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Roadmap

SMT solvers
I main features;
I SMT and SAT solvers integration: “eager” vs “lazy” approach;
I the basic “lazy o✏ine” approach and its enhancements;
I minimal unsat core: basic ways to comput it;
I DPLL(T ) framework.

Practice with a SMT solver
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The SMT problem

The Satisfiability Modulo Theory (SMT) problem is a variation of the SAT
problem for first-order logic, with the interpretation of symbols constrained
by a specific theory (i.e., it is the problem of determining, for a theory T
and given a formula �, whether � is T -satisfiable).

An SMT solver is a tool for deciding satisfiability of a FOL formula with
respect to some background theory.

Common first-order theories SMT solvers reason about:

I Equality and uninterpreted functions
I Arithmetics: rationals, integers, reals, di↵erence logic, ...
I Bit-vectors, arrays, ...

In practice, one needs to work with a combination of theories.

x + 2 = y ! f(read(write(a, x, 3), y � 2)) = f(y � x + 1)

Often decision procedures for each theory combine modularly.
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SMT solvers

SMT solvers have gained enormous popularity over the last several years.

Wide range of applications: software verification, program analysis, test case
generation, model checking, scheduling, . . .

Many existing o↵-the-shelf SMT solvers:

I Z3 (Microsoft Research)
I Yices (SRI, USA)
I CVC3, CVC4 (NYU & U. Iowa, USA)
I Alt-Ergo (LRI, France)
I MathSAT (U Trento, Italy)
I Barcelogic (UP Catalunya, Spain)
I Beaver (UC Berkeley, USA)
I Boolector (FMV, Austria)
I ...

SMT solving is active research topic today (see: http://www.smtlib.org)
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Solving SMT problems

For a lot of theories one has (e�cient) decision procedures for a limited kind
of input problems: sets (or conjunctions) of literals.

In practice, we do not have just sets of literals.

I We have to deal with: arbitrary Boolean combinations of literals.

How to extend theory solvers to work with arbitrary quantifier-free formulas?

Naive solution: convert the formula in DNF and check if any of its disjuncts
(which are conjunctions of literals) is T -satisfiable.

In reality, this is completely impractical: DNF conversion can yield
exponentially larger formula.

Current solution: exploit propositional SAT technology
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Lifting SAT technology to SMT

How to deal e�ciently with boolean complex combinations of atoms in a theory?

Two main approaches:

I Eager approach
F translate into an equisatisfiable propositional formula
F feed it to any SAT solver

I Lazy approach
F abstract the input formula to a propositional one
F feed it to a (DPLL-based) SAT solver
F use a theory decision procedure to refine the formula and guide the

SAT solver

According to many empirical studies, lazy approach performs better than the
eager approach.

We will only focus on the lazy approach.
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The “eager” approach

Methodology:

I Translate into an equisatisfiable propositional formula.
I Feed it to any SAT solver.

Why “eager”? Search uses all theory information from the beginning.

Characteristics: Sophisticated encodings are needed for each theory.

Tools: UCLID, STP, Boolector, Beaver, Spear, ...
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The “lazy” approach

Methodology:

I Abstract the input formula to a propositional one.
I Feed it to a (DPLL-based) SAT solver.
I Use a theory decision procedure to refine the formula and guide the

SAT solver.

Why “lazy”? Theory information used lazily when checking T -consistency
of propositional models.

Characteristics:

I SAT solver and theory solver continuously interact.
I Modular and flexible.

Tools: Z3, Yices, MathSAT, CVC4, Barcelogic, ...
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Boolean abstraction

Define a bijective function prop, called boolean abstraction function, that
maps each SMT formula to a overapproximate SAT formula.

Given a formula  with atoms {a1, . . . , an} and a set of propositional variables
{P1, . . . , Pn} not occurring in  ,

The abstraction mapping, prop, from formulas over {a1, . . . , an} to
propositional formulas over {P1, . . . , Pn}, is defined as the homomorphism
induced by prop(ai) = Pi.

The inverse prop�1 simply replaces propositional variables Pi with their
associated atom ai.

