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the basic “lazy offline” approach and its enhancements;
minimal unsat core: basic ways to comput it;

DPLL(T) framework.

v

vV YyVvyy

2018/2019 o Practice with a SMT solver
Maria Jo3o Frade (HASLab, DI-UM) SMT solvers VF 2018/19 1/29 Maria Jo3o Frade (HASLab, DI-UM) SMT Solvers VF 2018/19 2/29
The SMT problem SMT solvers

@ The Satisfiability Modulo Theory (SMT) problem is a variation of the SAT
problem for first-order logic, with the interpretation of symbols constrained
by a specific theory (i.e., it is the problem of determining, for a theory T
and given a formula ¢, whether ¢ is T-satisfiable).

@ An SMT solver is a tool for deciding satisfiability of a FOL formula with
respect to some background theory.

@ Common first-order theories SMT solvers reason about:

» Equality and uninterpreted functions
» Arithmetics: rationals, integers, reals, difference logic, ...
» Bit-vectors, arrays, ...

@ In practice, one needs to work with a combination of theories.
x4+ 2=y — f(read(write(a,z,3),y —2)) = fly —x + 1)
Often decision procedures for each theory combine modularly.
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@ SMT solvers have gained enormous popularity over the last several years.

@ Wide range of applications: software verification, program analysis, test case
generation, model checking, scheduling, . . .

@ Many existing off-the-shelf SMT solvers:

Z3 (Microsoft Research)

Yices (SRI, USA)

CV(C3, CVC4 (NYU & U. lowa, USA)
Alt-Ergo (LRI, France)

MathSAT (U Trento, Italy)
Barcelogic (UP Catalunya, Spain)
Beaver (UC Berkeley, USA)
Boolector (FMV, Austria)
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@ SMT solving is active research topic today (see: http://www.smtlib.org)
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Solving SMT problems

@ For a lot of theories one has (efficient) decision procedures for a limited kind
of input problems: sets (or conjunctions) of literals.

@ In practice, we do not have just sets of literals.

» We have to deal with: arbitrary Boolean combinations of literals.

How to extend theory solvers to work with arbitrary quantifier-free formulas? J

@ Naive solution: convert the formula in DNF and check if any of its disjuncts
(which are conjunctions of literals) is T-satisfiable.

@ In reality, this is completely impractical: DNF conversion can yield
exponentially larger formula.

@ Current solution: exploit propositional SAT technology
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Lifting SAT technology to SMT

How to deal efficiently with boolean complex combinations of atoms in a theory? )

@ Two main approaches:

» Eager approach

* translate into an equisatisfiable propositional formula
* feed it to any SAT solver

» Lazy approach

* abstract the input formula to a propositional one

* feed it to a (DPLL-based) SAT solver

* use a theory decision procedure to refine the formula and guide the
SAT solver

@ According to many empirical studies, lazy approach performs better than the
eager approach.

@ We will only focus on the lazy approach.
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The “eager” approach

@ Methodology:

» Translate into an equisatisfiable propositional formula.
> Feed it to any SAT solver.

@ Why “eager”? Search uses all theory information from the beginning.
@ Characteristics: Sophisticated encodings are needed for each theory.

@ Tools: UCLID, STP, Boolector, Beaver, Spear, ...
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The “lazy” approach

@ Methodology:

» Abstract the input formula to a propositional one.

» Feed it to a (DPLL-based) SAT solver.

» Use a theory decision procedure to refine the formula and guide the
SAT solver.

@ Why “lazy”? Theory information used lazily when checking 7T -consistency
of propositional models.

@ Characteristics:
» SAT solver and theory solver continuously interact.
» Modular and flexible.

@ Tools: Z3, Yices, MathSAT, CVC4, Barcelogic, ...
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Boolean abstraction

@ Define a bijective function prop, called boolean abstraction function, that
maps each SMT formula to a overapproximate SAT formula.

Given a formula ¢ with atoms {a1,...,a,} and a set of propositional variables
{P1,...,P,} not occurring in 1,
@ The abstraction mapping, prop, from formulas over {ai,...,a,} to
propositional formulas over {Py, ..., P,}, is defined as the homomorphism

induced by prop(a;) = P;.

