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Roadmap

Programming and Proving in Coq

some datatypes of programming;

functional correctness; partiality; specification types;

program extraction;

non-structural recursion.
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Some datatypes of programming

Inductive unit : Set := tt : unit.

Inductive bool : Set := true : bool | false : bool.

Inductive nat : Set := O : nat | S : nat -> nat.

Inductive option (A : Type) : Type := Some : A -> option A
| None : option A.

Inductive identity (A : Type) (a : A) : A -> Type :=
refl_identity : identity A a a.

Some operations on bool are also provided: andb (with infix notation &&), orb

(with infix notation ||), xorb, implb and negb.
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Some datatypes of programming

Inductive sum (A B : Type) : Type := inl : A -> A + B
| inr : B -> A + B.

Inductive prod (A B : Type) : Type := pair : A -> B -> A * B.

Definition fst (A B : Type) (p : A * B) := let (x, _) := p in x.

Definition snd (A B : Type) (p : A * B) := let (_, y) := p in y.

The constructive sum {A}+{B} of two propositions A and B.

Inductive sumbool (A B : Prop) : Set :=
| left : A -> {A} + {B}
| right : B -> {A} + {B}.
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If-then-else

The sumbool type can be used to define an “if-then-else” construct in Coq.

Coq accepts the syntax if test then ... else ... when test has either
of type bool or {A}+{B}, with propositions A and B.

Its meaning is the pattern-matching match test with
| left H => ...
| right H => ...

end.

We can identify {P}+{~P} as the type of decidable predicates:

The standard library defines many useful predicates, e.g.

le_lt_dec : forall n m : nat, {n <= m} + {m < n}
Z_eq_dec : forall x y : Z, {x = y} + {x <> y}
Z_lt_ge_dec : forall x y : Z, {x < y} + {x >= y}
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Exercises

Load the file lesson3.v in the Coq proof assistant to follow the examples
of the coming slides. Analyse the examples and solve the exercises
proposed.
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If-then-else

A function that checks if an element is in a list.

Fixpoint elem (a:Z) (l:list Z) {struct l} : bool :=
match l with
| nil => false
| cons x xs => if (Z_eq_dec x a) then true else (elem a xs)

end.

Exercise:

Inspect the proof of

Proposition elem_corr : forall (a:Z) (l1 l2:list Z),

elem a (app l1 l2) = orb (elem a l1) (elem a l2).

and prove the following lemma:

Lemma ex : forall (a:Z) (l1 l2:list Z),

elem a (app l1 (cons a l2)) = true.
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The “subset” type

Coq’s type system allows to combine a datatype and a predicate over this
type, creating “the type of data that satisfies the predicate”. Intuitively, the
type one obtains represents a subset of the initial type.

Inductive sig (A : Type) (P : A -> Prop) : Type :=
exist : forall x : A, P x -> sig A P.

Given A:Type and P:A->Prop, the syntactical convention for (sig A P) is
the construct {x:A | P x}. (Predicate P is the characteristic function of
this set).

We may build elements of this set as (exist x p) whenever we have a
witness x:A with its justification p:(P x).

From such a (exist x p) we may in turn extract its witness x:A .

In technical terms, one says that sig is a “dependent sum” or a ⌃-type.
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The “subset” type

A value of type {x:A | P x} should contain a computation component
that says how to obtain a value v and a certificate, a proof that v satisfies
predicate P.

A variant sig2 with two predicates is also provided.

Inductive sig2 (A : Type) (P Q : A -> Prop) : Type :=

exist2 : forall x : A, P x -> Q x -> sig2 A P Q

The notation for (sig2 A P Q) is {x:A | P x & Q x}.
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Functional correctness

There are two approaches to define functions and provide proofs that they
satisfy a given specification:

To define these functions with a weak specification and then add
companion lemmas.
For instance, we define a function f : A!B and we prove a
statement of the form 8x :A,Rx (fx), where R is a relation coding
the intended input/output behaviour of the function.

To give a strong specification of the function: the type of this
function directly states that the input is a value x of type A and that
the output is the combination of a value v of type B and a proof that
v satisfies Rxv.
This kind of specification usually relies on dependent types.
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Partiality

The Coq system does not allow the definition of partial functions (i.e.
functions that give a run-time error on certain inputs). However we can
enrich the function domain with a precondition that assures that invalid
inputs are excluded.

