
Deductive Program Verification

Maria João Frade

HASLab - INESC TEC

Departmento de Informática, Universidade do Minho

2018/2019

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 1 / 68

Roadmap

Introduction

Hoare Logic

Handling Arrays

Generating Verification Conditions

Safety-sensitive Hoare Logic

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 2 / 68

Deductive Program Verification

One possible definition: “an exhaustive, correct and complete form of
static checking w.r.t. to a specification, based on a program logic”

Provides a global certification that the program behaves as it is
specified to behave.

Properties may include functional aspects; safety properties; security
properties; ...

I formal models using expressive logics
I computer-assisted mathematical proof
I requires deep expertise

Typically confined to very specific application areas where their use
and cost are justified.

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 3 / 68

Program annotations and contracts

A program annotation is a formula placed together with the code of a
program indicating the conditions that should be met.

The rationalisation of the code annotation methodology gave rise to a
software development paradigm based on the notion of contract.

I pioneered in the Ei↵el programming language (1986), which
implements the notion of runtime or dynamic verification of contracts
(design-by-contract).

Nowadays every widespread programming language benefits from a contracts
layer. Some only support the static verification of contracts.

I Spec#
I SPARK, ADA 2012
I Esc/Java, KeY, Krakatoa (based on JML annotation language)
I Frama-C, VCC (based on ACSL annotation language)
I ...

The logical formalisms underlying this approach are program logics like
Hoare logic.

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 4 / 68

Hoare Logic

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 5 / 68

Hoare logic

Hoare logic (also know as Floyd-Hoare logic) is a method of reasoning
mathematically about imperative programs.

I Robert Floyd, “Assigning meaning to programs”, 1967.
I Tony Hoare, “An axiomatic basis for computer programming”, 1969.

The logic deals with the notion of correction w.r.t. a specification that
consists of

I a precondition - an assertion that is assumed to hold when the
execution of the program starts

I and a postcondition - an assertion that is required to hold when
execution stops.

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 6 / 68

A simple programming language - While
int

A While language whose commands are defined over a set of variables x 2 Var

Type 3 ⌧ ::= bool | int

Expint 3 e ::= . . . | �1 | 0 | 1 | . . . | x |
�e | e1 + e2 | e1 � e2 | e1 ⇥ e2 | e1 div e2 | e1 mod e2

Expbool 3 b ::= true | false | ¬b | b1 ^ b2 | b1 _ b2 | e1 = e2 | e1 6= e2 |
e1 < e2 | e1 e2 | e1 > e2 | e1 � e2

Comm 3 C ::= skip | C ; C | x := e | if b then C else C | while b do C

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 7 / 68

Assertions about programs

We need formulas that express properties of particular states of the program.

Program assertions �, ✓, 2 Assert (preconditions and postconditions in
particular) are first-order formulas of a language obtained as an expansion of
Expbool.

Note that assertions may contain occurrences of functions and predicates
provided by the user.

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 8 / 68

Semantics

Will consider an interpretation structure M = (D, I) for the vocabulary
describing the concrete syntax of program expressions.

The interpretation of expressions depends on a state, which is a function
that maps each variable into its value. ⌃ = Var ! D

In the Whileint the set of states is ⌃ = Var ! Z

Expressions are interpreted as functions from states to the corresponding
domain of interpretation.

We are considering that expressions evaluation

I are free of side-e↵ects
I does not go wrong

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 9 / 68

Semantics of expressions

[[e]] : ⌃ ! Z is defined inductively by:

[[n]](s) = n
[[x]](s) = s(x)

[[�e]](s) = �[[e]](s)
[[e1 + e2]](s) = [[e1]](s) + [[e2]](s)
[[e1 � e2]](s) = [[e1]](s)� [[e2]](s)
[[e1 ⇥ e2]](s) = [[e1]](s)⇥ [[e2]](s)

[[e1 div e2]](s) =

⇢
[[e1]](s)÷ [[e2]](s) if [[e2]](s) 6= 0
0 otherwise

[[e1 mod e2]](s) =

⇢
[[e1]](s) mod [[e2]](s) if [[e2]](s) 6= 0
0 otherwise

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 10 / 68

Semantics of expressions

[[b]] : ⌃ ! {F,T} is defined inductively by:

