
Deductive Program Verification with Why3

Jean-Christophe Filliâtre
CNRS

EJCP
June 25, 2015

http://why3.lri.fr/ejcp-2015/

1 / 130

http://why3.lri.fr/ejcp-2015/

team VALS — http://vals.lri.fr/

Université
Paris Sud

2 / 130

http://vals.lri.fr/

team VALS — http://vals.lri.fr/

Université
Paris Sud

LRI

3 / 130

http://vals.lri.fr/

team VALS — http://vals.lri.fr/

Université
Paris Sud

CNRS LRI

4 / 130

http://vals.lri.fr/

team VALS — http://vals.lri.fr/

Université
Paris Sud

CNRS LRI

Inria Saclay-̂Ile-de-France

5 / 130

http://vals.lri.fr/

team VALS — http://vals.lri.fr/

Université
Paris Sud

CNRS LRI

Inria Saclay-̂Ile-de-France

VALS

6 / 130

http://vals.lri.fr/

Software is hard. – Don Knuth

why?

• wrong interpretation of specifications

• coding in a hurry

• incompatible changes

• software = complex artifact

• etc.

7 / 130

a famous example: binary search

first publication in 1946
first publication without bug in 1962

Jon Bentley. Programming Pearls.
1986.

Writing correct programs

the challenge of binary search

and yet...

8 / 130

and yet

in 2006, a bug was found in Java standard library’s binary search

Joshua Bloch, Google Research Blog
“Nearly All Binary Searches and Mergesorts are Broken”

it had been there for 9 years

9 / 130

the bug

...

int mid = (low + high) / 2;

int midVal = a[mid];

...

may exceed the capacity of type int

then provokes an access out of array bounds

a possible fix

int mid = low + (high - low) / 2;

10 / 130

what can we do?

better programming languages

• better syntax
(e.g. avoid considering DO 17 I = 1. 10 as an assignment)

• more typing
(e.g. avoid confusion between meters and yards)

• more warnings from the compiler
(e.g. do not forget some cases)

• etc.

11 / 130

test

systematic and rigorous test is another, complementary answer

but test is

• costly

• sometimes difficult to perform

• and incomplete (except in some rare cases)

12 / 130

formal methods

formal methods propose a mathematical approach to software
correctness

13 / 130

what is a program?

there are several aspects

• what we compute

• how we compute it

• why it is correct to compute it this way

14 / 130

what is a program?

the code is only one aspect (“how”) and nothing else

“what” and “why” are not part of the code

there are informal requirements, comments, web pages, drawings,
research articles, etc.

15 / 130

an example

• how: 2 lines of C

a[52514],b,c=52514,d,e,f=1e4,g,h;main(){for(;b=c-=14;h=printf("%04d",

e+d/f))for(e=d%=f;g=--b*2;d/=g)d=d*b+f*(h?a[b]:f/5),a[b]=d%--g;}

• what: 15,000 decimals of π

• why: lot of maths, including

π =
∞∑
i=0

(i !)2 2i+1

(2i + 1)!

16 / 130

an example

• how: 2 lines of C

a[52514],b,c=52514,d,e,f=1e4,g,h;main(){for(;b=c-=14;h=printf("%04d",

e+d/f))for(e=d%=f;g=--b*2;d/=g)d=d*b+f*(h?a[b]:f/5),a[b]=d%--g;}

• what: 15,000 decimals of π

• why: lot of maths, including

π =
∞∑
i=0

(i !)2 2i+1

(2i + 1)!

17 / 130

formal methods

formal methods propose a rigorous approach to programming,
where we manipulate

• a specification written in some mathematical language

• a proof that the program satisfies this specification

18 / 130

specification

what do we intend to prove?

• safety: the program does not crash
• no illegal access to memory
• no illegal operation, such as division by zero
• termination

• functional correctness
• the program does what it is supposed to do

19 / 130

several approaches

model checking, abstract interpretation, etc.

this lecture introduces deductive verification

program
+

specification

verification
conditions

proof

20 / 130

this is not new

A. M. Turing. Checking a large routine. 1949.

STOP

r′ = 1
u′ = 1 v′ = u TEST r − n s′ = 1 u′ = u + v s′ = s + 1

r′ = r + 1 TEST s − r

21 / 130

this is not new

Tony Hoare.
Proof of a program: FIND.
Commun. ACM, 1971.