A partial function from type A to type B can be described with a
type of the form 8x :A,P x!B, where P is a predicate that
describes the function’s domain.

Applying a function of this type requires two arguments: a term t of
type A and a proof of the precondition P t.
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Example: the function head

An attempt to define the head function as follows will fail!

Definition head (A:Type) (l:list A) : A :=
match l with
| cons x xs => x
end.

Error: Non exhaustive pattern-matching: no clause found
for pattern nil

To overcome the above di�culty, we need to:

consider a precondition that excludes all the erroneous argument values;

pass to the function an additional argument: a proof that the precondition
holds;

the match constructor return type is lifted to a function from a proof of the
precondition to the result type.

any invalid branch in the match constructor leads to a logical contradiction
(it violates the precondition).
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Example: the function head

Definition head (A:Type) (l:list A) : l<>nil -> A.
refine (

match l as l’ return l’<>nil -> A with
| nil => fun H => _
| cons x xs => fun H => x
end ).

elimtype False; apply H; reflexivity.
Defined.

Print Implicit head.

head : forall (A : Type) (l : list A), l <> nil -> A

Arguments A, l are implicit
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Example: the function head

The specification of head is:

Definition headPre (A:Type) (l:list A) : Prop := l<>nil.

Inductive headRel (A:Type) (x:A) : list A -> Prop :=
headIntro : forall l, headRel x (cons x l).

The correctness of function head is thus given by the following theorem:

Lemma head_correct : forall (A:Type) (l:list A) (p:headPre l),
headRel (head p) l.

Proof.
induction l.
- intro H; elim H; reflexivity.
- intros; destruct l; [simpl; constructor | simpl; constructor].

Qed.
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Extraction

Conventional programming languages do not provide dependent types and
well-typed functions in Coq do not always correspond to well-typed functions
in the target programing language.

In CIC functions may contain subterms corresponding to proofs that have
practically no interest with respect to the final value.

The computations done in the proofs correspond to verifications that should
be done once and for all at compile-time, while the computation on the
actual data needs to be done for each value presented to functions at
run-time.

Coq implements this mechanism of filtering the computational content from
the objects - the so called extraction mechanism.

The distinction between the sorts Prop and Set is used to mark the logical
aspects that should be discharged during extraction or the computational
aspects that should be kept.
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Extraction

Coq supports di↵erent target languages: Ocaml, Haskell, Scheme.
The extraction framework must be loaded explicitly.

Require Extraction.

Check head.

head : forall (A : Type) (l : list A), l <> nil -> A

Extraction Language Haskell.

Extraction Inline False_rect.

Extraction head.

head :: (List a1) -> a1

head l =

case l of

Nil -> Prelude.error "absurd case"

Cons x xs -> x
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Extraction

Extraction of all the mentioned objects and all their dependencies in the Coq toplevel.

Recursive Extraction head.

module Main where

import qualified Prelude

data List a =

Nil

| Cons a (List a)

head :: (List a1) -> a1

head l =

case l of {

Nil -> Prelude.error "absurd case";

Cons x _ -> x}

Recursive extraction of all the mentioned objects and all their dependencies into a file.

Extraction "filename" head.
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Extraction

The system also provides a mechanism to specify terms for inductive types and

constructors of the target programming language.

For instance, we may want to use the Haskell native list type instead of the Coq one.

Extract Inductive list => "[]" [ "[]" "(:)" ].

Recursive Extraction head.

module Main where

import qualified Prelude

head :: ([] a1) -> a1

head l =

case l of {

[] -> Prelude.error "absurd case";

(:) x _ -> x}
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Specification types

Using ⌃-types we can express specification constrains in the type of a function -
we simply restrict the codomain type to those values satisfying the specification.

Consider the following definition of the inductive relation “x is the last
element of list l”, and the theorem specifing the function that gives the last
element of a list.

Inductive Last (A:Type) (x:A) : list A -> Prop :=

| last_base : Last x (x :: nil)

| last_step : forall l y, Last x l -> Last x (y :: l).

Theorem last_correct : forall (A:Type) (l:list A),

l<>nil -> { x:A | Last x l }.

By proving this theorem we build an inhabitant of this type, and then we
can extract the computational content of this proof, and obtain a function
that satisfies the specification.