[[true]](s) = T
[[false]](s) = F

[[¬e]](s) =

⇢
T if [[e]](s) = F
F if [[e]](s) = T

[[e1 ^ e2]](s) =

⇢
F if [[e1]](s) = F
[[e2]](s) otherwise

[[e1 _ e2]](s) =

⇢
T if [[e1]](s) = T
[[e2]](s) otherwise

[[e1 � e2]](s) = [[e1]](s)� [[e2]](s), where � 2 {=, 6=, <,, >,�}

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 11 / 68

Assertion semantics

We take the usual interpretation of first-order formulas, noting two facts:

I interpretation of assertions also depends on M
I states from ⌃ can be used as variable assignments

The interpretation of the assertion � 2 Assert is then given by
[[�]] : ⌃ ! {F,T}

Since assertions may also contain occurrences of functions and predicates
provided by the user, the semantics of those must also be given
axiomatically by the user.

We will be reasoning in the context of a first-order theory that is specified in
part by the semantics of program expressions and in part by user-provided
axioms.

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 12 / 68

Program semantics

A natural semantics based on a deterministic evaluation relation

1 hskip, si s

2 hx := e, si s[x 7! [[e]](s)]

3 if hC1, si s0 and hC2, s0i s00, then hC1 ; C2, si s00

4 if [[b]](s) = T and hCt, si s0, then hif b then Ct else Cf , si s0

5 if [[b]](s) = F and hCf , si s0, then hif b then Ct else Cf , si s0

6 if [[b]](s) = T, hC, si s0 and hwhile b do C, s0i s00, then
hwhile b do C, si s00

7 if [[b]](s) = F, then hwhile b do C, si s

There is no possible runtime error, but the program may diverge.

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 13 / 68

Validity

We assume the existence of “external” means for checking the validity of
assertions, in the presence of some background theory.

These tools should additionally allow us to write axioms concerning the
uninterpreted functions and predicates.

Suppose that we wish to encode in the logic a description of what the
factorial of a number is. The following axioms could be given

isfact(0, 1)
8n, r. n > 0 ! isfact(n� 1, r) ! isfact(n, n⇥ r)

8n. isfact(n, fact(n))
8n, r. isfact(n, r) ! r = fact(n)

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 14 / 68

Hoare triples (for partial correction)

Notation: {�}C { }
I � is the precondition
I is the postcondition

Denote the partial correctness of program C relative to specification
(�,)

Intended meaning of {�}C { }
If � holds in a given state and C is executed in that state, then either
execution of C does not stop, or if it does, will hold in the final state.

Examples

{x = y}x := x+ y ; x := 10 ⇤ x {x = 20 ⇤ y}
{x = 5}while x > 0 do skip {false}

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 15 / 68

Hoare triples (for total correction)

Notation: [�]C []

Denote the total correctness of program C relative to specification
(�,)

Intended meaning of [�]C []

If � holds in a given state and C is executed in that state, then execution
of C will stop, and moreover will hold in the final state of execution.

Examples

[x = y]x := x+ y ; x := 10 ⇤ x [x = 20 ⇤ y]
[x = 5]while x > 0 do x := x� 1 [x = 0]
[9a.x = 10 ⇤ a]x := x+ 18 [9v.x = 2 ⇤ v]

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 16 / 68

Semantics of Hoare triples

|= {�}C { }
The Hoare triple {�}C { } is said to be valid, denoted |= {�}C { },
whenever for all s, s0 2 ⌃,

if [[�]](s) = T and hC, si s0, then [[]](s0) = T.

|= [�]C []

The Hoare triple [�]C [] is said to be valid, denoted |= [�]C [],
whenever for all s 2 ⌃,

if [[�]](s) = T, then 9s0 2 ⌃. hC, si s0 and [[]](s0) = T.

