valid "^unsat"

invalid "^sat"

transformation "inline trivial"

transformation "eliminate builtin"

transformation "eliminate definition"

transformation "eliminate inductive"

transformation "eliminate algebraic"

transformation "simplify formula"

transformation "discriminate"

transformation "encoding smt"

prelude "(set-logic AUFNIRA)"

theory BuiltIn

syntax type int "Int"

syntax type real "Real"

syntax predicate (=) "(= %1 %2)"

meta "encoding : kept" type int
end
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API

Why3 has an OCaml API

• to build terms, declarations, theories, tasks

• to call provers

defensive API

• well-typed terms

• well-formed declarations, theories, and tasks
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plug-ins

Why3 can be extended via three kinds of plug-ins

• parsers (new input formats)

• transformations (to be used in drivers)

• printers (to add support for new provers)
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API and plug-ins

Your code

Why3 API

WhyML

TPTP

etc.

eliminate
algebraic

encode
polymorphism

etc.

Simplify

Alt-Ergo

SMT-lib

etc.
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summary

• numerous theorem provers are supported
• SMT, TPTP, proof assistants, etc.

• user-extensible system

• input languages
• transformations
• output syntax

• proofs
• are preserved
• can be replayed

more details:

Preserving User Proofs Across Specification Changes (VSTTE 2013)
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Part II

program verification
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demo 2: an historical example

A. M. Turing. Checking a Large Routine. 1949.

STOP

r′ = 1
u′ = 1 v′ = u TEST r − n s′ = 1 u′ = u + v s′ = s + 1

r′ = r + 1 TEST s − r

u ← 1
for r = 0 to n − 1 do

v ← u
for s = 1 to r do

u ← u + v

demo (access code)
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demo 3: another historical example

f (n) =

{
n − 10 si n > 100,
f (f (n + 11)) sinon.

demo (access code)

e ← 1
while e > 0 do

if n > 100 then
n← n − 10
e ← e − 1

else
n← n + 11
e ← e + 1

return n

demo (access code)
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Recapitulation

• pre/postcondition

let foo x y z

requires { P } ensures { Q }
= ...

• loop invariant

while ... do invariant { I } ... done

for i = ... do invariant { I(i) } ... done
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Recapitulation

termination of a loop (resp. a recursive function) is ensured by a
variant

variant {t} with R

• R is a well-founded order relation

• t decreases for R at each step
(resp. each recursive call)

by default, t is of type int and R is the relation

y ≺ x
def
= y < x ∧ 0 ≤ x
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remark

as shown with function 91, proving termination may require to
establish functional properties as well

another example:

• Floyd’s cycle detection (tortoise and hare algorithm)
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now, it’s up to you

suggested exercises

• Euclidean division (exo_eucl_div.mlw)

• Factorial (exo_fact.mlw)

• Fast exponentiation (exo_power.mlw)
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Part III

arrays
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mutable data

only one kind of mutable data structure:

records with mutable fields

for instance, references are defined this way

type ref α = { mutable contents : α }

and ref, !, and := are regular functions
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arrays

the library introduces arrays as follows:

type array α model {
length: int;

mutable elts: map int α
}

where

• map is the logical type of purely applicative maps

• keyword model means type array α is an abstract data type
in programs
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operations on arrays

we cannot define operations over type array α
(it is abstract) but we can declare them

examples:

val ([]) (a: array α) (i: int) : α
requires { 0 ≤ i < length a }
ensures { result = Map.get a.elts i }

val ([]←) (a: array α) (i: int) (v: α) : unit

requires { 0 ≤ i < length a }
writes { a.elts }
ensures { a.elts = Map.set (old a.elts) i v }

and other operations such as create, append, sub, copy, etc.
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arrays in the logic

when we write a[i] in the logic

• it is mere syntax for Map.get a.elts i

• we do not prove that i is within array bounds
(a.elts is a map over all integers)
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demo 4: Boyer-Moore’s majority

given a multiset of N votes

A A A C C B B C C C B C C

determine the majority, if any
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an elegant solution

due to Boyer & Moore (1980)

linear time

uses only three variables
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principle

A A A C C B B C C C B C C

cand = A

k = 1
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principle

A A A C C B B C C C B C C

cand = A

k = 2
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principle

A A A C C B B C C C B C C

cand = A

k = 3
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principle

A A A C C B B C C C B C C

cand = A

k = 0
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principle
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principle

A A A C C B B C C C B C C

cand = C

k = 3

then we check if C indeed has majority, with a second pass
(in that case, it has: 7 > 13/2)
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Fortran
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Why3
let mjrty (a: array candidate) =
let n = length a in

let cand = ref a[0] in let k = ref 0 in

for i = 0 to n-1 do

if !k = 0 then begin cand := a[i]; k := 1 end

else if !cand = a[i] then incr k else decr k

done;

if !k = 0 then raise Not found;

try

if 2 * !k > n then raise Found; k := 0;

for i = 0 to n-1 do

if a[i] = !cand then begin

incr k; if 2 * !k > n then raise Found

end

done;

raise Not found

with Found →
!cand

end

demo (access code) 91 / 130
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specification

• precondition

let mjrty (a: array candidate)

requires { 1 ≤ length a }

• postcondition in case of success

ensures

{ 2 * numeq a result 0 (length a) > length a }

• postcondition in case of failure

raises { Not found →
∀ c: candidate.