The Coq system thus provides a certified software production tool, since the
extracted programs satisfy the specifications described in the formal
developments.
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Specification types

Let us build an inhabitant of that type

Theorem last_correct : forall (A:Type) (l:list A),
l<>nil -> { x:A | Last x l }.

Proof.
induction l.
- intro H; elim H; reflexivity.
- intros. destruct l.
+ exists a. constructor.
+ elim IHl.

* intros; exists x. constructor. assumption.
* discriminate.

Qed.
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Program extraction

We can extract the computational content of the proof of the last theorem.

Extraction Inline False_rect.

Extraction Inline sig_rect.

Extraction Inline list_rect.

Recursive Extraction last correct.

module Main where

import qualified Prelude

type Sig a = a

-- singleton inductive, whose constructor was exist

last_correct :: ([] a1) -> a1

last_correct l =

case l of {

[] -> Prelude.error "absurd case";

(:) y l0 -> case l0 of {

[] -> y;

(:) _ _ -> last_correct l0}}
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Exercise

Exercise

Built an alternative definition of function head called “head corr” based on
the strong specification mechanism provided by Coq.
That is,

give a strong specification of “head corr”;

prove it;

and then, extract the computacional content of this proof.
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Case study: sorting a list

A simple characterisation of sorted lists consists in requiring that two consecutive
elements be compatible with the  relation.

We can codify this with the following predicate:

Open Scope Z_scope.

Inductive Sorted : list Z -> Prop :=
| sorted0 : Sorted nil
| sorted1 : forall z:Z, Sorted (z :: nil)
| sorted2 : forall (z1 z2:Z) (l:list Z),

z1 <= z2 -> Sorted (z2 :: l) -> Sorted (z1 :: z2 :: l).
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Case study: sorting a list

To capture permutations, instead of an inductive definition we will define the
relation using an auxiliary function that count the number of occurrences of
elements:

Fixpoint count (z:Z) (l:list Z) {struct l} : nat :=
match l with
| nil => 0%nat
| (z’ :: l’) =>

match Z_eq_dec z z’ with
| left _ => S (count z l’)
| right _ => count z l’
end

end.

A list is a permutation of another when contains exactly the same number of
occurrences (for each possible element):

Definition Perm (l1 l2:list Z) : Prop :=
forall z, count z l1 = count z l2.
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Case study: sorting a list

Exercise:

Prove that Perm is an equivalence relation:

Lemma Perm_reflex : forall l:list Z, Perm l l.
Lemma Perm_sym : forall l1 l2, Perm l1 l2 -> Perm l2 l1.
Lemma Perm_trans : forall l1 l2 l3,

Perm l1 l2 -> Perm l2 l3 -> Perm l1 l3.

Exercise:

Prove the following lemmas:

Lemma Perm_cons : forall a l1 l2,
Perm l1 l2 -> Perm (a::l1) (a::l2).

Lemma Perm_cons_cons : forall x y l, Perm (x::y::l) (y::x::l).
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Case study: sorting a list

A simple strategy to sort a list consist in iterate an “insert” function that inserts
an element in a sorted list.

Fixpoint insert (x:Z) (l:list Z) {struct l} : list Z :=
match l with
| nil => x :: nil
| (h :: t) =>

match Z_lt_ge_dec x h with
left _ => x :: (h :: t)

| right _ => h :: (insert x t)
end

end.

Fixpoint isort (l:list Z) : list Z :=
match l with
nil => nil

| (h :: t) => insert h (isort t)
end.
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Case study: sorting a list

The theorem we want to prove is:

Theorem isort_correct : forall (l l’:list Z),

l’=isort l -> Perm l l’ /\ Sorted l’.

We will certainly need auxiliary lemmas... Let us make a prospective proof attempt:

Proof.

induction l; intros.

- unfold Perm; rewrite H; split; auto. simpl. constructor.

- simpl in H.

rewrite H. (* ??????????? *)

a : Z
l : list Z
IHl : forall l’ : list Z, l’ = isort l -> Perm l l’ /\ Sorted l’
l’ : list Z
H : l’ = insert a (isort l)
============================
Perm (a :: l) (insert a (isort l)) /\ Sorted (insert a (isort l))
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Case study: sorting a list

It is now clear what are the needed lemmas:

Lemma insert_Perm : forall x l, Perm (x::l) (insert x l).