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 17 / 68

Hoare logic as an Axiomatic Semantics (system H)

(skip) {�} skip {�}

(assign) { [e/x]}x := e { }

(seq)

{�}C1 {✓} {✓}C2 { }
{�}C1 ; C2 { }

(if)

{� ^ b}Ct { } {� ^ ¬b}Cf { }
{�} if b then Ct else Cf { }

(while)

{✓ ^ b}C {✓}
{✓}while b do C {✓ ^ ¬b}

(conseq)

{�}C { }
{�0}C { 0}

if �0 ! � and ! 0

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 18 / 68

Loop invariants

We call loop invariant to any property whose validity is preserved by
executions of the loop’s body.

Since these executions may only take place when the loop condition is true,
an invariant of the loop while b do C is any assertion ✓ such that
{✓ ^ b}C {✓} is valid, in which case of course it also holds that
{✓}while b do C {✓ ^ ¬b} is valid.

Warning

Find an adequate loop invariant may be a major di�culty!

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 19 / 68

Loop variants

However the validity of [✓ ^ b]C [✓] does not imply the validity of
[✓]while b do C [✓ ^ ¬b] (why?)

The required notion here is a loop variant: any program expression (or more
generally some function on the state) whose value strictly decreases with
each iteration, with respect to some well-founded relation.

The natural choice in our language is to use non-negative integer expressions
with strictly decreasing values.

(while)

[✓ ^ b ^ V = v0]C [✓ ^ V < v0]

[✓]while b do C [✓ ^ ¬b] if ✓ ^ b ! V � 0

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 20 / 68

Soundness

We will write `H {�}C { } to denote the fact that the triple is derivable in
this system H.

Note that the system H contains one rule whose application is guarded by
first-order conditions.

(conseq)

{�}C { }
{�0}C { 0} if �0 ! � and ! 0

We will consider that reasoning in this system takes place in the context of
the complete theory Th(M) of the implicit structure M, so that when
constructing derivations in H one simply checks, when applying the (conseq)
rule, whether the side conditions are elements of Th(M).

System H is sound w.r.t. the semantics of Hoare triples

If `H {�}C { }, then |= {�}C { }.

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 21 / 68

Completeness

Two major di�culties for proving a program:

I guess the appropriate intermediate formulas (for sequence, for the loop
invariant)

I prove the logical premises of consequence rule

System H is complete as long as the assertion language is su�ciently
expressive to grant the existence of intermediate assertions for reasoning.

System H is complete w.r.t. the semantics of Hoare triples

With Assert expressive in the above sense, if |= {�}C { } then `H {�}C { }.

This is usually called relative completeness [Cook, 1978]

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 22 / 68

Auxiliary variables

How to specify formally what the following program does?

a := x ; x := y ; y := a

Employ auxiliary variables, forbidden to occur in the program, to record
initial values of variables.

{x = x0 ^ y = y0} a := x ; x := y ; y := a {x = y0 ^ y = x0}

In fact, auxiliary variables are required in every specification, to avoid trivial
solutions.

I For instance, an inappropriate specification of factorial would be
(n � 0, f = fact(n)) (Give some solutions!)

Program verification SW uses a state label mechanism that allows to refer to the
value of a variable in any state.

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 23 / 68

Exercises

Prove the validity of the following Hoare triple

{x = x0 ^ y = y0} a := x ; x := y ; y := a {x = y0 ^ y = x0}

How to specify formally what the following program does?

if x < 0 then x := �x else skip

Prove its correction w.r.t. the specification proposed.

Consider the following Whileint-program for calculating xe

r := 1 ;
while e > 0 do {
r := r ⇥ x ;
e := e� 1

}

Specify formally what the following program does and prove its correction
w.r.t. the specification proposed.

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 24 / 68

Annotated programs

We are interested in automated verification

I invariants are notoriously di�cult to infer automatically
I in practice loop invariants are typically given by the programmer as an

input to the program verification process

The syntactic class of annotated programs

AComm 3 C ::= skip | C ; C | x := e | if b then C else C | while b do {✓}C

Annotations do not a↵ect the operational semantics.