k

≤ v v ≥ v

22 / 130

checking a large routine (Turing, 1949)

STOP

r′ = 1
u′ = 1 v′ = u TEST r − n s′ = 1 u′ = u + v s′ = s + 1

r′ = r + 1 TEST s − r

u ← 1
for r = 0 to n − 1 do

v ← u
for s = 1 to r do

u ← u + v

23 / 130

checking a large routine (Turing, 1949)

STOP

r′ = 1
u′ = 1 v′ = u TEST r − n s′ = 1 u′ = u + v s′ = s + 1

r′ = r + 1 TEST s − r

u ← 1
for r = 0 to n − 1 do

v ← u
for s = 1 to r do

u ← u + v

24 / 130

checking a large routine (Turing, 1949)

STOP

r′ = 1
u′ = 1 v′ = u TEST r − n s′ = 1 u′ = u + v s′ = s + 1

r′ = r + 1 TEST s − r

precondition {n ≥ 0}
u ← 1
for r = 0 to n − 1 do

v ← u
for s = 1 to r do

u ← u + v
postcondition {u = fact(n)}

25 / 130

checking a large routine (Turing, 1949)

STOP

r′ = 1
u′ = 1 v′ = u TEST r − n s′ = 1 u′ = u + v s′ = s + 1

r′ = r + 1 TEST s − r

precondition {n ≥ 0}
u ← 1
for r = 0 to n − 1 do invariant {u = fact(r)}

v ← u
for s = 1 to r do invariant {u = s × fact(r)}

u ← u + v
postcondition {u = fact(n)}

26 / 130

verification condition

function fact(int) : int

axiom fact0: fact(0) = 1

axiom factn: ∀ n:int. n ≥ 1 → fact(n) = n * fact(n-1)

goal vc: ∀ n:int. n ≥ 0 →
(0 > n - 1 → 1 = fact(n)) ∧
(0 ≤ n - 1 →

1 = fact(0) ∧
(∀ u:int.

(∀ r:int. 0 ≤ r ∧ r ≤ n - 1 → u = fact(r) →
(1 > r → u = fact(r + 1)) ∧
(1 ≤ r →
u = 1 * fact(r) ∧
(∀ u1:int.

(∀ s:int. 1 ≤ s ∧ s ≤ r → u1 = s * fact(r) →
(∀ u2:int.

u2 = u1 + u → u2 = (s + 1) * fact(r))) ∧
(u1 = (r + 1) * fact(r) → u1 = fact(r + 1))))) ∧

(u = fact((n - 1) + 1) → u = fact(n))))

27 / 130

verification condition

function fact(int) : int

axiom fact0: fact(0) = 1

goal vc: ∀ n:int. n ≥ 0 →
(0 > n - 1 → 1 = fact(n)) ∧

28 / 130

and then

what do we do with this mathematical statement?

we could perform a manual proof (as Turing and Hoare did)
but it is long, tedious, and error-prone

so we turn to tools that mechanize mathematical reasoning

29 / 130

automated theorem proving

mathematical
statement

automated
prover

true

false

30 / 130

no hope

it is not possible to implement such a
program
(Turing/Church, 1936, from Gödel)

full employment theorem for
mathematicians

Kurt Gödel

31 / 130

automated theorem proving

mathematical
statement

automated
prover

true

false

I don’t know

loops forever

examples: Z3, CVC4, Alt-Ergo, Vampire, SPASS, etc.

32 / 130

interactive theorem proving

if we only intend to check a proof, this is decidable

mathematical
statement

proof

proof
assistant

true

false

examples: Coq, Isabelle, PVS, HOL Light, etc.

33 / 130

Why3, a tool for deductive verification

main idea: use as many theorem provers as possible
(both automated and interactive)

program
+

property

mathematical
statement

prover 1

prover 2

prover 3

...

34 / 130

Why3 in a nutshell

• a programming language, WhyML
• polymorphism
• pattern-matching
• exceptions
• mutable data structures,

with controlled aliasing

• a polymorphic logic
• algebraic data types
• recursive definitions
• (co)inductive predicates

http://why3.lri.fr/

file.why

file.mlw

WhyML

VCgen

Why

transform/translate

print/run

Coq Alt-Ergo CVC3 Z3 etc.

35 / 130

http://why3.lri.fr/

applications

three different ways of using Why3

• as a logical language
(a convenient front-end to many theorem provers)

• as a programming language to prove algorithms
(many examples in our gallery)

• as an intermediate language,
to verify programs written in C, Java, Ada, etc.