2 * numeq a c 0 (length a) ≤ length a }
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loop invariants

first loop

for i = 0 to n-1 do

invariant { 0 ≤ !k ≤ numeq a !cand 0 i }
invariant { 2 * (numeq a !cand 0 i - !k) ≤ i - !k }
invariant { ∀ c: candidate. c 6= !cand →

2 * numeq a c 0 i ≤ i - !k }
...

second loop

for i = 0 to n-1 do

invariant { !k = numeq a !cand 0 i }
invariant { 2 * !k ≤ n }
...
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proof

verification conditions express

• safety
• access within array bounds
• termination

• user annotations
• loop invariants are initialized and preserved
• postconditions are established

fully automated proof
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extraction to OCaml

WhyML code can be translated to OCaml code

why3 extract -D ocaml64 -D mjrty -T mjrty.Mjrty -o .

two drivers used here

• a library driver for 64-bit OCaml
(maps type int to Zarith, type array to OCaml’s arrays, etc.)

• a custom driver for this example, namely

module mjrty.Mjrty

syntax type candidate "char"

end
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extraction to OCaml

then we can link extracted code with hand-written code

ocamlopt ... zarith.cmxa why3extract.cmxa

mjrty__Mjrty.ml test_mjrty.ml
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exercise: two-way sort

sort an array of Boolean, using the following algorithm

let two way sort (a: array bool) =
let i = ref 0 in

let j = ref (length a - 1) in

while !i < !j do

if not a[!i] then

incr i

else if a[!j] then

decr j

else begin

let tmp = a[!i] in

a[!i] ← a[!j];

a[!j] ← tmp;

incr i;

decr j

end

done

False ? . . . ? True

↑ ↑
i j

exercise: exo_two_way.mlw
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exercise: Dutch national flag

an array contains elements of the following enumerated type

type color = Blue | White | Red

sort it, in such a way we have the following final situation:

. . . Blue . . . . . . White . . . . . . Red . . .

98 / 130



exercise: Dutch national flag

let dutch flag (a:array color) (n:int) =
let b = ref 0 in

let i = ref 0 in

let r = ref n in

while !i < !r do

match a[!i] with

| Blue →
swap a !b !i;

incr b;

incr i

| White →
incr i

| Red →
decr r;

swap a !r !i

end

done

Blue White . . . Red

↑ ↑ ↑ ↑
!b !i !r n

exercise: exo_flag.mlw

99 / 130

http://why3.lri.fr/ejcp-2015/exo_flag.mlw


Part IV

specifying / implementing a data

structure

100 / 130



example

say we want to implement a queue with bounded capacity

type queue α
val create: int → queue α
val push: α → queue α → unit

val pop: queue α → α
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ring buffer

it can be implemented with an array

type buffer α = {
mutable first: int;

mutable len : int;

data : array α;
}

len elements are stored, starting at index first

x0 x1 . . . xlen−1
↑
first

they may wrap around the array bounds

. . . xlen−1 x0 x1
↑
first
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specification

to give a specification to queue operations, we would like to model
the queue contents, say, as a sequence of elements

one way to do it is to use ghost code
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ghost code

may be inserted for the purpose of specification and/or proof

rules are:

• ghost code may read regular data (but can’t modify it)

• ghost code cannot modify the control flow of regular code

• regular code does not see ghost data

in particular, ghost code can be removed without observable
modification (and is removed during OCaml extraction)
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ghost field

we add two ghost fields to model the queue contents

type queue α = {
...

ghost capacity: int;

ghost mutable sequence: Seq.seq α;
}
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ghost field

then we use them in specifications

val create (n: int) (dummy: α) : queue α
requires { n > 0 }
ensures { result.capacity = n }
ensures { result.sequence = Seq.empty }

val push (q: queue α) (x: α) : unit

requires { Seq.length q.sequence < q.capacity }
writes { q.sequence }
ensures { q.sequence = Seq.snoc (old q.sequence) x }

val pop (q: queue α) : α
requires { Seq.length q.sequence > 0 }
writes { q.sequence }
ensures { result = (old q.sequence)[0] }
ensures { q.sequence = (old q.sequence)[1 ..] }
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abstraction

we are already able to prove some client code using the queue

let harness () =
let q = create 10 0 in

push q 1;

push q 2;

push q 3;

let x = pop q in assert { x = 1 };
let x = pop q in assert { x = 2 };
let x = pop q in assert { x = 3 };
()
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gluing invariant

we link the regular fields and the ghost fields with a type invariant

type buffer α =
...