The (while) rule
{✓ ^ b}C {✓}

{✓}while b do {✓}C {✓ ^ ¬b}

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 25 / 68

Annotated programs

Whereas in the standard presentation a program can be proved correct with
respect to a specification if there exists adequate invariants for proving it,
with annotated loops a program can only be proved correct if it is correctly
annotated.

Soundness is preserved.

Completeness does not hold, since the annotated invariants may be
inadequate for deriving the triple.

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 26 / 68

The factorial example

The following is an example of a correctly annotated program w.r.t. the
specification

(n � 0, f = fact(n))

Let fact be

f := 1 ; i := 1 ;
while i n do {f = fact(i� 1) ^ i n+ 1} {
f := f ⇥ i ;
i := i+ 1

}

A proof of {n � 0} fact {f = fact(n)} will be given later.

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 27 / 68

Handling Arrays

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 28 / 68

Aliasing

Aliasing in general is a phenomenon that occurs in programming whenever
the same object can be accessed through more than one name.

What should be the H rule to deal with array assignment?

If the standard rule for assignment is used naively, aliasing is handled
inadequately.

{ [e0/u[e]]}u[e] := e0 { }

This axiom is wrong!

It would derive the invalid triple (note that i and j may have equal values)

{u[j] > 100}u[i] := 8 {u[j] > 100}

This phenomenon is called subscript aliasing.

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 29 / 68

While
array

We extend the language with arrays as follows

Type 3 ⌧ ::= bool | int | array

Expint 3 e ::= . . . | �1 | 0 | 1 | . . . | x |
�e | e1 + e2 | e1 � e2 | e1 ⇥ e2 | e1 div e2 | e1 mod e2 |
a[e]

Exparray 3 a ::= u | a[eB e0]

Expbool 3 b ::= true | false | ¬b | b1 ^ b2 | b1 _ b2 | e1 = e2 | e1 6= e2 |
e1 < e2 | e1 e2 | e1 > e2 | e1 � e2

The command language is the same. And

u[e] := e0 is an abbreviation of u := u[eB e0]

where an array update operator is used at the term level.

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 30 / 68

Semantics of expressions of While
array

The semantics of Whilearray expressions is given by extending the semantics of
Whileint expressions as follows

[[·]] maps every array a 2 Exparray to a function [[a]] : ⌃ ! (Z ! Z) defined
inductively by

[[u]](s) = s(u)

[[a[eB e0]]](s) = [[a]](s)[[[e]](s) 7! [[e0]](s)]

the definition of [[e]] : ⌃ ! Z has the following additional case for integer
expressions of the form a[e]:

[[a[e]]](s) = [[a]](s)([[e]](s))

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 31 / 68

A rule for array assignment

A correct axiom for array assignment

(array assign) { [u[eB e0]/u]}u[e] := e0 { }

This would derive the following valid triple

{u[iB 8][j] > 100}u[i] := 8 {u[j] > 100}

since the interpretation of u[iB 8] correctly handles aliasing.

Arrays are modeled in logic as applicative data structures. Recall the
theory of arrays.

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 32 / 68

Generating Verification Conditions

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 33 / 68

Mechanising Hoare logic

In H system two desirable properties for backward proof construction are
missing:

I sub-formula property
I unambiguous choice of rule

{�}C1 {✓} {✓}C2 { }
{�}C1 ; C2 { }

{�}C { }
{�0}C { 0} if �0 ! � and ! 0

The consequence rule causes ambiguity. Its presence is however necessary to
make possible the application of rules for skip, assignment, and while, as
well as reuse.

An alternative is to distribute the side conditions among the di↵erent rules.

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 34 / 68

Hg a goal-directed system

(skip) {�} skip { }
if �!

(assign) {�}x := e { }
if �! [e/x]

(seq)

{�}C1 {✓} {✓}C2 { }
{�}C1 ; C2 { }

(if)

{� ^ b}Ct { } {� ^ ¬b}Cf { }
{�} if b then Ct else Cf { }

(while)

{✓ ^ b}C {✓}
{�}while b do {✓}C { }

if
�! ✓ and
✓ ^ ¬b !

