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Introduction

The language of propositional logic is based on propositions, or
declarative sentences which one can, in principle, argue as being
“true” or “false”.
“The capital of Portugal is Braga.”
“D. Afonso Herriques was the first king of Portugal.”

Propositional symbols are the atomic formulas of the language. More
complex sentences are constructed using logical connectives.

In classical propositional logic (PL) each sentence is either true or
false.

In fact, the content of the propositions is not relevant to PL. PL is
not the study of truth, but of the relationship between the truth of
one statement and that of another.
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Syntax

The alphabet of the propositional language is organised into the following
categories.

Propositional variables: P, Q, R, . . . 2 VProp (a countably infinite set)

Logical connectives: ? (false) ,> (true), ¬ (not), ^ (and), _ (or), !
(implies), $ (equivalent)

Auxiliary symbols: “(“ and “)”.

The set Form of formulas of propositional logic is given by the abstract syntax

Form 3 A, B ::= P | ? | > | (¬A) | (A ^B) | (A _B) | (A! B) | (A$ B)

We let A, B, C, F, G, H, . . . range over Form.

Outermost parenthesis are usually dropped. In absence of parentheses, we adopt
the following convention about precedence. Ranging from the highest precedence
to the lowest, we have respectively: ¬, ^, _, ! and $. All binary connectives
are right-associative.
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Semantics

The semantics of a logic provides its meaning. What exactly is meaning?
In propositional logic, meaning is given by the truth values true and false,
where true 6= false. We will represent true by 1 and false by 0.

An assignment is a function A : VProp!{0, 1}, that assigns to every
propositional variable a truth value.
An assignment A naturally extends to all formulas, A : Form!{0, 1}.
The truth value of a formula is computed using truth tables:

F A B ¬A A ^B A _B A! B A$ B ? >

A1(F ) 0 1 1 0 1 1 0 0 1
A2(F ) 0 0 1 0 0 1 1 0 1
A3(F ) 1 1 0 1 1 1 1 0 1
A4(F ) 1 0 0 0 1 0 0 0 1
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Semantics

Let A be an assignment and let F be a formula.
If A(F ) = 1, then we say F holds under assignment A, or A models F .
We write A |= F i↵ A(F ) = 1, and A 6|= F i↵ A(F ) = 0.

An alternative (inductive) definition of A |= F is

A |= >
A 6|= ?
A |= P i↵ A(P ) = 1
A |= ¬A i↵ A 6|= A

A |= A ^B i↵ A |= A and A |= B

A |= A _B i↵ A |= A or A |= B

A |= A! B i↵ A 6|= A or A |= B

A |= A$ B i↵ A |= A i↵ A |= B

Maria João Frade (HASLab, DI-UM) PL & SAT VF 2018/19 6 / 69

Validity, satisfiability, and contradiction

A formula F is

valid i↵ it holds under every assignment. We write |= F .
A valid formula is called a tautology.

satisfiable i↵ it holds under some assignment.

unsatisfiable i↵ it holds under no assignment.
An unsatisfiable formula is called a contradiction.

refutable i↵ it is not valid.

Proposition
F is valid i↵ ¬F is a contradiction

(A ^ (A! B))! B is valid. A! B is satisfiable and refutable.
A ^ ¬A is a contradiction.
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Consequence and equivalence

F |= G i↵ for every assignment A, if A |= F then A |= G. We say
G is a consequence of F .

F ⌘ G i↵ F |= G and G |= F . We say F and G are equivalent.

Let � = {F1, F2, F3, . . . } be a set of formulas.

A |= � i↵ A |= Fi for each formula Fi in �. We say A models �.

� |= G i↵ A |= � implies A |= G for every assignment A. We say
G is a consequence of �.

Proposition

F |= G i↵ |= F ! G

� |= G and � finite i↵ |=
V

�! G
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Some basic equivalences

A _A ⌘ A

A ^A ⌘ A

A _B ⌘ B _A

A ^B ⌘ B ^A

A ^ (A _B) ⌘ A

A ^ (B _ C) ⌘ (A ^B) _ (A ^ C)
A _ (B ^ C) ⌘ (A _B) ^ (A _ C)

¬(A _B) ⌘ ¬A ^ ¬B

¬(A ^B) ⌘ ¬A _ ¬B

A ^ ¬A ⌘ ?

A _ ¬A ⌘ >

A ^ > ⌘ A

A _ > ⌘ >

A ^ ? ⌘ ?

A _ ? ⌘ A

¬¬A ⌘ A

A! B ⌘ ¬A _B
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Consistency

Let � = {F1, F2, F3, . . . } be a set of formulas.

� is consistent or satisfiable i↵ there is an assignment that models �.

We say that � is inconsistent i↵ it is not consistent and denote this by
� |= ?.

Proposition

{F, ¬F} |= ?

If � |= ? and � ✓ �0, then �0
|= ?.

� |= F i↵ �, ¬F |= ?
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Theories

A set of formulas T is closed under logical consequence i↵ for all formulas
F , if T |= F then F 2 T .

T is a theory i↵ it is closed under logical consequence. The elements of T

are called theorems.

Let � be a set of formulas.

T (�) = {F | � |= F} is called the theory of �.
The formulas of � are called axioms and the theory T (�) is axiomatizable.
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Substitution

Formula G is a subformula of formula F if it occurs syntactically
within F .

Formula G is a strict subformula of F if G is a subformula of F and
G 6= F

Substitution theorem
Suppose F ⌘ G. Let H be a formula that contains F as a subformula.
Let H

0 be the formula obtained by replacing some occurrence of F in H

with G. Then H ⌘ H
0.
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Adquate sets of connectives for PL

There is some redundancy among the logical connectives.