@ The inverse prop~*

associated atom a;.

simply replaces propositional variables P; with their

b gla) =cA(f(g(a)) # fle)Vgla) =d)Ac#d
—_— — 0 ] =
P1 —\Pz P3 “P4
prop(t) : P A(~PyV Ps) APy
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Boolean abstraction

¢ gla) =cA(f(g(a) # fle)vgla) =d) Ac#d
—_——— ——— N—— N——"
P - P Ps3 Py
prop(v) 5 Pl A (_\PQ \ Pg) VAN _‘P4

@ The boolean abstraction constructed this way overapproximates satisfiability
of the formula.

» Even if ¢ is not T-satisfiable, prop(y) can be satisfiable.

@ However, if boolean abstraction prop(v)) is unsatisfiable, then v is also
unsatisfiable.
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Boolean abstraction

For an assignment A of prop(¢)), let the set ®(.A) of first-order literals be defined
as follows

®(A) = {prop™" (P;) | A(P;) =1} U {=prop™'(P;) | A(P;) = 0}

¢ gla) =cA(f(g(a)) # flc)vgla) =d)Ac#d
—_— — 0 ] =
Py -P, Ps —Py
prop(¢)) : Py A (=PyV P3) A—Py

@ Consider the SAT assignment for prop (),
A:{PlH].’PQHO’PLLHO}
D(A) ={g(a) =c¢, f(g(a)) # f(c),c # d} is not T-satisfiable.

@ This is because T-atoms that may be related to each other are abstracted
using different boolean variables.
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The “lazy” approach (simplest version)

@ Given a CNF F, SAT-Solver(F') returns a tuple (r, A) where r is SAT if F
is satisfiable and UNSAT otherwise, and A is an assignment that satisfies F’
if  is SAT.

@ Given a set of literals S, T-Solver(S) returns a tuple (r,.J) where r is SAT
if S is T-satisfiable and UNSAT otherwise, and J is a justification if r is
UNSAT.

@ Given an T-unsatisfiable set of literals S, a justification (a.k.a. unsat core)
for S is any unsatisfiable subset J of S. A justification J is non-redundant
(or minimal) if there is no strict subset J’ of J that is also unsatisfiable.
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The “lazy” approach (simplest version)

Basic SAT and theory solver integration

SMT-Solver () {
F <+ prop(¢))
loop {
(r, A) < SAT-Solver(F)
if r = UNSAT then return UNSAT
(r, J) + T-Solver(®(A))
if = SAT then return SAT
C < Vpe, ~prop(B)
F+—FAC
}
}

v

If a valuation A satisfying F' is found, but ®(.A) is T-unsatisfiable, we add to F' a
clause C' which has the effect of excluding A when the SAT solver is invoked
again in the next iteration. This clause is called a “theory lemma” or a “theory
conflict clause”.
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SMT-Solver( g(a) = ¢ A (f(g(e)) # () V g(a) = d) Ae £ d)
@ F =prop()) =P, A (=PyV P3) A=Py
@ SAT-Solver(F) = SAT, A= {P,+— 1,P,+— 0, Py — 0}
o ®(A) ={g(a) = ¢, f(g(a)) # f(c),c # d}
T-Solver(®(A)) = UNSAT, J = {g(a) =c, f(g(a)) # f(c),c # d}
e C=-PVPVPE

4
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SMT-Solver( g(a) = ¢ A (f(g(a)) # f(c) Vgla) =d) Ac#d)
@ F =prop(yp) = Py A (=PyV P3) A=Py

SAT-Solver(F) = SAT, A= {P, — 1,P,+— 0, Py — 0}

B(A) = {g(a) = ¢, f(g(a)) # F(0)c # d}

T-Solver(®(A)) = UNSAT, J = {g(a) = ¢, f(g(a)) # f(c),c # d}

e C=-PVPVE

] F:P1/\(_‘PQ\/PB)/\_‘P4/\(_|P1\/PZ\/P4)