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 35 / 68

Hg properties

Admissibility of the consequence rule in Hg

If `Hg {�}C { }, |= �0 ! �, and |= ! 0, then `Hg {�0}C { 0}.

Let b·c : AComm ! Comm be a function that erases all annotations from a
program (defined in the obvious way).

Soundness of Hg

If `Hg {�}C { }, then `H {�} bCc { }.

The converse implication does not hold, since the annotated invariants may be
inadequate for deriving the triple.

Correctly-annotated program

We say that C is correctly-annotated w.r.t. (�,) if `H {�} bCc { } implies
`Hg {�}C { }.

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 36 / 68

A strategy for proofs

Focus on the command and postcondition; guess an appropriate
precondition that guarantees the given postcondition.

In the rules for skip, assignment, and while, the precondition is determined
by looking at the side condition and choosing the weakest condition that
satisfies it.

In the sequence rule, we obtain the intermediate condition by propagating
the postcondition.

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 37 / 68

A strategy for proofs

{�}x := e1 ; y := e2 ; z := e3 { }

1. {�}x := e1 ; y := e2 {✓}
2. {✓} z := e3 { }

Now the second sub-goal is an assignment, which means that the
corresponding axiom can be applied by simply taking the precondition to be
the one that trivially satisfies the side condition, i.e. ✓ = [e3/z]. Now of
course this can be substituted globally in the current proof construction

{�}x := e1 ; y := e2 ; z := e3 { }

1. {�}x := e1 ; y := e2 { [e3/z]}
2. { [e3/z]} z := e3 { }

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 38 / 68

A strategy for proofs

{�}x := e1 ; y := e2 ; z := e3 { }

1. {�}x := e1 ; y := e2 { [e3/z]}
1.1. {�}x := e1 { [e3/z][e2/y]}
1.2. { [e3/z][e2/y]} y := e2 { [e3/z]}

2. { [e3/z]} z := e3 { }

{�}x := e1 ; y := e2 ; z := e3 { }
1. {�}x := e1 ; y := e2 { [e3/z]}

1.1. {�}x := e1 { [e3/z][e2/y]},
1.2. { [e3/z][e2/y]} y := e2 { [e3/z]}

2. { [e3/z]} z := e3 { }

In step 1.1 we were not free to choose the precondition for the assignment
since this is now the first command in the sequence. Thus the side condition
�! [e3/z][e2/y][e1/x] is introduced.

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 39 / 68

Using the weakest precondition strategy to verify fact

{n � 0} fact {f = fact(n)}

1. {n � 0} f := 1 ; i := 1 {n � 0 ^ f = 1 ^ i = 1}

1.1. {n � 0} f := 1 {n � 0 ^ f = 1}
1.2. {n � 0 ^ f = 1} i := 1 {n � 0 ^ f = 1 ^ i = 1}

2. {n � 0 ^ f = 1 ^ i = 1}
while i n do {f = fact(i� 1) ^ i n+ 1}Cw

{f = fact(n)}
2.1. {f = fact(i� 1)^ i n+1^ i n}Cw {f = fact(i� 1)^ i n+1}

2.1.1. {f = fact(i� 1) ^ i n+ 1 ^ i n} f := f ⇥ i {f =
fact(i� 1)⇥ i ^ i n}

2.1.2. {f = fact(i� 1)⇥ i ^ i n} i := i+ 1 {f = fact(i� 1) ^ i n+ 1}

where Cw represents the command f := f ⇥ i ; i := i+ 1.

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 40 / 68

Using the weakest precondition strategy to verify fact

The following side conditions are required for each node of the tree:

1.1 n � 0 ! (n � 0 ^ f = 1)[1/f]
1.2 n � 0 ^ f = 1 ! (n � 0 ^ f = 1 ^ i = 1)[1/i]
2. n � 0 ^ f = 1 ^ i = 1 ! f = fact(i� 1) ^ i n+ 1 and

f = fact(i� 1) ^ i n+ 1 ^ ¬(i n) ! f = fact(n)
2.1.1. f = fact(i�1)^i n+1^i n ! (f = fact(i�1)⇥i^i n)[f⇥i/f]
2.1.2. f = fact(i� 1)⇥ i ^ i n ! (f = fact(i� 1) ^ i n+ 1)[i+ 1/i]

The validity of these conditions is fairly obvious in the current theory.