 : g(a) = c| {z }
P1

^(f(g(a)) 6= f(c)| {z }
¬P2

_ g(a) = d| {z }
P3

) ^ c 6= d| {z }
¬P4

prop( ) : P1 ^ (¬P2 _ P3) ^ ¬P4
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Boolean abstraction

 : g(a) = c| {z }
P1

^(f(g(a)) 6= f(c)| {z }
¬P2

_ g(a) = d| {z }
P3

) ^ c 6= d| {z }
¬P4

prop( ) : P1 ^ (¬P2 _ P3) ^ ¬P4

The boolean abstraction constructed this way overapproximates satisfiability
of the formula.

I Even if  is not T -satisfiable, prop( ) can be satisfiable.

However, if boolean abstraction prop( ) is unsatisfiable, then  is also
unsatisfiable.
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Boolean abstraction

For an assignment A of prop( ), let the set �(A) of first-order literals be defined
as follows

�(A) = {prop�1(Pi) | A(Pi) = 1} [ {¬prop�1(Pi) | A(Pi) = 0}

 : g(a) = c| {z }
P1

^(f(g(a)) 6= f(c)| {z }
¬P2

_ g(a) = d| {z }
P3

) ^ c 6= d| {z }
¬P4

prop( ) : P1 ^ (¬P2 _ P3) ^ ¬P4

Consider the SAT assignment for prop( ),

A = {P1 7! 1, P2 7! 0, P4 7! 0}

�(A) = {g(a) = c, f(g(a)) 6= f(c), c 6= d} is not T -satisfiable.

This is because T -atoms that may be related to each other are abstracted
using di↵erent boolean variables.
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The “lazy” approach (simplest version)

Given a CNF F , SAT-Solver(F ) returns a tuple (r, A) where r is SAT if F
is satisfiable and UNSAT otherwise, and A is an assignment that satisfies F
if r is SAT.

Given a set of literals S, T-Solver(S) returns a tuple (r, J) where r is SAT
if S is T -satisfiable and UNSAT otherwise, and J is a justification if r is
UNSAT.

Given an T -unsatisfiable set of literals S, a justification (a.k.a. unsat core)
for S is any unsatisfiable subset J of S. A justification J is non-redundant
(or minimal) if there is no strict subset J 0 of J that is also unsatisfiable.
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The “lazy” approach (simplest version)

Basic SAT and theory solver integration

SMT-Solver ( ) {
F  prop( )
loop {

(r, A) SAT-Solver(F )
if r = UNSAT then return UNSAT
(r, J) T-Solver(�(A))
if r = SAT then return SAT
C  

W
B2J ¬prop(B)

F  F ^ C
}

}

If a valuation A satisfying F is found, but �(A) is T -unsatisfiable, we add to F a

clause C which has the e↵ect of excluding A when the SAT solver is invoked

again in the next iteration. This clause is called a “theory lemma” or a “theory

conflict clause”.
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SMT-Solver( g(a) = c ^ (f(g(a)) 6= f(c) _ g(a) = d) ^ c 6= d )

F = prop( ) = P1 ^ (¬P2 _ P3) ^ ¬P4

SAT-Solver(F ) = SAT, A = {P1 7! 1, P2 7! 0, P4 7! 0}

�(A) = {g(a) = c, f(g(a)) 6= f(c), c 6= d}
T-Solver(�(A)) = UNSAT, J = {g(a) = c, f(g(a)) 6= f(c), c 6= d}

C = ¬P1 _ P2 _ P4

———————————————

F = P1 ^ (¬P2 _ P3) ^ ¬P4 ^ (¬P1 _ P2 _ P4)

SAT-Solver(F ) = SAT, A = {P1 7! 1, P2 7! 1, P3 7! 1, P4 7! 0}

�(A) = {g(a) = c, f(g(a)) = f(c), g(a) = d, c 6= d}
T-Solver(�(A)) = UNSAT, J ={g(a) = c, f(g(a)) = f(c), g(a) = d, c 6= d}

C = ¬P1 _ ¬P2 _ ¬P3 _ P4

———————————————

F = P1 ^ (¬P2 _ P3) ^ ¬P4 ^ (¬P1 _ P2 _ P4) ^ (¬P1 _ ¬P2 _ ¬P3 _ P4)
SAT-Solver(F ) = UNSAT
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SMT-Solver( x = 3 ^ (f(x + y) = f(y) _ y = 2) ^ x = y )