Some smaller adquate sets of conectives for PL:

{^, ¬} ? ⌘ P ^ ¬P, > ⌘ ¬(P ^ ¬P ),
A _B ⌘ ¬(¬A ^ ¬B), A! B ⌘ ¬(A ^ ¬B)

{_, ¬} > ⌘ A _ ¬A, ? ⌘ ¬(A _ ¬A),
A ^B ⌘ ¬(¬A _ ¬B), A! B ⌘ A _B

{!, ¬} > ⌘ A! A, ? ⌘ ¬(A! A),
A _B ⌘ ¬A! B, A ^B ⌘ ¬(A! ¬B)

{!,?} ¬A ⌘ A! ?, > ⌘ A! A,

A _B ⌘ (A! ?)! B), A ^B ⌘ (A! B ! ?)! ?

A$ B ⌘ (A! B) ^ (B ! A)
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Decidability

A decision problem is any problem that, given certain input, asks a
question to be answered with a “yes” or a “no”.

A solution to a decision problem is a program that takes problem instances
as input and always terminates, producing a correct “yes” or “no” output.
A decision problem is decidable if it has a solution.

Given formulas F and G as input, we may ask:

Decision problems

Validity problem: “Is F valid ?”
Satisfiability problem: “Is F satisfiable ?”
Consequence problem: “Is G a consequence of F ?”
Equivalence problem: “Are F and G equivalent ?”

All these problems are decidable!
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Decidability

Any algorithm that works for one of these problems also works for all of
these problems!

F is satisfiable i↵ ¬F is not valid
F |= G i↵ ¬(F ! G) is not satisfiable
F ⌘ G i↵ F |= G and G |= F

F is valid i↵ F ⌘ >

Truth-table method
For the satisfiability problem, we first compute a truth table for F and
then check to see if its truth value is ever one.

This algorithm certainly works, but is very ine�cient.
Its exponential-time! O(2n)

If F has n atomic formulas, then the truth table for F has 2n rows.
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Complexity

An algorithm is polynomial-time if there exists a polynomial p(x) such that
given input of size n, the algorithm halts in fewer than p(n) steps. The
class of all decision problems that can be resolved by some
polynomial-time algorithm is denoted by P (or PTIME).

It is not known whether the satisfiability problem (and the other three
decision problems) is in P.

We do not know of a polynomial-time algorithm for satisfiability.

If it exists, then P = NP !

The Satisfiability problem for PL (PSAT) is NP-complete (it was the first
one to be shown NP-complete).
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Complexity

A deterministic algorithm is a step-by-step procedure. At any stage of the

algorithm, the next step is completely determined.

In contrast, a non-deterministic algorithm may have more than one possible “next

step” at a given stage. That is, there may be more than one computation for a

given input.

NP (non-deterministic polynomial-time) decision problems
Let PROB be an arbitrary decision problem. Given certain input, PROB produces an

output of either “yes” or “no”. Let Y be the set of all inputs for which PROB produces

the output of “yes” and let N be the analogous set of inputs that produce output “no”.

If there exists a non-deterministic algorithm which, given input x, can produce the

output “yes” in polynomial-time if and only if x 2 Y , then PROB is in NP.

If there exists a non-deterministic algorithm which, given input x, can produce the

output “no” in polynomial-time if and only if x 2 N , then PROB is in coNP.
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Complexity

Essentially, a decision problem is in NP (coNP ) if a “yes” (“no”) answer
can be obtained in polynomial-time by guessing.

Satisfiability problem is NP. Given a formula F compute an assignment A for F .

If A(F ) = 1, then F is satisfiable.

Validity problem is coNP.

NP-complete

A decision problem ⇧ is NP-complete if it is in NP and for every problem
⇧1 in NP, ⇧1 is polynomially reducible to ⇧ (⇧1 / ⇧).

Cook’s theorem (1971)

PSAT is NP-complete.
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BDDs

A Binary Decision Diagram (BDD) is a data structure that is used to
represent Boolean formulas.

The Boolean formula is represented as a rooted, directed, acyclic graph,
which consists of several decision nodes (labeled by Boolean variables) and
terminal nodes (0 and 1).

Each decision node x has two child nodes called low child and high child.
The edge from node x to o a low (resp. high) child represents an
assignment of x to 0 (resp. 1).

A BDD is called ordered if di↵erent variables appear in the same order on all
paths from the root. A BDD is said to be reduced if the following rules have
been applied to its graph:

I Merge the terminal nodes into two nodes 0 and 1.
I Merge isomorphic subtrees.
I Remove redundant nodes.
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From Binary Decision Trees to ROBDDs

44 2 Decision Procedures for Propositional Logic
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Fig. 2.11. A binary decision tree for (2.12). The drawing follows the convention by
which dashed edges represent an assignment of 0 to the variable labeling the source
node

tree, and that each of these variables appears exactly once in each path from
the root to one of the leaves.

Such a binary decision tree is not any better, in terms of space consump-
tion, than an explicit truth table, as it has 2n leaves. Every path in this
tree, from root to leaf, corresponds to an assignment. Every path that leads
to a leaf “1” corresponds to a satisfying assignment. For example, the path
x1 = 1, x2 = 1, x3 = 0 corresponds to a satisfying assignment of our formula
B because it ends in a leaf with the label “1”. Altogether, four assignments
satisfy this formula. The question is whether we can do better than a binary
decision tree in terms of space consumption, as there is obvious redundancy in
this tree. We now demonstrate the three reduction rules that can be applied
to such trees. Together they define what a reduced ordered BDD is.