36 / 130

http://toccata.lri.fr/gallery/why3.en.html

some systems using Why3

GNATprove

Krakatoa

Frama-C

Jessie

WP

Easycrypt

Why3

WhyML logic proof assistants

SMT solvers

ATP systems

other provers

Ada

Java

C

prob.
pgms

37 / 130

Why3, bottom up

file.why

file.mlw

WhyML

VCgen

Why

transform/translate

print/run

Coq Alt-Ergo CVC3 Z3 etc.

38 / 130

Part I

one logic to use them all

39 / 130

demo 1: the logic of Why3

40 / 130

summary

logic of Why3 = polymorphic logic, with

• (mutually) recursive algebraic data types

• (mutually) recursive function/predicate symboles

• (mutually) (co)inductive predicates

• let-in, match-with, if-then-else

formal definition in
One Logic To Use Them All (CADE 2013)

41 / 130

declarations

• types
• abstract: type t
• alias: type t = list int
• algebraic: type list α = Nil | Cons α (list α)

• function / predicate
• uninterpreted: function f int : int
• defined: predicate non empty (l: list α) = l 6= Nil

• inductive predicate
• inductive trans t t = ...

• axiom / lemma / goal
• goal G: ∀ x: int. x ≥ 0 → x*x ≥ 0

42 / 130

theories

logic declarations organized in theories

a theory T1 can be

• used (use) in a theory T2

• cloned (clone) in another theory T2

theory

end

theory

end

theory

end

43 / 130

theories

logic declarations organized in theories

a theory T1 can be

• used (use) in a theory T2

• symbols of T1 are shared
• axioms of T1 remain axioms
• lemmas of T1 become axioms
• goals of T1 are ignored

• cloned (clone) in another theory T2

theory

end

theory

end

theory

end

44 / 130

theories

logic declarations organized in theories

a theory T1 can be

• used (use) in a theory T2

• cloned (clone) in another theory T2

• declarations of T1 are copied or substituted
• axioms of T1 remain axioms or become

lemmas/goals
• lemmas of T1 become axioms
• goals of T1 are ignored

theory

end

theory

end

theory

end

45 / 130

using theorem provers

there are many theorem provers

• SMT solvers: Alt-Ergo, Z3, CVC3, Yices, etc.

• TPTP provers: Vampire, Eprover, SPASS, etc.

• proof assistants: Coq, PVS, Isabelle, etc.

• dedicated provers, e.g. Gappa

we want to use all of them if possible

46 / 130

under the hood

a technology to talk to provers

central concept: task

• a context (a list of declarations)

• a goal (a formula) goal

47 / 130

workflow

theory

end

theory

end

theory

end

Alt-Ergo

Z3

Vampire

48 / 130

workflow

theory

end

theory

end

theory

end

goal

Alt-Ergo

Z3

Vampire

49 / 130

workflow

theory

end

theory

end

theory

end

goal goal

Alt-Ergo

Z3

Vampire

T1

50 / 130

workflow

theory

end

theory

end

theory

end

goal goal goal

Alt-Ergo

Z3

Vampire

T1 T2

51 / 130

workflow

theory

end

theory

end

theory

end

goal goal goal

Alt-Ergo

Z3

Vampire

T1 T2 P

52 / 130

transformations

• eliminate algebraic data types and match-with

• eliminate inductive predicates

• eliminate if-then-else, let-in

• encode polymorphism, encode types

• etc.

efficient: results of transformations are memoized

53 / 130

driver

a task journey is driven by a file

• transformations to apply

• prover’s input format
• syntax
• predefined symbols / axioms

• prover’s diagnostic messages

more details:
Expressing Polymorphic Types in a Many-Sorted Language (FroCos 2011)

Why3: Shepherd your herd of provers (Boogie 2011)

54 / 130

example: Z3 driver (excerpt)

printer "smtv2"

valid "^unsat"

invalid "^sat"

transformation "inline trivial"

transformation "eliminate builtin"

transformation "eliminate definition"

transformation "eliminate inductive"

transformation "eliminate algebraic"

transformation "simplify formula"

transformation "discriminate"

transformation "encoding smt"

prelude "(set-logic AUFNIRA)"

theory BuiltIn

syntax type int "Int"

syntax type real "Real"

syntax predicate (=) "(= %1 %2)"

meta "encoding : kept" type int
end

55 / 130

API

Why3 has an OCaml API

• to build terms, declarations, theories, tasks

• to call provers

defensive API

• well-typed terms

• well-formed declarations, theories, and tasks

56 / 130

plug-ins

Why3 can be extended via three kinds of plug-ins

• parsers (new input formats)

• transformations (to be used in drivers)

• printers (to add support for new provers)

57 / 130

API and plug-ins

Your code

Why3 API

WhyML

TPTP

etc.

eliminate
algebraic

encode
polymorphism

etc.