F = prop( ) = P1 ^ (P2 _ P3) ^ P4

SAT-Solver(F ) = SAT, A = {P1 7! 1, P2 7! 0, P3 7! 1, P4 7! 1}

�(A) = {x = 3, f(x + y) 6= f(y), y = 2, x = y}
T-Solver(�(A)) = UNSAT, J = {x = 3, y = 2, x = y}

C = ¬P1 _ ¬P3 _ ¬P4

———————————————

F = P1 ^ (P2 _ P3) ^ P4 ^ (¬P1 _ ¬P3 _ ¬P4)

SAT-Solver(F ) = SAT, A = {P1 7! 1, P2 7! 1, P3 7! 0, P4 7! 1}

�(A) = {x = 3, f(x + y) = f(y), y 6= 2, x = y}
T-Solver(�(A)) = SAT
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The “lazy” approach (enhancements)

Several enhancements are possible to increase e�ciency of this basic algorithm:

If �(A) is T -unsatisfiable, identify a small justification (or unsat core) of it
and add its negation as a clause.

Check T -satisfiability of partial assignment A as it grows.

If �(A) is T -unsatisfiable, backtrack to some point where the assignment
was still T -satisfiable.
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Unsat cores

Given a T -unsatisfiable set of literals S, a justification (a.k.a. unsat core)
for S is any unsatisfiable subset J of S.

So, the easiest justification S is the set S itself.

However, conflict clauses obtained this way are too weak.

I Suppose �(A) = {x = 0, x = 3, l1, l2, . . . , l50}. This set is unsat.

I Theory conflict clause C =
W

B2�(A) ¬prop(B) prevents that exact
same assignment. But it doesn’t prevent many other bad assignments
involving x = 0 and x = 3.

I In fact, there are 250 unsat assignments containing x = 0 and x = 3,
but C just prevents one of them!

E�ciency can be improved if we have a more precise justification. Ideally, a
minimal unsat core. This way we block many assignments using just one
theory conflict clause.
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Computing minimal unsat core

How to compute a minimal unsat core of a T -unsatisfiable set of literals S?

A naive approach:

I take one literal l of S
I if S � {l} is still UNSAT, S  S � {l}
I repeat this for every literal in S

Compute a minimal unsat core for

S = {x = y, f(x) + z = 5, f(x) 6= f(y), y  3}

We can do better...
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Computing minimal unsat core

Instead of dropping one literal at a time, drop half the literals, i.e., do binary
search.

Split S into two sets of similar cardinality S1 and S2.

If S1 is UNSAT, recursively minimize S1 and return the result.

Otherwise, if S2 is UNSAT, recursively minimize S2 and return the result.

If neither S1 nor S2 are UNSAT

I let S⇤
1 be the result of minimizing S1 assuming unsat core includes S2;

I let S⇤
2 be the result of minimizing S2 assuming unsat core includes S⇤

1 ;
I return S⇤

1 [ S⇤
2 .

How to minimize S1 assuming unsat core includes S2?

I Every time we issue sat query for a subset of S1, also conjoin S2

because we assume S2 is part of unsat core.

Compute a minimal unsat core for S = {x = y, f(x) + z = 5, f(x) 6= f(y), y  3}
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Computing minimal unsat core

The algorithms just described to compute a minimal unsat core, are using
the T-solver as a “blackbox”.

I Independent of the theory; works for any theory.

Another approach is to augment the T-solver to provide a minimal unsat
core.

I This trategy is potentially much more e�cient, because the T-solver
can take theory-specific knowledge into account.

I But not every T-solver provide minimal unsat cores.

Note that the basic SMT-solver algorithm described above, assumes the
T-solver provides an unsat core, but there is no assumption that this core is
minimal.
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Integration with DPLL

Lazy SMT solvers are based on the integration of a SAT solver and one (or
more) theory solver(s).

The basic architectural schema described by the SMT-solver algorithm is
also called “lazy o✏ine” approach, because the SAT solver is re-invoked
from scratch each time an assignment is found T -unsatisfiable.

Some more enhancements are possible if one does not use the SAT solver as
a “blackbox”.

I Check T -satisfiability of partial assignment A as it grows.
I If �(A) is T -unsatisfiable, backtrack to some point where the

assignment was still T -satisfiable.