• Reduction #1. Merge the leaf nodes into two nodes “1” and “0”. The
result of this reduction appears in Fig. 2.12.

• Reduction #2. Merge isomorphic subtrees. Isomorphic subtrees are sub-
trees that have roots that represent the same variable (if these are leaves,
then they represent the same Boolean value), and have left and right chil-
dren that are isomorphic as well. After applying this rule to our graph, we
are left with the diagram in Fig. 2.13. Note how the subtrees rooted at the
left two nodes labeled with x3 are isomorphic and are therefore merged in
this reduction.

• Reduction #3. Removing redundant nodes. In the diagram in Fig. 2.13,
it is clear that the left x2 node is redundant, because its value does not
a�ect the values of paths that go through it. The same can be said about
the middle and right nodes corresponding to x3. In each such case, we can
simply remove the node, while redirecting its incoming edge to the node
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Fig. 2.12. After applying reduction #1, merging the leaf nodes into two nodes
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Fig. 2.13. After applying reduction #2, merging isomorphic subtrees

to which both of its edges point. This reduction results in the diagram in
Fig. 2.14.

The second and third reductions are repeated as long as they can be applied.
At the end of this process, the BDD is said to be reduced.

Several important properties of binary trees are maintained during the
reduction process:

1. Each terminal node v is associated with a Boolean value val(v). Each
�� ��val(v)

nonterminal node v is associated with a variable, denoted by var(v) 2 �� ��var(v)V ar(B).
2. Every nonterminal node v has exactly two children, denoted by low(v) �� ��low(v)and high(v), corresponding to a false or true assignment to var(v). �� ��high(v)
3. Every path from the root to a leaf node contains not more than one

occurrence of each variable. Further, the order of variables in each such
path is consistent with the order in the original binary tree.
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where n is the number of Boolean variables in the input formula. Every leaf
is a full assignment, and, hence, traversing all leaves corresponds to enumera-
tion. From this point of view, conflict clauses are generated in order to prune
the search space. On the other hand, conflict clauses are deduced via the reso-
lution rule from other clauses. If the formula is unsatisfiable then the sequence
of applications of this rule, as listed in the SAT solver’s log, is a legitimate
deductive proof of unsatisfiability. The search heuristic can therefore be un-
derstood as a strategy of applying an inference rule. Thus, the two points of
view are equally legitimate.

2.3 Binary Decision Diagrams

2.3.1 From Binary Decision Trees to ROBDDs

Reduced ordered binary decision diagrams (ROBDDs, or BDDs for short),
are a highly useful graph-based data structure for manipulating Boolean for-
mulas. Unlike CNF, this data representation is canonical, which means that
if two formulas are equivalent, then their BDD representations are equivalent
as well (to achieve this property the two BDDs should be constructed fol-
lowing the same variable order, as we will soon explain). Canonicity is not a
property of CNF, DNF, or NNF (see Sect. 1.3). Consider, for example, the
two CNF formulas

B1 := (x1 ^ (x2 _ x3)) , B2 := (x1 ^ (x1 _ x2) ^ (x2 _ x3)) . (2.11)

Although the two formulas are in the same normal form and logically equiva-
lent, they are syntactically di�erent. The BDD representations of B1 and B2,
on the other hand, are the same.

One implication of canonicity is that all tautologies have the same BDD
(a single node with a label “1”) and all contradictions also have the same
BDD (a single node with a label “0”). Thus, although two CNF formulas of
completely di�erent size can both be unsatisfiable, their BDD representations
are identical: a single node with the label “0”. As a consequence, checking
for satisfiability, validity, or contradiction can be done in constant time for a
given BDD. There is no free lunch, however: building the BDD for a given
formula can take exponential space and time, even if in the end it results in
a single node.

We start with a simple binary decision tree to represent a Boolean
formula. Consider the formula

B := ((x1 ^ x2) _ (¬x1 ^ x3)) . (2.12)

The binary decision tree in Fig. 2.11 represents this formula with the variable
ordering x1, x2, x3. Notice how this order is maintained in each path along the
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x2
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Fig. 2.14. After applying reduction #3, removing redundant nodes

4. A path to the “1” node through all variables corresponds to an assignment
that satisfies the formula.

Unlike a binary tree, a BDD can have paths to the leaf nodes through only
some of the variables. Such paths to the “1” node satisfy the formula regardless
of the values given to the other variables, which are appropriately known by
the name don’t cares. A reduced BDD has the property that it does not
contain any redundant nodes or isomorphic subtrees, and, as indicated earlier,
it is canonical.

2.3.2 Building BDDs from Formulas

The process of turning a binary tree into a BDD helps us to explain the
reduction rules, but is not very useful by itself, as we do not want to build the
binary decision tree in the first place, owing to its exponential size. Instead, we
create the ROBDDs directly: given a formula, we build its BDD recursively
from the BDDs of its subexpressions. For this purpose, Bryant defined the
procedure Apply, which, given two BDDs B and B

�, builds a BDD for B �B
�,

�� ��B � B
�

where � stands for any one of the 16 binary Boolean operators (such as “^”,
“_”, and “ =� ”). The complexity of Apply is bounded by |B| · |B

�
|, where

|B| and |B
�
| denote the respective sizes of B and B

�.
In order to describe Apply, we first need to define the restrict operation.

This operation is simply an assignment of a value to one of the variables in
the BDD. We denote the restriction of B to x = 0 by B|x=0 or, in other words,

�� ��B|x=0

the BDD corresponding to the function B after assigning 0 to x. Given the
BDD for B, it is straightforward to compute its restriction to x = 0. For every
node v such that var(v) = x, we remove v and redirect the incoming edges of
v to low(v). Similarly, if the restriction is x = 1, we redirect all the incoming
edges to high(v).