Lemma insert_Sorted : forall x l, Sorted l -> Sorted (insert x l).

In order to prove them the following lemmas about count, may be useful.

Lemma count_insert_eq : forall x l,

count x (insert x l) = S (count x l).

Lemma count_cons_diff : forall z x l,

z <> x -> count z l = count z (x :: l).

Lemma count_insert_diff : forall z x l,

z <> x -> count z l = count z (insert x l).

Check the proofs.
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Case study: sorting a list

Now we can conclude the proof of correctness...

Theorem isort_correct : forall (l l’:list Z),
l’=isort l -> Perm l l’ /\ Sorted l’.

Proof.
induction l; intros.
- unfold Perm; rewrite H; split; auto. simpl. constructor.
- simpl in H.
rewrite H. (* ??????????? *)
elim (IHl (isort l)); intros; split.
+ apply Perm_trans with (a::isort l).

* unfold Perm. intro z. simpl. elim (Z_eq_dec z a).
-- intros. elim H0; reflexivity.
-- auto with zarith.

* apply insert_Perm.
+ apply insert_Sorted. assumption.

Qed.
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Case study: sorting a list

Exercise:

Complete the following proof and extract its computational content to an Haskell
function.

Definition inssort : forall (l:list Z),
{ l’ | Perm l l’ & Sorted l’ }.

induction l.
- exists nil. constructor. constructor.
- elim IHl. intros. exists (insert a x).

...

Defined.
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Non-structural recursion

When the recursion pattern of a function is not structural in the arguments, we
are no longer able to directly use the derived recursors to define it.

Consider the Euclidean division algorithm written in Haskell

div :: Int -> Int -> (Int,Int)
div n d | n < d = (0,n)

| otherwise = let (q,r) = div (n-d) d
in (q+1,r)

In recent versions of Coq (after v8.1), a new command Function allows to
directly encode general recursive functions.

The Function command accepts a measure function that specifies how the
argument “decreases” between recursive function calls.

It generates proof-obligations that must be checked to guaranty the
termination.
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Non-structural recursion

Close Scope Z_scope.

Require Import Recdef. (* because of Function *)

Function div (p:nat*nat) {measure fst} : nat*nat :=
match p with
| (_,0) => (0,0)
| (a,b) => if le_lt_dec b a

then let (x,y) := div (a-b,b) in (1+x,y)
else (0,a)

end.
Proof.
intros. simpl. omega.
Qed.

The Function command generates a lot of auxiliary results related to the defined
function. Some of them are powerful tools to reason about it.
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Non-structural recursion

The Function command is also useful to provide “natural encodings” of
functions that otherwise would need to be expressed in a contrived manner.

Exercise:

Complete the definition of the function merge, presenting a proof of its
termination.

Function merge (p:list Z*list Z)
{measure (fun p=>(length (fst p))+(length (snd p)))} : list Z :=

match p with
| (nil,l) => l
| (l,nil) => l
| (x::xs,y::ys) => if Z_lt_ge_dec x y

then x::(merge (xs,y::ys))
else y::(merge (x::xs,ys))

end.
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Another example of correctness

A specification of the Euclidean division algorithm:

Definition divRel (args:nat*nat) (res:nat*nat) : Prop :=

let (n,d):=args in let (q,r):=res in q*d+r=n /\ r<d.

Definition divPre (args:nat*nat) : Prop := (snd args)<>0.

A proof of correctness:
Theorem div_correct : forall (p:nat*nat), divPre p -> divRel p (div p).

Proof.

unfold divPre, divRel.

intro p.

(* we make use of the specialised induction principle to conduct the proof... *)

functional induction (div p); simpl.

- intro H; elim H; reflexivity.

- (* a first trick: we expand (div (a-b,b)) in order to get rid of the let (q,r)=... *)

replace (div (a-b,b)) with (fst (div (a-b,b)),snd (div (a-b,b))) in IHp0.

+ simpl in *. intro H; elim (IHp0 H); intros. split.

* (* again a similar trick: we expand "x" and "y0" in order to use an hypothesis *)

change (b + (fst (x,y0)) * b + (snd (x,y0)) = a).

rewrite <- e1. omega.

* (* and again... *)

change (snd (x,y0)<b); rewrite <- e1; assumption.

+ symmetry; apply surjective_pairing.

- auto.

Qed.
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