To this end we need to integrate the theory solver right into the DPLL
algorithm of the SAT solver. This architectural schema is called “lazy
online” approach.

Combination of DPLL-based SAT solver and decision procedure for
conjunctive T formula is called DPLL(T ) framework.
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DPLL framework for SAT solvers

30 2 Decision Procedures for Propositional Logic

�

�

�

�

Algorithm 2.2.1: DPLL-SAT

Input: A propositional CNF formula B
Output: “Satisfiable” if the formula is satisfiable and “Unsatisfiable”

otherwise

1. function DPLL
2. if BCP() = “conflict” then return “Unsatisfiable”;
3. while (true) do
4. if ¬Decide() then return “Satisfiable”;
5. else
6. while (BCP() = “conflict”) do
7. backtrack-level := Analyze-Conflict();
8. if backtrack-level < 0 then return “Unsatisfiable”;
9. else BackTrack(backtrack-level);

full

conflict

SAT

UNSAT

dl � 0

BackTrack

Analyze-
ConflictBCP

conflict
no

partial
assignment

Decide

assignment

Fig. 2.4. DPLL-SAT: high-level overview of the Davis-Putnam-Loveland-Logemann
algorithm. The variable dl is the decision level to which the procedure backtracks

2.2.3 BCP and the Implication Graph

We now demonstrate Boolean constraints propagation (BCP), reaching a con-
flict, and backtracking. Each assignment is associated with the decision level
at which it occurred. If a variable xi is assigned 1 (true) (owing to either
a decision or an implication) at decision level dl, we write xi@dl. Similarly,

�� ��xi@dl
¬xi@dl reflects an assignment of 0 (false) to this variable at decision level
dl. Where appropriate, we refer only to the truth assignment, omitting the
decision level, in order to make the notation simpler.

DPLL(T ) framework
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2.2.3 BCP and the Implication Graph

We now demonstrate Boolean constraints propagation (BCP), reaching a con-
flict, and backtracking. Each assignment is associated with the decision level
at which it occurred. If a variable xi is assigned 1 (true) (owing to either
a decision or an implication) at decision level dl, we write xi@dl. Similarly,

�� ��xi@dl
¬xi@dl reflects an assignment of 0 (false) to this variable at decision level
dl. Where appropriate, we refer only to the truth assignment, omitting the
decision level, in order to make the notation simpler.

Theory Solver

conflict clause

DPLL(T ) framework

Suppose SAT solver has made partial assignment A in Decide step and
performed BCP (unit propagation).

If no conflict detected, immediately invoke theory solver.

Use theory solver to decide if �(A) is T -unsatisfiable.

If �(A) is T -unsatisfiable, add the negation of its unsat core (the conflict
clause) to clause database and continue doing BCP, which will detect
conflict.

As before, AnalyzeConflict decides what level to backtrack to
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DPLL(T ) framework for SMT solvers

30 2 Decision Procedures for Propositional Logic

�

�

�

�

Algorithm 2.2.1: DPLL-SAT

Input: A propositional CNF formula B
Output: “Satisfiable” if the formula is satisfiable and “Unsatisfiable”

otherwise

1. function DPLL
2. if BCP() = “conflict” then return “Unsatisfiable”;
3. while (true) do
4. if ¬Decide() then return “Satisfiable”;
5. else
6. while (BCP() = “conflict”) do
7. backtrack-level := Analyze-Conflict();
8. if backtrack-level < 0 then return “Unsatisfiable”;
9. else BackTrack(backtrack-level);

full

conflict

SAT

UNSAT

dl � 0

BackTrack

Analyze-
ConflictBCP

conflict
no

partial
assignment

Decide

assignment

Fig. 2.4. DPLL-SAT: high-level overview of the Davis-Putnam-Loveland-Logemann
algorithm. The variable dl is the decision level to which the procedure backtracks

2.2.3 BCP and the Implication Graph

We now demonstrate Boolean constraints propagation (BCP), reaching a con-
flict, and backtracking. Each assignment is associated with the decision level
at which it occurred. If a variable xi is assigned 1 (true) (owing to either
a decision or an implication) at decision level dl, we write xi@dl. Similarly,
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dl. Where appropriate, we refer only to the truth assignment, omitting the
decision level, in order to make the notation simpler.