Merge isomorphic 
subtrees

Remove redundant 
nodes

Merge leaf nodes into 
two nodes 0 and 1

The binary decision tree
with variable ordering x1, x2, x3
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BDDs

A path from the root node to the 1-terminal (resp. 0-termimal)
represents a (possibly partial) variable assignment for which the
represented Boolean formula is true (resp. false).

The process of turning a binary tree into a BDD is not very useful by
itself, as one does not want to build the binary decision tree in the
first place, owing to its exponential size.

Instead, one creates the reduced ordered BDD directly: given a
formula, its BDD is built recursively from the BDDs of its
subexpressions.

Maria João Frade (HASLab, DI-UM) PL & SAT VF 2018/19 21 / 69

ROBDDs [Bryant, 1986]

Reduced Ordered Binary Decision Diagrams (ROBDDs, or BDDs for short) are
graph-based data structure for manipulating Boolean formulas.

BDDs are canonical representation of Boolean formulas (if two formulas are
equivalent, then their BDD representations are isomorphic) assuming the
same variable ordering.

Implications of canonicity:

I All tautologies have the same BDD (a single node with “true”).
I All contradictions have the same BDD (a single node with “false”).
I To check if a formula is satisfiable check if its BDD is isomorphic to

false.

Checking for satisfiability, validity, or contradiction can be done in constant
time for a given BDD.

However ...
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BDDs

However,

Building the BDD for a given formula can take exponential space and time.

The size of the BDD is extremely sensitive to variable ordering.

Computing a optimal variable ordering for a BDD is an NP-complete
problem.

It is know that the BDD representation of certain Boolean formulas is
exponential in size regardless of variable order.

In practice, the Boolean formula that BDDs can represent are often limited
to several hundred variables in size.

Nonetheless, BDDs are extensively used in the verification of HW circuits, and
optimization and synthesis of logic circuits.

Another usual application of BDDs is symbolic model checking.
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SAT solving algorithms

There are several techniques and algorithms for SAT solving.

The majority of modern SAT solvers can be classified into two main
categories:

I SAT solvers based on a stochastic local search: the solver guesses a
full assignment, and then, if the formula is evaluated to false under this
assignment, starts to flip values of variables according to some (greedy)
heuristic.

I SAT solvers based on the DPLL framework: optimizations to the
Davis-Putnam-Logemann-Loveland algorithm (DPLL) which
corresponds to backtrack search through the space of possible variable
assignments.

DPLL-based SAT solvers, however, are considered better in most cases.

Usually SAT solvers receive as input a formula in a specific syntatical format. So,
one has first to transform the input formula to this specific format preserving
satisfiability.
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Local search

Local search is incomplete; usually it cannot prove unsatisfiability.

However, it can be very e↵ective in specific contexts.

The algorithm:

I Start with a (random) assignment,
I And repeat a number of times:

F If not all clauses satisfied, change the value of a variable.

F If all clauses satisfied, it is done.

I Repeat (random) selection of assignment a number of times.

The algorithm terminates when a satisfying assigment is found or when a
time bound is elapsed (inconclusive answer).
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Normal forms

SAT solvers usually take input in conjunctive normal form.

A literal is a propositional variable or its negation.
I A literal is negative if it is a negated atom, and positive otherwise.

A formula A is in negation normal form (NNF), if the only connectives
used in A are ¬, ^ and _, and negation only appear in literals.

A clause is a disjunction of literals.

A formula is in conjunctive normal form (CNF) if it is a conjunction
of clauses, i.e., it has the form

^

i

�_

j

lij
�

where lij is the j-th literal in the i-th clause.
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Normalization

Transforming a formula F to equivalent formula F
0 in NNF can be

computed by repeatedly replace any subformula that is an instance of the
left-hand-side of one of the following equivalences by the corresponding
right-hand-side

A! B ⌘ ¬A _B ¬¬A ⌘ A

¬(A ^B) ⌘ ¬A _ ¬B ¬(A _B) ⌘ ¬A ^ ¬B

This algoritm is linear on the size of the formula.
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Normalization

To transform a formula already in NNF into an equivalent CNF, apply
recursively the following equivalences (left-to-right):

A _ (B ^ C) ⌘ (A _B) ^ (A _ C) (A ^B) _ C ⌘ (A _ C) ^ (B _ C)

A ^ ? ⌘ ? ? ^A ⌘ ? A ^ > ⌘ A > ^A ⌘ A

A _ ? ⌘ A ? _A ⌘ A A _ > ⌘ > > _A ⌘ >

This althoritm converts a NNF formula into an equivalent CNF, but its
worst case is exponential on the size of the formula.
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Example

Compute the CNF of ((P ! Q)! P )! P

The first step is to compute its NNF by transforming implications into
disjunctions and pushing negations to proposition symbols:

((P ! Q)! P )! P ⌘ ¬((P ! Q)! P ) _ P

⌘ ¬(¬(P ! Q) _ P ) _ P

⌘ ¬(¬(¬P _Q) _ P ) _ P

⌘ ¬((P ^ ¬Q) _ P ) _ P

⌘ (¬(P ^ ¬Q) ^ ¬P ) _ P

⌘ ((¬P _Q) ^ ¬P ) _ P

To reach a CNF, distributivity is then applied to pull the conjunction
outside:

((¬P _Q) ^ ¬P ) _ P ⌘ (¬P _Q _ P ) ^ (¬P _ P )
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Worst-case example

Compute the CNF of (P1 ^Q1) _ (P2 ^Q2) _ . . . _ (Pn ^Qn)

(P1 ^Q1) _ (P2 ^Q2) _ . . . _ (Pn ^Qn)
⌘ (P1 _ (P2 ^Q2) _ . . . _ (Pn ^Qn)) ^ (Q1 _ (P2 ^Q2) _ . . . _ (Pn ^Qn))
⌘ . . .