SAT-Solver(F) = SAT, A= {P, 5 1,Py s 1, P33 1, P, 5 0}

®(A) = {g9(a) = ¢, f(g(a)) = f(c), g(a) =d,c # d}

T-Solver(®(A)) = UNSAT, J ={g(a) = c, f(9(a)) = f(c),g(a) = d,c # d}
o C:ﬁpl\/ﬁPQVﬁPg\/Pz;

y
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SMT-Solver( g(a) = c A (f(g(a)) # £(O)V gla) = d) Ac£d)
@ F = prop(¢)) = P A (=P V P3) A =Py
@ SAT-Solver(F) = SAT, A= {P, — 1,P,+— 0, Py — 0}
o &(A) = {g(a) = ¢, f(g9(a)) # f(c),c # d}
T-Solver(®(A)) = UNSAT, J = {g(a) =c, f(g(a)) # f(c),c # d}
e C=-PVPVP

] F:P1/\(_‘PQ\/PB)/\_‘P4/\(_|P1\/PQ\/P4)

SAT-Solver(F) = SAT, A= {P, —1,Py s 1, P33 1, P, 5 0}
o (A) ={g(a) =, f(g(a)) = f(c), g(a) =d,c # d}

T-Solver(®(A)) = UNSAT, J ={g(a) = c, f(g(a)) = f(c),9(a) = d,c # d}
o C:ﬁP1VﬁP2VﬁP3\/P4

o F= P1 N (_\Pg \Y P3) N _‘P4 N (_\P1 \Y Pg \Y P4) N (_\Pl \Y _\P2 \Y _‘Pg \Y P4)
SAT-Solver(F) = UNSAT

y
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SMT-Solver( z =3 A (f(x+y)=flyyVy=2)Az=1y)
o F =prop()) = PLA(PyV P3) APy
"] SAT—SO'VGI’(F) = SAT, A= {Pl — 17P2 *—>07P3*—> 17P4*—> 1}

0 ®(A) ={z=3,f(z+y) #f(¥),y=2,2 =y}
T-Solver(®(A)) = UNSAT, J={z=3,y=2,z =y}

@ C=-PV-P3V-P,
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SMT-Solver( z =3 A (f(x+y)=flyy Vy=2)Az=1y)
@ F =prop(¢p)) = PLA(PyV P3) APy
] SAT—SO'VGI’(F)ZSAT, A= {P1P—>17P2f—>07P3*—>17P4*—>1}

 ®(A) ={z=3,f(z+y) #f¥),y=2,2 =y}
T-Solver(®(A)) = UNSAT, J={z=3,y=2,2z =y}

@ C=-P VPV P

(] F:P1/\(PQ\/P;;)/\P;;/\(ﬁPlVﬁPg\/ﬁP;l)
SAT-Solver(F) = SAT, A={Pi— 1,P,— 1,P;—0,P;— 1}

0 d(A)={z=3,f(z+y) = fy),y #2,2 =y}
T-Solver(®(A)) = SAT
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The “lazy” approach (enhancements)

Several enhancements are possible to increase efficiency of this basic algorithm:

o If ®(A) is T-unsatisfiable, identify a small justification (or unsat core) of it
and add its negation as a clause.

@ Check T-satisfiability of partial assignment A as it grows.

o If ®(A) is T-unsatisfiable, backtrack to some point where the assignment
was still T-satisfiable.
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Unsat cores

@ Given a T-unsatisfiable set of literals .S, a justification (a.k.a. unsat core)
for S is any unsatisfiable subset J of S.

@ So, the easiest justification S is the set S itself.
@ However, conflict clauses obtained this way are too weak.
» Suppose ®(A) = {z =0,z =3,l1,ls,...,l50}. This set is unsat.

» Theory conflict clause C = VBe<1>(A) —prop(B) prevents that exact
same assignment. But it doesn't prevent many other bad assignments
involving x = 0 and x = 3.

» In fact, there are 2°0 unsat assignments containing z = 0 and = = 3,

but C just prevents one of them!

@ Efficiency can be improved if we have a more precise justification. Ideally, a
minimal unsat core. This way we block many assignments using just one
theory conflict clause.
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Computing minimal unsat core

@ How to compute a minimal unsat core of a T-unsatisfiable set of literals S7?
@ A naive approach:

» take one literal [ of S
» if S — {I} is still UNSAT, S+ S — {i}
> repeat this for every literal in S

Compute a minimal unsat core for

S={z=y,f(x)+2=5,f(z) # f(y),y <3}

@ We can do better...
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Computing minimal unsat core

@ Instead of dropping one literal at a time, drop half the literals, i.e., do binary
search.

@ Split .S into two sets of similar cardinality S7 and S5.