Theory Solver

conflict clause

DPLL(T ) framework

Suppose SAT solver has made partial assignment A in Decide step and
performed BCP (unit propagation).

If no conflict detected, immediately invoke theory solver.

Use theory solver to decide if �(A) is T -unsatisfiable.

If �(A) is T -unsatisfiable, add the negation of its unsat core (the conflict
clause) to clause database and continue doing BCP, which will detect
conflict.

As before, AnalyzeConflict decides what level to backtrack to
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DPLL(T ) framework

Suppose SAT solver has made partial assignment A in Decide step and
performed BCP (Boolean Constraints Propagation, i.e. unit propagation).

If no conflict detected, immediately invoke theory solver.

Use theory solver to decide if �(A) is T -unsatisfiable.

If �(A) is T -unsatisfiable, add the negation of its unsat core (the conflict
clause) to clause database and continue doing BCP, which will detect
conflict.

As before, Analyze-Conflict decides what level to backtrack to.
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DPLL(T ) framework

We can go further in the integration of the theory solver into the DPLL
algorithm:

I Theory solver can communicate which literals are implied by current
partial assignment.

I These kinds of clauses implied by theory are called theory propagation
lemmas.

I Adding theory propagation lemmas prevents bad assignments to
boolean abstraction.
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Algorithm 2.2.1: DPLL-SAT

Input: A propositional CNF formula B
Output: “Satisfiable” if the formula is satisfiable and “Unsatisfiable”

otherwise

1. function DPLL
2. if BCP() = “conflict” then return “Unsatisfiable”;
3. while (true) do
4. if ¬Decide() then return “Satisfiable”;
5. else
6. while (BCP() = “conflict”) do
7. backtrack-level := Analyze-Conflict();
8. if backtrack-level < 0 then return “Unsatisfiable”;
9. else BackTrack(backtrack-level);

full

conflict

SAT

UNSAT

dl � 0

BackTrack

Analyze-
ConflictBCP

conflict
no

partial
assignment

Decide

assignment

Fig. 2.4. DPLL-SAT: high-level overview of the Davis-Putnam-Loveland-Logemann
algorithm. The variable dl is the decision level to which the procedure backtracks

2.2.3 BCP and the Implication Graph

We now demonstrate Boolean constraints propagation (BCP), reaching a con-
flict, and backtracking. Each assignment is associated with the decision level
at which it occurred. If a variable xi is assigned 1 (true) (owing to either
a decision or an implication) at decision level dl, we write xi@dl. Similarly,

�� ��xi@dl
¬xi@dl reflects an assignment of 0 (false) to this variable at decision level
dl. Where appropriate, we refer only to the truth assignment, omitting the
decision level, in order to make the notation simpler.

Theory Solver

conflict clause

DPLL(T ) framework

Suppose SAT solver has made partial assignment A in Decide step and
performed BCP (unit propagation).

If no conflict detected, immediately invoke theory solver.

Use theory solver to decide if �(A) is T -unsatisfiable.

If �(A) is T -unsatisfiable, add the negation of its unsat core (the conflict
clause) to clause database and continue doing BCP, which will detect
conflict.

As before, AnalyzeConflict decides what level to backtrack to
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Main benefits of lazy approach

The theory solver works only with sets of literals.

Every tool does what it is good at:

I SAT solver takes care of Boolean information.
I Theory solver takes care of theory information.

Modular approach:

I SAT and theory solvers communicate via a simple API.
I SMT for a new theory only requires new theory solver.

Almost all competitive SMT solvers integrate theory solvers use DPLL(T )
framework.
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Solving SMT problems

The theory solver works only with sets of literals.

In practice, we need to deal not only with

I arbitrary Boolean combinations of literals,
I but also with formulas with quantifiers

Some more sophisticated SMT solvers are able to handle formulas involving
quantifiers. But usually one loses decidability...
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Choosing a SMT solver

Theres are many available SMT solvers:

I some are targeted to specific theories;
I many support SMT-LIB format;
I many provide non-standard features.

Features to have into account:

I the e�ciency of the solver for the targeted theories;
I the solver’s license;
I the ways to interface with the solver;
I the “support” (is it being actively developed?).

See http://smtcomp.sourceforge.net
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