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 41 / 68

An architecture for program verification

At this point we may outline a method for program verification as follows.

1 Mechanically produce a derivation with {�}C { } as conclusion, assuming
that all the side conditions created in this process hold. The side conditions
are called Verification Conditions (VCs) or Proof Obligations (POs)

2 Send the VCs generated in step 1 to some proof tool in order to be checked.

3 If all VCs are shown to be valid by a proof tool, then {�}C { } is valid.

Verification Conditions Generator

The mechanisation of the construction of the proof tree following the weakeast
precondition strategy does not even explicitly construct the proof tree; it just
outputs the set of verification conditions.
This algorithm is called a Verification Conditions Generator (VCGen).

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 42 / 68

An architecture for program verification

VCGen
Annotated
Program

Proof
Obligations

Prover

OK
(all POs discharged)

NOT OK
(at least one PO
not discharged)

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 43 / 68

Discharging the VCs

VCs are first-order formulas whose validity is to be checked w.r.t. a
background theory.

The VCs are discharged using proof tools.

Automated proof tools (such as SMT-solvers) are usually the first choice.

I It is possible to use a multi-prover approach (as we will see with
Frama-C/Why3)

If no conclusive answer is given (recall FOL is semi-decidable) one must use
a proof assistant.

If the automated prover find a counter-example (or if the interactive proof
does not succeed), then we do not have a proof tree for the Hoare triple.
That means the verification of the program has failed!

Warning

This may be due to errors in the program, specification or annotations!

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 44 / 68

Weakest liberal precondition

[Dijkstra, 1975]

Given a command C and a postcondition , wlp(C,) should return the minimal
precondition � that validates the triple {�}C { }.

wlp(skip,) =

wlp(x := e,) = [e/x]

wlp(C1;C2,) = wlp(C1,wlp(C2,))

wlp(if b then Ct else Cf ,) = (b ! wlp(Ct,)) ^ (¬b ! wlp(Cf ,))

wlp(while b do {✓}C,) = ✓

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 45 / 68

VCGen algorithm

VC produces a set of verification conditions from a program and a postcondition

VC(skip,) = ;

VC(x := e,) = ;

VC(C1;C2,) = VC(C1,wlp(C2,)) [VC(C2,)

VC(if b then Ct else Cf ,) = VC(Ct,) [VC(Cf ,)

VC(while b do {✓}C,) = {(✓ ^ b) ! wlp(C, ✓), (✓ ^ ¬b) ! }
[VC(C, ✓)

VCG({�}C { }) = {�! wlp(C,)} [VC(C,)

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 46 / 68

VCGen algorithm

Some observations:

The function VC simply follows the structure of the rules of system Hg to
collect the union of all sets of verification conditions.

According to the weakest precondition strategy the side conditions generated
are trivially satisfied (so we do not collect them).

In fact, only the loop rule actually introduces verification conditions that
need to be checked.

To understand the clause for loops, it may help to observe that this clause is
just an expansion of

VC(while ✓ do {b}C,) = {(✓ ^ ¬b) ! } [VCG({✓ ^ b}C {✓})

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 47 / 68

Properties of VCGen

Soundness

If `Hg {�}C { }, then
1 `Hg {wlp(C,)}C { }
2 |= �! wlp(C,)

Adequacy of VCGen

|= VCG({�}C { }) i↵ `Hg {�}C { }

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 48 / 68

Applying the VCGen algorithm to fact

Start by calculating VC(fact, f = fact(n)).

Then do the calculation of VCG({n � 0} fact {f = fact(n)}).

The end result should be the following set of proof obligations.