@ If Sy is UNSAT, recursively minimize S; and return the result.

@ Otherwise, if Sy is UNSAT, recursively minimize Sy and return the result.
@ If neither S; nor Sy are UNSAT

> let ST be the result of minimizing S; assuming unsat core includes So;
> let S5 be the result of minimizing S, assuming unsat core includes S7;
> return ST US5.

@ How to minimize S; assuming unsat core includes S57

» Every time we issue sat query for a subset of Sy, also conjoin Sy
because we assume S is part of unsat core.

Compute a minimal unsat core for S = {z =y, f(z)+ 2z =5, f(z) # f(y),y < 3})
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Computing minimal unsat core

@ The algorithms just described to compute a minimal unsat core, are using
the T-solver as a “blackbox”.

> Independent of the theory; works for any theory.

@ Another approach is to augment the T-solver to provide a minimal unsat
core.

» This trategy is potentially much more efficient, because the T-solver
can take theory-specific knowledge into account.
» But not every T-solver provide minimal unsat cores.

@ Note that the basic SMT-solver algorithm described above, assumes the
T-solver provides an unsat core, but there is no assumption that this core is
minimal.
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Integration with DPLL

@ Lazy SMT solvers are based on the integration of a SAT solver and one (or
more) theory solver(s).

@ The basic architectural schema described by the SMT-solver algorithm is
also called “lazy offline” approach, because the SAT solver is re-invoked
from scratch each time an assignment is found 7 -unsatisfiable.

@ Some more enhancements are possible if one does not use the SAT solver as
a “blackbox".

» Check T-satisfiability of partial assignment A as it grows.
» If ®(A) is T-unsatisfiable, backtrack to some point where the
assignment was still T-satisfiable.

@ To this end we need to integrate the theory solver right into the DPLL
algorithm of the SAT solver. This architectural schema is called “lazy
online” approach.

@ Combination of DPLL-based SAT solver and decision procedure for
conjunctive T formula is called DPLL(T ) framework.
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DPLL framework for SAT solvers

!
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DPLL(T) framework for SMT solvers

SAT

full

assignment

partial
assignment
A

no

conflict conflict ANALYZE- .\
B(A) conflict clause
Theory Solver '
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DPLL(7) framework

@ Suppose SAT solver has made partial assignment A in Decide step and
performed BCP (Boolean Constraints Propagation, i.e. unit propagation).

@ If no conflict detected, immediately invoke theory solver.
@ Use theory solver to decide if ®(.A) is T-unsatisfiable.

o If ®(A) is T-unsatisfiable, add the negation of its unsat core (the conflict
clause) to clause database and continue doing BCP, which will detect
conflict.

@ As before, Analyze-Conflict decides what level to backtrack to.
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DPLL(7) framework

@ We can go further in the integration of the theory solver into the DPLL
algorithm:

» Theory solver can communicate which literals are implied by current
partial assignment.

» These kinds of clauses implied by theory are called theory propagation
lemmas.

» Adding theory propagation lemmas prevents bad assignments to
boolean abstraction.
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DPLL(T) framework
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Main benefits of lazy approach

@ The theory solver works only with sets of literals.
@ Every tool does what it is good at:

» SAT solver takes care of Boolean information.
» Theory solver takes care of theory information.

@ Modular approach:

» SAT and theory solvers communicate via a simple API.
» SMT for a new theory only requires new theory solver.

@ Almost all competitive SMT solvers integrate theory solvers use DPLL(T)
framework.
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Solving SMT problems

@ The theory solver works only with sets of literals.
@ In practice, we need to deal not only with

» arbitrary Boolean combinations of literals,
» but also with formulas with quantifiers

@ Some more sophisticated SMT solvers are able to handle formulas involving
quantifiers. But usually one loses decidability...
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Choosing a SMT solver

@ Theres are many available SMT solvers:

» some are targeted to specific theories;
» many support SMT-LIB format;
» many provide non-standard features.

@ Features to have into account:

the efficiency of the solver for the targeted theories;
the solver’s license;

the ways to interface with the solver;

the “support” (is it being actively developed?).

vV vy VvVvyy

@ See http://smtcomp.sourceforge.net

Maria Jodo Frade (HASLab, DI-UM) SMT Solvers VF 2018/19 29/29