invariant {
self.capacity = Array.length self.data ∧
0 ≤ self.first < self.capacity ∧
0 ≤ self.len ≤ self.capacity ∧
self.len = Seq.length self.sequence ∧
∀ i: int. 0 ≤ i < self.len →
(self.first + i < self.capacity →
Seq.get self.sequence i = self.data[self.first + i]) ∧

(0 ≤ self.first + i - self.capacity →
Seq.get self.sequence i = self.data[self.first + i

- self.capacity])

}
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semantics

such a type invariant holds at function boundaries

thus

• it is assumed at function entry

• it must be ensured
• when a function is called
• at function exit, for values returned or modified
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ghost code

ghost code is added to set ghost fields accordingly

example:

let push (b: buffer α) (x: α) : unit

=
ghost b.sequence ← Seq.snoc b.sequence x;

let i = b.first + b.len in

let n = Array.length b.data in

b.data[if i ≥ n then i - n else i] ← x;

b.len ← b.len + 1
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exercise: ring buffer

implement other operations

• length

• clear

• head

on ring buffers and prove them correct
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Part V

purely applicative programming
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other data structures

a key idea of Hoare logic:

any types and symbols from the logic
can be used in programs

note: we already used type int this way
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algebraic data types

we can do so with algebraic data types

in the library, we find

type bool = True | False (in bool.Bool)
type option α = None | Some α (in option.Option)
type list α = Nil | Cons α (list α) (in list.List)
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trees

let us consider binary trees

type elt

type tree =
| Empty

| Node tree elt tree

and the following problem
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same fringe

given two binary trees,
do they contain the same elements when traversed in order?

8

3

1 5

4

4

1

3

8

5
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specification

function elements (t: tree) : list elt = match t with

| Empty → Nil

| Node l x r → elements l ++ Cons x (elements r)

end

let same fringe (t1 t2: tree) : bool

ensures { result=True ↔ elements t1 = elements t2 }
=
...
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a solution

one solution: look at the left branch as
a list, from bottom up

x1

x2

...

xn
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tn
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demo (access code)
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exercise: inorder traversal

type elt

type tree = Null | Node tree elt tree

inorder traversal of t, storing its elements in array a

let rec fill (t: tree) (a: array elt) (start: int) : int =
match t with

| Null →
start

| Node l x r →
let res = fill l a start in

if res 6= length a then begin

a[res] ← x;

fill r a (res + 1)

end else

res

end

exercise: exo_fill.mlw
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Part VI

machine arithmetic
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machine arithmetic

let us model signed 32-bit arithmetic

two possibilities:

• ensure absence of arithmetic overflow

• model machine arithmetic faithfully (i.e. with overflows)

a constraint:
we do not want to loose arithmetic capabilities of SMT solvers
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32-bit arithmetic

we introduce a new type for 32-bit integers

type int32

its integer value is given by

function toint int32 : int

main idea: within annotations, we only use type int

(thus a program variable x : int32 always appears as toint x in
annotations)
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32-bit arithmetic

we define the range of 32-bit integers

function min int: int = - 0x8000 0000 (* -2^31 *)

function max int: int = 0x7FFF FFFF (* 2^31-1 *)

when we use them...

axiom int32 domain:

∀ x: int32. min int ≤ toint x ≤ max int

... and when we build them

val ofint (x: int) : int32

requires { min int ≤ x ≤ max int }
ensures { toint result = x }
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32-bit arithmetic

then each program expression such as

x + y

is translated into

ofint (toint x) (toint y)

this ensures the absence of arithmetic overflow
(but we get a large number of additional verification conditions)
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binary search

let us consider searching for a value in a sorted array using binary
search

let us show the absence of arithmetic overflow

demo (access code)
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binary search

we found a bug

the computation

let m = (!l + !u) / 2 in

may provoke an arithmetic overflow
(for instance with a 2-billion elements array)

a possible fix is

let m = !l + (!u - !l) / 2 in
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conclusion
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conclusion

three different ways of using Why3

• as a logical language
(a convenient front-end to many theorem provers)

• as a programming language to prove algorithms
(currently 120 examples in our gallery)

• as an intermediate language
(for the verification of C, Java, Ada, etc.)
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things not covered in this lecture

• how aliases are controlled

• how verification conditions are computed

• how formulas are sent to provers

• how pointers/heap are modeled

• how floating-point arithmetic is modeled

• etc.

see http://why3.lri.fr for more details
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