Simplify

Alt-Ergo

SMT-lib

etc.

58 / 130

summary

• numerous theorem provers are supported
• SMT, TPTP, proof assistants, etc.

• user-extensible system

• input languages
• transformations
• output syntax

• proofs
• are preserved
• can be replayed

more details:

Preserving User Proofs Across Specification Changes (VSTTE 2013)

59 / 130

Part II

program verification

60 / 130

demo 2: an historical example

A. M. Turing. Checking a Large Routine. 1949.

STOP

r′ = 1
u′ = 1 v′ = u TEST r − n s′ = 1 u′ = u + v s′ = s + 1

r′ = r + 1 TEST s − r

u ← 1
for r = 0 to n − 1 do

v ← u
for s = 1 to r do

u ← u + v

demo (access code)

61 / 130

http://toccata.lri.fr/gallery/checking_a_large_routine.en.html

demo 2: an historical example

A. M. Turing. Checking a Large Routine. 1949.

STOP

r′ = 1
u′ = 1 v′ = u TEST r − n s′ = 1 u′ = u + v s′ = s + 1

r′ = r + 1 TEST s − r

u ← 1
for r = 0 to n − 1 do

v ← u
for s = 1 to r do

u ← u + v

demo (access code)

62 / 130

http://toccata.lri.fr/gallery/checking_a_large_routine.en.html

demo 3: another historical example

f (n) =

{
n − 10 si n > 100,
f (f (n + 11)) sinon.

demo (access code)

e ← 1
while e > 0 do

if n > 100 then
n← n − 10
e ← e − 1

else
n← n + 11
e ← e + 1

return n

demo (access code)

63 / 130

http://toccata.lri.fr/gallery/mccarthy.en.html
http://toccata.lri.fr/gallery/mccarthy.en.html

demo 3: another historical example

f (n) =

{
n − 10 si n > 100,
f (f (n + 11)) sinon.

demo (access code)

e ← 1
while e > 0 do

if n > 100 then
n← n − 10
e ← e − 1

else
n← n + 11
e ← e + 1

return n

demo (access code)

64 / 130

http://toccata.lri.fr/gallery/mccarthy.en.html
http://toccata.lri.fr/gallery/mccarthy.en.html

Recapitulation

• pre/postcondition

let foo x y z

requires { P } ensures { Q }
= ...

• loop invariant

while ... do invariant { I } ... done

for i = ... do invariant { I(i) } ... done

65 / 130

Recapitulation

termination of a loop (resp. a recursive function) is ensured by a
variant

variant {t} with R

• R is a well-founded order relation

• t decreases for R at each step
(resp. each recursive call)

by default, t is of type int and R is the relation

y ≺ x
def
= y < x ∧ 0 ≤ x

66 / 130

remark

as shown with function 91, proving termination may require to
establish functional properties as well

another example:

• Floyd’s cycle detection (tortoise and hare algorithm)

67 / 130

now, it’s up to you

suggested exercises

• Euclidean division (exo_eucl_div.mlw)

• Factorial (exo_fact.mlw)

• Fast exponentiation (exo_power.mlw)

68 / 130

http://why3.lri.fr/ejcp-2015/exo_eucl_div.mlw
http://why3.lri.fr/ejcp-2015/exo_fact.mlw
http://why3.lri.fr/ejcp-2015/exo_power.mlw

Part III

arrays

69 / 130

mutable data

only one kind of mutable data structure:

records with mutable fields

for instance, references are defined this way

type ref α = { mutable contents : α }

and ref, !, and := are regular functions

70 / 130

arrays

the library introduces arrays as follows:

type array α model {
length: int;

mutable elts: map int α
}

where

• map is the logical type of purely applicative maps

• keyword model means type array α is an abstract data type
in programs

71 / 130

operations on arrays

we cannot define operations over type array α
(it is abstract) but we can declare them

examples:

val ([]) (a: array α) (i: int) : α
requires { 0 ≤ i < length a }
ensures { result = Map.get a.elts i }

val ([]←) (a: array α) (i: int) (v: α) : unit

requires { 0 ≤ i < length a }
writes { a.elts }
ensures { a.elts = Map.set (old a.elts) i v }

and other operations such as create, append, sub, copy, etc.