⌘ (P1 _ . . . _ Pn) ^
(P1 _ . . . _ Pn�1 _Qn) ^
(P1 _ . . . _ Pn�2 _Qn�1 _ Pn) ^
(P1 _ . . . _ Pn�2 _Qn�1 _Qn) ^
. . . ^

(Q1 _ . . . _Qn)

The original formula has 2n literals, while the equivalent CNF has 2n

clauses, each with n literals.
The size of the formula increases exponentially.
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Definitional CNF

Equisatisfiability

Two formulas F and F
0 are equisatisfiable when F is satisfiable i↵ F

0 is
satisfiable.

Any propositional formula can be transformed into a equisatisfiable CNF
formula with only linear increase in the size of the formula.
The price to be paid is n new Boolean variables, where n is the number of
logical conectives in the formula.
This transformation can be done via Tseitin’s encoding [Tseitin, 1968].

This tranformation compute what is called the definitional CNF of a
formula, because they rely on the introduction of new proposition symbols
that act as names for subformulas of the original formula.
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Tseitin’s encoding

Tseitin transformation
1 Introduce a new fresh variable for each compound subformula.

2 Assign new variable to each subformula.

3 Encode local constraints as CNF.

4 Make conjunction of local constraints and the root variable.

This transformation produces a formula that is equisatisfiable: the
result is satisfiable i↵ and only the original formula is satisfiable.

One can get a satisfying assignment for original formula by projecting
the satisfying assignment onto the original variables.

There are various optimizations that can be performed in order to reduce
the size of the resulting formula and the number of additional variables.
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Tseitin’s encoding: an example

Encode P ! Q ^R

1

A1z }| {
P ! Q ^R| {z }

A2

2 We need to satisfy A1 together with the following equivalences

A1 $ (P ! A2) A2 $ (Q ^R)

3 These equivalences can be rewritten in CNF as
(A1 _ P ) ^ (A1 _ ¬A2) ^ (¬A1 _ ¬P _A2) and
(¬A2 _Q) ^ (¬A2 _R) ^ (A2 _ ¬Q _ ¬R), respectively.

4 The CNF which is equisatisfiable with P ! (Q ^R) is

A1 ^ (A1 _ P ) ^ (A1 _ ¬A2) ^ (¬A1 _ ¬P _A2)
^ (¬A2 _Q) ^ (¬A2 _R) ^ (A2 _ ¬Q _ ¬R)
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Tseitin’s encoding: a circuit to CNFExample of Tseitin Transformation: Circuit to CNF

c

b
a

w
v

w

u
o

x

y
o ^

(x $ a ^ c) ^
(y $ b _ x) ^
(u $ a _ b) ^
(v $ b _ c) ^
(w $ u ^ v) ^
(o $ y � w)

o ^ (x! a) ^ (x! c) ^ (x a ^ c) ^ . . .

o ^ (x _ a) ^ (x _ c) ^ (x _ a _ c) ^ . . .

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 13 / 24
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CNFs validity

The strict shape of CNFs make them particularly suited for checking
validity problems.

I A CNF is a tautology i↵ all of its clauses are tautologies.
I A clause C is a tautology precisely when there exists a proposition

symbol P such that both P and ¬P are in C (such clauses are said to
be closed).

I So, a CNF is a tautology i↵ all of its clauses are closed.

However, the applicability of this simple criterion for validity is
compromised by the potential exponential growth in the CNF
transformation.

This limitation is overcomed considering instead SAT, with
satisfiability preserving CNFs (definitional CNF). Recall that

F is valid i↵ ¬F is unsatisfiable
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CNFs satisfiability

A CNF is satisfied by an assignment if all its clauses are satisfied. And a
clause is satisfied if at least one of its literals is satisfied.

The ideia is to incrementally construct an assignment compatible with a
CNF.

I An assignment of a formula F is a function mapping F ’s variables to 1
or 0. We say it is

F full if all of F ’s variables are assigned,

F and partial otherwise.

Most current state-of-the-art SAT solvers are based on the
Davis-Putnam-Logemann-Loveland (DPLL) framework: in this framework
the tool can be thought of as traversing and backtracking on a binary tree,
in which

I internal nodes represent partial assignments
I and leaves represent full assignments
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Basic concepts

Pure literals

A literal is pure if only occurs as a positive literal or as a negative literal in a
CNF formula.

Pure literal rule
Clauses containing pure literals can be removed from the formula (i.e. just
assign pure literals to the values that satisfy the clauses).

This technique was extensively used until the mid 90s, but nowadays seldom
used.

Example

Let F be (Q _ P ) ^ (R _Q _ ¬P ) ^ (¬R _ P ) ^ (P _ ¬X).

Q and ¬X are pure literals in F .

The resulting (equisatisfiable) formula is (¬R _ P ).
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Basic concepts

Unit propagation (also called Boolean Constraint Propagation (BCP))

A clause is a unit if all literals but one are assigned value 0, and the
remaining literal is unassigned.

Unit clause rule
Given a unit clause, its only unassigned literal must be assigned value 1 for
the clause to be satisfied.

Unit propagation is the iterated application of the unit clause rule.

This technique is extensively used.

Consider the partial assignment P = 0, Q = 1. Under this assignment

(P _ ¬R _ ¬Q) is a unit clause. R must be assigned the value 0.

Consider the partial assignment R = 1, Q = 1.