1 n � 0 ! 1 = fact(1� 1) ^ 1 n+ 1
2 f = fact(i�1)^i n+1^i n ! f⇥i = fact(i+1�1)^i+1 n+1
3 f = fact(i� 1) ^ i n+ 1 ^ i > n ! f = fact(n)

The Frama-C call them

1 loop invariant init
2 loop invariant preservation
3 postcondition

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 49 / 68

Exercise

Consider the program maxarray that determines the position of the largest
element in an array between indexes 0 and size� 1, where size � 1 . Let
maxarray be

max := 0 ;
i := 1 ;
while i < size do {1 i size ^ 0 max < i ^

8 a. 0 a < i ! u[a] u[max]}
{

if u[i] > u[max] then max := i else skip ;
i := i+ 1

}

Show that this program indeed meets its specification, i.e.

{size � 1}maxarray {0 max < size ^ 8 a. 0 a < size ! u[a] u[max]}

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 50 / 68

Safety-sensitive Hoare Logic

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 51 / 68

Errors

So far we have been considering that evaluation of an expression could
“never go wrong”, and neither could the execution of a command.

What should the program logic state about:

I Failing arithmetic operations (division by zero)?

I The value of an out-of-bounds array position?

I An assignment command to an out-of-bounds position?

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 52 / 68

Handling errors

It is easy to adapt the language semantics to make it more realistic, and to
deal with expressions and commands that “can go wrong”, by

I incorporating in the language semantics a special error value in the
interpretation domains of expressions.

I modifying the evaluation relation to admit evaluation of commands to
a special error state.

For instance, let s be a state such that s(x) = 10 and s(y) = 0.

[[(x div y) > 2]](s) = error, because [[y]](s) = 0

and
hif (x div y) > 2 then Ct else Cf , si error

no matter what Ct and Cf are.

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 53 / 68

Evaluation semantics with error state

1 hskip, si s.

2 If [[e]](s) = error, then hx := e, si error.

3 If [[e]](s) 6= error, then hx := e, si s[x 7! [[e]](s)].

4 If hC1, si error, then hC1 ; C2, si error.

5 If hC1, si s0, s0 6= error, and hC2, s
0i s00, then hC1 ; C2, si s00.

6 If [[b]](s) = error, then hif b then Ct else Cf , si error.

7 If [[b]](s) = T and hCt, si s0, then hif b then Ct else Cf , si s0.

8 If [[b]](s) = F and hCf , si s0, then hif b then Ct else Cf , si s0.

9 If [[b]](s) = error, then hwhile ✓ do {b}C, si error.

10 If [[b]](s) = T and hC, si error, then hwhile ✓ do {b}C, si error.

11 If [[b]](s) = T, hC, si s0, s0 6= error, and hwhile b do {✓}C, s0i s00,
then hwhile b do {✓}C, si s00.

12 If [[b]](s) = F, then hwhile b do {✓}C, si s.

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 54 / 68

Safety-sensitive semantics of Hoare triples

|= {|�|}C {| |}
The Hoare triple {|�|}C {| |} is said to be valid, denoted |= {|�|}C {| |},
whenever for all s, s0 2 ⌃,

if [[�]](s) = T and hC, si s0, then s0 6= error and [[]](s0) = T.

|= [|�|]C [| |]
The Hoare triple [|�|]C [| |] is said to be valid, denoted |= [|�|]C [| |],
whenever for all s 2 ⌃,

if [[�]](s) = T, then 9s0 2 ⌃. hC, si s0, s0 6= error and [[]](s0) = T.

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 55 / 68

Safety conditions

We now need to adapt the inference system Hg to cope with this new notion
of correctness.

In order to be able to infer that a command executes without ever going
wrong, we need to have the capacity to describe su�cient conditions
guaranteeing that program expressions do not evaluate to error. These new
side conditions will be called safety conditions.

We introduce a function safe :
S

⌧2Type Exp⌧ ! Assert.

The idea is that the truth of the assertion safe(e⌧) in a given state implies
that the evaluation of e⌧ in that state will not produce an error – the
evaluation is safe.

We define the inference system Hs for safety-sensitive Hoare triples.
Naturally its soundness depends on the safe property.