72 / 130

arrays in the logic

when we write a[i] in the logic

• it is mere syntax for Map.get a.elts i

• we do not prove that i is within array bounds
(a.elts is a map over all integers)

73 / 130

demo 4: Boyer-Moore’s majority

given a multiset of N votes

A A A C C B B C C C B C C

determine the majority, if any

74 / 130

an elegant solution

due to Boyer & Moore (1980)

linear time

uses only three variables

75 / 130

principle

A A A C C B B C C C B C C

cand = A

k = 1

76 / 130

principle

A A A C C B B C C C B C C

cand = A

k = 2

77 / 130

principle

A A A C C B B C C C B C C

cand = A

k = 3

78 / 130

principle

A A A C C B B C C C B C C

cand = A

k = 2

79 / 130

principle

A A A C C B B C C C B C C

cand = A

k = 1

80 / 130

principle

A A A C C B B C C C B C C

cand = A

k = 0

81 / 130

principle

A A A C C B B C C C B C C

cand = B

k = 1

82 / 130

principle

A A A C C B B C C C B C C

cand = B

k = 0

83 / 130

principle

A A A C C B B C C C B C C

cand = C

k = 1

84 / 130

principle

A A A C C B B C C C B C C

cand = C

k = 2

85 / 130

principle

A A A C C B B C C C B C C

cand = C

k = 1

86 / 130

principle

A A A C C B B C C C B C C

cand = C

k = 2

87 / 130

principle

A A A C C B B C C C B C C

cand = C

k = 3

88 / 130

principle

A A A C C B B C C C B C C

cand = C

k = 3

then we check if C indeed has majority, with a second pass
(in that case, it has: 7 > 13/2)

89 / 130

Fortran

90 / 130

Why3
let mjrty (a: array candidate) =
let n = length a in

let cand = ref a[0] in let k = ref 0 in

for i = 0 to n-1 do

if !k = 0 then begin cand := a[i]; k := 1 end

else if !cand = a[i] then incr k else decr k

done;

if !k = 0 then raise Not found;

try

if 2 * !k > n then raise Found; k := 0;

for i = 0 to n-1 do

if a[i] = !cand then begin

incr k; if 2 * !k > n then raise Found

end

done;

raise Not found

with Found →
!cand

end

demo (access code) 91 / 130

http://toccata.lri.fr/gallery/mjrty.en.html

specification

• precondition

let mjrty (a: array candidate)

requires { 1 ≤ length a }

• postcondition in case of success

ensures

{ 2 * numeq a result 0 (length a) > length a }

• postcondition in case of failure

raises { Not found →
∀ c: candidate.

2 * numeq a c 0 (length a) ≤ length a }

92 / 130

loop invariants

first loop

for i = 0 to n-1 do

invariant { 0 ≤ !k ≤ numeq a !cand 0 i }
invariant { 2 * (numeq a !cand 0 i - !k) ≤ i - !k }
invariant { ∀ c: candidate. c 6= !cand →

2 * numeq a c 0 i ≤ i - !k }
...

second loop

for i = 0 to n-1 do

invariant { !k = numeq a !cand 0 i }
invariant { 2 * !k ≤ n }
...

93 / 130

proof

verification conditions express

• safety
• access within array bounds
• termination

• user annotations
• loop invariants are initialized and preserved
• postconditions are established

fully automated proof

94 / 130

extraction to OCaml

WhyML code can be translated to OCaml code

why3 extract -D ocaml64 -D mjrty -T mjrty.Mjrty -o .

two drivers used here

• a library driver for 64-bit OCaml
(maps type int to Zarith, type array to OCaml’s arrays, etc.)