I By unit propagation we can conclude that

(P _ ¬R _ ¬Q) ^ (¬P _ ¬Q _X) ^ (¬P _ ¬R _X) is satisfiable.

I What about (P _ ¬R _ ¬Q) ^ (¬P _ ¬Q _X) ^ (¬P _ ¬R _ ¬X) ?
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Basic concepts

Resolution

Resolution rule
If a formula F contains clauses (A _ P ) and (¬P _B), then one can infer
(A _B). The formula (A _B) is called the resolvent.

The resolvent can be added as a conjunction to F to produce an equivalent
formula still in CNF.

If even ? is deduced via resolution, F must be unsatisfiable.

A CNF formula that does not contain ? and to which no more resolutions
can be applied represents all possible satisfying interpretations.

What happens if we apply resolution between (¬Q _R _ P ) and (Q _ ¬R _X) ?
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Historical perspective

The DP algorithm [Davis&Putnam, 1960]

I Based on the resolution rule.
I Eliminate one variable at each step, using resolution.
I Applied the pure literal rule and unit propagation.

The DPLL algorithm [Davis&Putnam&Logemann&Loveland, 1962]

I Based on backtrack search.
I Progresses by making a decision about a variable and its value.
I Propagates implications of this decision that are easy to detect.
I Backtracks in case a conflict is detected in the form of a falsified clause.

In the last two decades, several enhancements have been introduced to
improve the e�ciency of DPLL-based SAT solving.
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DP algorithm

Iteratively apply the following steps:

I Select variable X.
I Apply resolution rule between every pair of clauses of the form (X _A)

and (¬X _B).
I Remove all clauses containing either X or ¬X.
I Apply the pure literal rule and unit propagation.

Terminate when either the empty clause (?) or the empty formula (>) is
derived.

The algorithm is complete but ine�cient.
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DPLL algorithm

Traditionally the DPLL algorithm is presented as a recursive procedure.

The procedure DPLL is called with the CNF and a partial assignment.

We will represent a CNF by a set of sets of literals.

We will represent the partial assignment by a set of literals (P denote that
P is set to 1, and ¬P that P is set to 0).

The algorithm:

I Progresses by making a decision about a variable and its value.
I Propagates implications of this decision that are easy to detect,

simplifying the clauses.
I Backtracks in case a conflict is detected in the form of a falsified clause.
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CNFs (as sets of sets of literals)

Recall that CNFs are formulas with the following shape (each lij

denotes a literal):

(l11 _ l12 _ . . . _ l1k) ^ . . . ^ (ln1 _ ln2 _ . . . _ lnj)

Associativity, commutativity and idempotence of both disjunction and
conjunction allow us to treat each CNF as a set of sets of literals S

S = {{l11, l12, . . . , l1k}, . . . , {ln1, ln2, . . . , lnj}}

An empty inner set will be identified with ?, and an empty outer set
with >. Therefore,

I if {} 2 S, then S is equivalent to ?;
I if S = {}, then S is >.
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Simplification of a clause under an assignment

If we fix the assignment of a particular proposition symbol, we are able to simplify
the corresponding CNF accordingly.

The opposite of a literal l, written �l, is defined by

�l =

⇢
¬P , if l = P

P , if l = ¬P

When we set a literal l to be true,

any clause that has the literal l is now guaranteed to be satisfied, so we
throw it away for the next part of the search.

any clause that had the literal �l, on the other hand, must rely on one of
the other literals in the clause, hence we throw out the literal �l before
going forward.

Simplification of S assuming l holds

S|l =
�
c\{�l} | c 2 S and l 62 c
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Simplification of a clause under an assignment

If a CNF S contains a clause that consists of a single literal (called unit clause),
we know for certain that the literal must be set to true and S can be simplified.

One should apply this rule while it is possible and worthwhile.

unit propagate (S, A) {

while {} 62 S and S has a unit clause l do {

S  S|l ;
A A [ {l}

}

}
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DPLL algorithm

DPLL is called with a CNF S and a partial assignment A (initially ;).

DPLL(S, A) {

unit propagate(S, A);
if S = {} then return SAT;
else if {} 2 S then return UNSAT;
else { l a literal of S ;

if DPLL (S|l, A [ {l}) = SAT then return SAT;
else return DPLL (S|�l, A [ {�l})

}

}

DPLL complete algorithm for SAT.

Unsatisfiability of the complete formula can only be detected after
exhaustive search.
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DPLL algorithm

Is (¬P _Q) ^ (¬P _R) ^ (Q _R) ^ (¬Q _ ¬R) ^ (P _ ¬R _Q) satisfiable?

S A
DPLL {{¬P,Q}, {¬P,R}, {Q,R}, {¬Q,¬R}, {P,¬R,Q}} ;
unit propagate

{{¬P,Q}, {¬P,R}, {Q,R}, {¬Q,¬R}, {P,¬R,Q}} ;
choose l = P
DPLL S|l {{Q}, {R}, {Q,R}, {¬Q,¬R}} {P}
unit propagate

{{}} {P,Q,R}
�l = ¬P
DPLL S|�l {{Q,R}, {¬Q,¬R}, {¬R,Q}} {¬P}
unit propagate

{{Q,R}, {¬Q,¬R}, {¬R,Q}} {¬P}
choose l = Q
DPLL S|l {{¬R}} {¬P,Q}
unit propagate

{} {¬P,Q,¬R}
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DPLL recursive algorithmThe basic DPLL Framework

Algorithm:

DPLL(formula, assignment) {

if (deduce(formula, assignment) == SAT)

return SAT;

else if (deduce(formula, assignment) == CONF)

return CONF;

else {

v = new_variable(formula, assignment);

a = new_assignment(formula, assignment, v, 0);

if (DPLL(formula, a) == SAT)

return SAT;

else {

a = new_assignment(formula, assignment, v, 1);

return DPLL(formula, a);

}

}

}
Aditya Parameswaran, Luv Kumar: SAT Solvers, 6
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DPLL-based iterative algorithm [Marques-Silva&Sakallah,1996]

At each step:

Decide on the assignment of a variable (which is called the decision variable, and
it will have a decision level associated with it).