• a custom driver for this example, namely

module mjrty.Mjrty

syntax type candidate "char"

end

95 / 130

extraction to OCaml

then we can link extracted code with hand-written code

ocamlopt ... zarith.cmxa why3extract.cmxa

mjrty__Mjrty.ml test_mjrty.ml

96 / 130

exercise: two-way sort

sort an array of Boolean, using the following algorithm

let two way sort (a: array bool) =
let i = ref 0 in

let j = ref (length a - 1) in

while !i < !j do

if not a[!i] then

incr i

else if a[!j] then

decr j

else begin

let tmp = a[!i] in

a[!i] ← a[!j];

a[!j] ← tmp;

incr i;

decr j

end

done

False ? . . . ? True

↑ ↑
i j

exercise: exo_two_way.mlw

97 / 130

http://why3.lri.fr/ejcp-2015/exo_two_way.mlw

exercise: Dutch national flag

an array contains elements of the following enumerated type

type color = Blue | White | Red

sort it, in such a way we have the following final situation:

. . . Blue White Red . . .

98 / 130

exercise: Dutch national flag

let dutch flag (a:array color) (n:int) =
let b = ref 0 in

let i = ref 0 in

let r = ref n in

while !i < !r do

match a[!i] with

| Blue →
swap a !b !i;

incr b;

incr i

| White →
incr i

| Red →
decr r;

swap a !r !i

end

done

Blue White . . . Red

↑ ↑ ↑ ↑
!b !i !r n

exercise: exo_flag.mlw

99 / 130

http://why3.lri.fr/ejcp-2015/exo_flag.mlw

Part IV

specifying / implementing a data

structure

100 / 130

example

say we want to implement a queue with bounded capacity

type queue α
val create: int → queue α
val push: α → queue α → unit

val pop: queue α → α

101 / 130

ring buffer

it can be implemented with an array

type buffer α = {
mutable first: int;

mutable len : int;

data : array α;
}

len elements are stored, starting at index first

x0 x1 . . . xlen−1
↑
first

they may wrap around the array bounds

. . . xlen−1 x0 x1
↑
first

102 / 130

specification

to give a specification to queue operations, we would like to model
the queue contents, say, as a sequence of elements

one way to do it is to use ghost code

103 / 130

ghost code

may be inserted for the purpose of specification and/or proof

rules are:

• ghost code may read regular data (but can’t modify it)

• ghost code cannot modify the control flow of regular code

• regular code does not see ghost data

in particular, ghost code can be removed without observable
modification (and is removed during OCaml extraction)

104 / 130

ghost field

we add two ghost fields to model the queue contents

type queue α = {
...

ghost capacity: int;

ghost mutable sequence: Seq.seq α;
}

105 / 130

ghost field

then we use them in specifications

val create (n: int) (dummy: α) : queue α
requires { n > 0 }
ensures { result.capacity = n }
ensures { result.sequence = Seq.empty }

val push (q: queue α) (x: α) : unit

requires { Seq.length q.sequence < q.capacity }
writes { q.sequence }
ensures { q.sequence = Seq.snoc (old q.sequence) x }

val pop (q: queue α) : α
requires { Seq.length q.sequence > 0 }
writes { q.sequence }
ensures { result = (old q.sequence)[0] }
ensures { q.sequence = (old q.sequence)[1 ..] }

106 / 130

abstraction

we are already able to prove some client code using the queue

let harness () =
let q = create 10 0 in

push q 1;

push q 2;

push q 3;

let x = pop q in assert { x = 1 };
let x = pop q in assert { x = 2 };
let x = pop q in assert { x = 3 };
()

107 / 130

gluing invariant

we link the regular fields and the ghost fields with a type invariant

type buffer α =
...

invariant {
self.capacity = Array.length self.data ∧
0 ≤ self.first < self.capacity ∧
0 ≤ self.len ≤ self.capacity ∧
self.len = Seq.length self.sequence ∧
∀ i: int. 0 ≤ i < self.len →
(self.first + i < self.capacity →
Seq.get self.sequence i = self.data[self.first + i]) ∧

(0 ≤ self.first + i - self.capacity →
Seq.get self.sequence i = self.data[self.first + i

- self.capacity])

}

108 / 130

semantics

such a type invariant holds at function boundaries

thus

• it is assumed at function entry

• it must be ensured
• when a function is called
• at function exit, for values returned or modified