Deduce the consequences of the decision made. (Variables assigned will have the

same decision level as the decision variable.)

I If all the clauses are satisfied, then the instance is satisfiable.

I If there exists a conflicting clause, then analyze the conflit and determine the

decision level to backtrack. (The solver may perform some analysis and

record some information from the current conflict in order to prune the

search space for the future.)

F Decision level  0 indicates that the formula is unsatisfiable.

I Otherwise, proceed with another decision.

Di↵erent DPLL-based modern solvers di↵er mainly in the detailed implementation of

each of these functions.
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DPLL-based iterative algorithmVariations to the DPLL Algorithm

Iterative Algorithm

while(1) {

decide_next_branch(); //branching heuristics

while (true) {

status = deduce(); //deduction mechanism

if (status == CONF) {

bl = analyze_conflict(); //conflict analysis

if (bl == 0) return UNSAT;

else backtrack(bl);

}

else if (status == SATISFIABLE) return SAT;

else break;

}

}
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DPLL framework: heuristics & optimizations

Many di↵erent techniques are applied to achieve e�ciency in DPLL-based SAT
solvers.

Look-ahead: exploit information about the remaining search space.

I unit propagation
I pure literal rule
I decision (spliting) heuristics

Look-back: exploit information about search which has already taken place.

I non-chronological backtracking (a.k.a. backjumping)
I clause learning

Other techniques:

I preprocessing (detection of subsumed clauses, simplification, ...)
I (random) restart (restarting the solver when it seams to be is a

hopeless branch of the search tree)

...
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Decision heuristics

Probably the most important element in SAT solving is the strategy by which the
literals are chosen. This strategy is called the decision heuristic of the SAT solver.

MOMS heuristics
Pick the literal occurring most often in the minimal size clauses.

Jeroslow-Wang
Selects literals that appear frequently in short clauses.

DLIS: Dynamic Large Individual Sum
Selects the literal that appears most frequently in unresolved clauses.
(Introduced in GRASP)

VSIDS: Variable State Independent Decaying Sum
Similar to DLIS. (Introduced in Cha↵)

Berkmin method

...
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Conflict analysis and learning

Non-chronological backtracking: does not necessarily flip the last assignment
and can backtrack to an earlier decision level.

The process of adding conflict clauses is generally referred to as learning.

The conflict clauses record the reasons deduced from the conflict to avoid
making the same mistake in the future search. For that implication graphs
are used.

Conflict-driven backtracking uses the conflict clauses learned to determine
the actual reasons for the conflict and the decision level to backtrack inorder
to prevent the repetition of the same conflict.
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Conflict-Driven Clause Learning (CDCL) solvers

DPLL framework.

New clauses are learnt from conflicts.

Structure (implication graphs) of conflicts exploited.

Backtracking can be non-chronological.

E�cient data structures (compact and reduced maintenance overhead).

Backtrack search is periodically restarted.

Can deal with hundreds of thousand variables and tens of million clauses!
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Modern SAT solvers

In the last two decades, satisfiability procedures have undergone dramatic
improvements in e�ciency and expressiveness. Breakthrough systems like
GRASP (1996), SATO (1997), Cha↵ (2001) and MiniSAT (2003) have
introduced several enhancements to the e�ciency of DPLL-based SAT
solving.

Modern SAT solvers can check formulas with hundreds of thousands
variables and millions of clauses in a reasonable amount of time.

New SAT solvers are introduced every year.

I The satisfiability library SAT Live!1 is an online resource that proposes,
as a standard, a unified notation and a collection of benchmarks for
performance evaluation and comparison of tools.

I Such a uniform test-bed has been serving as a framework for regular
tool competitions organised in the context of the regular SAT
conferences.2

1
http://www.satlive.org

2
http://www.satcompetition.org
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DIMACS CNF format

DIMACS CNF format is a standard format for CNF used by most
SAT solvers.

Plain text file with following structure:

c <comments>

...

p cnf <num.of variables> <num.of clauses>

<clause> 0

<clause> 0

...

Every number 1, 2, . . . corresponds to a variable (variable names
have to be mapped to numbers).

A negative number denote the negation of the corresponding variable.

Every clause is a list of numbers, separated by spaces. (One or more
lines per clause).
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DIMACS CNF format

Example

A1 ^ (A1 _ P ) ^ (¬A1 _ ¬P _A2) ^ (A1 _ ¬A2)

We have 3 variables and 4 clauses.

CNF file:
p cnf 3 4

1 0

1 3 0

-1 -3 2 0

1 -2 0
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Applications of SAT

A large number of problems can be described in terms of satisfiability,
including graph problems, planning, games, scheduling, software and
hardware verification, extended static checking, optimization, test-case
generation, among others.

These problems can be encoded by propositional formulas and solved using
SAT solvers.

problem P // formula F // CNF converter // SAT solver

SAT solver output: If F is satisfiable: sat + model
If F is unsatisfiable: unsat + proof

The satisfying assignments (models) of F are the solutions of P.

SAT solvers are core engines for other solvers (like SMT solvers).

SAT solvers may be integrated into theorem provers.

Maria João Frade (HASLab, DI-UM) PL & SAT VF 2018/19 58 / 69

Modeling with PL

When can the meeting take place?

– Maria cannot meet on Wednesday.
– Peter can only meet either on Monday, Wednesday or Thursday.
– Anne cannot meet on Friday.
– Mike cannot meet neither on Tuesday nor on Thursday.

Encode into the following proposition:

¬Wed ^ (Mon _ Wed _ Thu) ^¬Fri ^ (¬Tue ^¬Thu)
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Modeling with PL

Graph coloring

Can one assign one of K colors to each of the vertices of graph G = (V, E) such
that adjacent vertices are assigned di↵erent colors?

Create |V |⇥K variables: xij = 1 i↵ vertex i is assigned color j; 0 otherwise.

For each edge (u, v), require di↵erent assigned colors to u and v:
for each 1  j  K, (xuj ! ¬xvj)

Each vertex is assigned exactly one color.

I At least one color to each vertex:

for each 1  i  |V |,

K_

j=1

xij

I At most one color to each vertex:

for each 1  i  |V |,

K�1̂

a=1

(xia !

K̂

b=a+1

¬xib)
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Modeling with PL

At least, at most, exactly one...
How to represent in CNF the following constraints

At least one:
PN

j=1 xj � 1 ?

Standard solution:
N_

j=1

xj

At most one:
PN

j=1 xj  1 ?

Naive solution:
N�1̂

a=1

N̂

b=a+1

(¬xa _ ¬xb)

More compact solutions are possible.

Exactly one:
PN

j=1 xj = 1 ?

Standard solution: at least 1 and at most 1 constraints.
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Modeling with PL

Placement of guests
We have three chairs in a row and we need to place Anne, Susan and Peter.

Anne does not want to sit near Peter.

Anne does not want to sit in the left chair.

Susan does not want to sit to the right of Peter.

Can we satisfy these constrains?

Denote: Anne = 1, Susan = 2, Peter = 3
left chair = 1, middle chair = 2, right chair = 3

Introduce a propositional variable for each pair (person, place)

xij = 1 i↵ person i is sited in place j; 0 otherwise
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Modeling with PL

Placement of guests (cont.)

Anne does not want to sit near Peter.
((x11 _ x13)! ¬x32) ^ (x12 ! (¬x31 ^ ¬x33))

Anne does not want to sit in the left chair. ¬x11

Susan does not want to sit to the right of Peter.
(x31 ! ¬x22) ^ (x32 ! ¬x23)

Each person is placed.
3̂

i=1

3_

j=1

xij

No more than one person per chair.

3̂

i=1

2̂

a=1

3̂

b=a+1

(¬xai _ ¬xbi)
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Modeling with PL

Equivalence checking of if-then-else chains
Original C code

if(!a && !b) h();
else if(!a) g();
else f();

Optimized C code

if(a) f();
else if(b) g();
else h();

Are these two programs equivalent?

1 Model the variables a and b and the procedures that are called using the
Boolean variables a, b, f , g, and h.

2 Compile if-then-else chains into Boolean formulae
compile(if x then y else z) ⌘ (x ^ y) _ (¬x ^ z)

3 Check the validity of the following formula
compile(original) $ compile(optimized)

Reformulate it as a SAT problem: Is the Boolean formula
¬ (compile(original) $ compile(optimized))

satisfiable?
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Proof system

So far we have taken the “semantic” approach to logic, with the aim
of characterising the semantic concept of model, from which validity,
satisfiability and semantic entailment were derived.

However, this is not the only possible point of view.

Instead of adopting the view based on the notion of truth, we can
think of logic as a codification of reasoning. This alternative approach
to logic, called “deductive”, focuses directly on the deduction relation
that is induced on formulas, i.e., on what formulas are logical
consequences of other formulas.

We will explore this perspective later in this course.
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Exercises

Solve the following logic puzzle.
I If the unicorn is mythical, then it is immortal.
I If the unicorn is not mythical, then it is a mortal mammal.
I If the unicorn is either immortal or a mammal, then it is horned.
I The unicorn is magical if it is the horned.

Is the unicorn mythical? Is it magical? Is it horned?

Encode into SAT a N-queen puzzle.
Place N queens on a N x N board, such that no two queens attack
each other.

Maria João Frade (HASLab, DI-UM) PL & SAT VF 2018/19 66 / 69

Exercises

Encode into SAT a Sudoku puzzle.
I 9⇥ 9 square divided into 9 sub-squares
I General rules:

F Values 1-9, one value per cell

F No duplicates in rows

F No duplicates in columns

F No duplicates in sub-squares

I A particular instance of the Sudoku puzzle has some known initial
values.

Use a SAT solver to show that the following two if-then-else
expressions are equivalent.
!(a||b) ? h : !(a==b) ? f : g

!(!a||!b) ? g : (!a&&!b) ? h : f
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Exercises

Convert into an equivalent CNF the following formulas.
I A _ (A! B)! A _ ¬B

I (A! B _ C) ^ ¬(A ^ ¬B ! C)
I (¬A! ¬B)! (¬A! B)! A

Convert P ^Q _ (R ^ P ) into a equisatisfiable formula in CNF by
using the Tseitin transformation.

Run by hand the DPLL procedure to decide about the satisfiability of
the formulas above.
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Exercises

Pick up a SAT solver.

Play with simple examples.

Use the SAT solver to test if each of the following formulas is
satisfiable, valid, refutable or a contradition.

I A _ (A! B)! A _ ¬B

I (A! B _ C) ^ ¬(A ^ ¬B ! C)
I (¬A! ¬B)! (¬A! B)! A

Note that CNF equivalents of these formulas where already calculated.

Search the web for “SAT benchmarks” and experiment.
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