109 / 130

ghost code

ghost code is added to set ghost fields accordingly

example:

let push (b: buffer α) (x: α) : unit

=
ghost b.sequence ← Seq.snoc b.sequence x;

let i = b.first + b.len in

let n = Array.length b.data in

b.data[if i ≥ n then i - n else i] ← x;

b.len ← b.len + 1

110 / 130

exercise: ring buffer

implement other operations

• length

• clear

• head

on ring buffers and prove them correct

111 / 130

Part V

purely applicative programming

112 / 130

other data structures

a key idea of Hoare logic:

any types and symbols from the logic
can be used in programs

note: we already used type int this way

113 / 130

algebraic data types

we can do so with algebraic data types

in the library, we find

type bool = True | False (in bool.Bool)
type option α = None | Some α (in option.Option)
type list α = Nil | Cons α (list α) (in list.List)

114 / 130

trees

let us consider binary trees

type elt

type tree =
| Empty

| Node tree elt tree

and the following problem

115 / 130

same fringe

given two binary trees,
do they contain the same elements when traversed in order?

8

3

1 5

4

4

1

3

8

5

116 / 130

specification

function elements (t: tree) : list elt = match t with

| Empty → Nil

| Node l x r → elements l ++ Cons x (elements r)

end

let same fringe (t1 t2: tree) : bool

ensures { result=True ↔ elements t1 = elements t2 }
=
...

117 / 130

a solution

one solution: look at the left branch as
a list, from bottom up

x1

x2

...

xn

t1

t2

tn

1

3

8

5

4

1

4

3

8

5

demo (access code)

118 / 130

http://toccata.lri.fr/gallery/same_fringe.en.html

a solution

one solution: look at the left branch as
a list, from bottom up

x1

x2

...

xn

t1

t2

tn

1

3

8

5

4

1

4

3

8

5

demo (access code) 119 / 130

http://toccata.lri.fr/gallery/same_fringe.en.html

exercise: inorder traversal

type elt

type tree = Null | Node tree elt tree

inorder traversal of t, storing its elements in array a

let rec fill (t: tree) (a: array elt) (start: int) : int =
match t with

| Null →
start

| Node l x r →
let res = fill l a start in

if res 6= length a then begin

a[res] ← x;

fill r a (res + 1)

end else

res

end

exercise: exo_fill.mlw
120 / 130

http://why3.lri.fr/ejcp-2015/exo_fill.mlw

Part VI

machine arithmetic

121 / 130

machine arithmetic

let us model signed 32-bit arithmetic

two possibilities:

• ensure absence of arithmetic overflow

• model machine arithmetic faithfully (i.e. with overflows)

a constraint:
we do not want to loose arithmetic capabilities of SMT solvers

122 / 130

32-bit arithmetic

we introduce a new type for 32-bit integers

type int32

its integer value is given by

function toint int32 : int

main idea: within annotations, we only use type int

(thus a program variable x : int32 always appears as toint x in
annotations)

123 / 130

32-bit arithmetic

we define the range of 32-bit integers

function min int: int = - 0x8000 0000 (* -2^31 *)

function max int: int = 0x7FFF FFFF (* 2^31-1 *)

when we use them...

axiom int32 domain:

∀ x: int32. min int ≤ toint x ≤ max int

... and when we build them

val ofint (x: int) : int32

requires { min int ≤ x ≤ max int }
ensures { toint result = x }

124 / 130

32-bit arithmetic

then each program expression such as

x + y

is translated into

ofint (toint x) (toint y)

this ensures the absence of arithmetic overflow
(but we get a large number of additional verification conditions)

125 / 130

binary search

let us consider searching for a value in a sorted array using binary
search

let us show the absence of arithmetic overflow

demo (access code)

126 / 130

http://toccata.lri.fr/gallery/binary_search.en.html

binary search

we found a bug

the computation

let m = (!l + !u) / 2 in

may provoke an arithmetic overflow
(for instance with a 2-billion elements array)

a possible fix is

let m = !l + (!u - !l) / 2 in

127 / 130

conclusion

128 / 130

conclusion

three different ways of using Why3

• as a logical language
(a convenient front-end to many theorem provers)

• as a programming language to prove algorithms
(currently 120 examples in our gallery)

• as an intermediate language
(for the verification of C, Java, Ada, etc.)

129 / 130

http://toccata.lri.fr/gallery/why3.en.html

things not covered in this lecture

• how aliases are controlled

• how verification conditions are computed

• how formulas are sent to provers

• how pointers/heap are modeled

• how floating-point arithmetic is modeled

• etc.

see http://why3.lri.fr for more details

130 / 130

http://why3.lri.fr

	one logic to use them all
	program verification
	arrays
	specifying / implementing a data structure
	purely applicative programming
	machine arithmetic