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 56 / 68

Safe While
int

programs

For the Whileint language, the function safe can be defined as follows

safe : (Expint [Expbool) ! Assert
safe(x) = true
safe(c) = true

safe(�e) = safe(e)
safe(e1 � e2) = safe(e1) ^ safe(e2), where � 2 {+,�,⇥,=, <,, >,�, 6=}

safe(e1 div e2) = safe(e1) ^ safe(e2) ^ e2 6= 0
safe(e1 mod e2) = safe(e1) ^ safe(e2) ^ e2 6= 0

safe(¬b) = safe(b)
safe(b1 ^ b2) = safe(b1) ^ (b1 ! safe(b2))
safe(b1 _ b2) = safe(b1) ^ (¬b1 ! safe(b2))

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 57 / 68

Safety-sensitive Hoare calculus (system Hs)

(skip) if �!
{|�|} skip {| |}

(assign) if �! safe(e) and �! [e/x]
{|�|}x := e {| |}

(seq)
{|�|}C1 {|✓|} {|✓|}C2 {| |}

{|�|}C1 ; C2 {| |}

(while)
{|✓ ^ b|}C {|✓|}

if �! ✓ and ✓ ! safe(b) and ✓ ^ ¬b !
{|�|}while b do {✓}C {| |}

(if)
{|� ^ b|}Ct {| |} {|� ^ ¬b|}Cf {| |}

if �! safe(b)
{|�|} if b then Ct else Cf {| |}

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 58 / 68

Safety-sensitive VCGen

wlps (skip,) =
wlps (x := e,) = safe(e) ^ [e/x]
wlps (C1;C2,) = wlps (C1,wlps (C2,))

wlps (if b then Ct else Cf ,) = safe(b) ^ (b ! wlps (Ct,)) ^ (¬b ! wlps (Cf ,))
wlps (while b do {✓}C,) = ✓

VCs(skip,) = ;
VCs(x := e,) = ;
VCs(C1;C2,) = VCs(C1,wlps (C2,)) [VCs(C2,)

VCs(if b then Ct else Cf ,) = VCs(Ct,) [VCs(Cf ,)
VCs(while b do {✓}C,) = {✓ ! safe(b), (✓ ^ b) ! wlps (C, ✓), (✓ ^ ¬b) ! }

[VCs(C, ✓)

VCGs({|�|}C {| |}) = {�! wlps (C,)} [VCs(C,)

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 59 / 68

Properties of Hs and the VCGen

Soundness of Hs

Let [[e]](s) 6= error whenever [[safe(e)]](s) = T. Then

if `Hs {|�|}C {| |}, then |= {|�|}C {| |}.

Adequacy of the safety-sensitive VCGen

|= VCGs({|�|}C {| |}) i↵ `Hs {|�|}C {| |}

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 60 / 68

Bounded arrays: the While
array[N]

language

Instead of having a single type array, we will have a family of array types
{array[N]}N2N. Expressions of type array[N] are arrays of length N that
admit as valid indexes non-negative integers below N .

Exparray[N] 3 a ::= u | a[eB e0]

Expint 3 e ::= . . . | �1 | 0 | 1 | . . . | x |
�e | e1 + e2 | e1 � e2 | e1 ⇥ e2 | e1 div e2 | e1 mod e2 |
a[e] | len(a)

Expbool 3 b ::= true | false | ¬b | b1 ^ b2 | b1 _ b2 | e1 = e2 | e1 6= e2 |
e1 < e2 | e1 e2 | e1 > e2 | e1 � e2

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 61 / 68

Semantics of expressions of While
array[N]

with error

The semantics of Whilearray[N] expressions is given by extending the semantics of Whileint

expressions as follows:

[[a]] : ⌃ ! ((Z ! Z) [{error}) is defined inductively by

[[u]](s) = s(u)

[[a[eB e0]]](s) =

8
>>>><

>>>>:

[[a]](s)[[[e]](s) 7! [[e0]](s)] if [[a]](s) 6= error

and [[e]](s) 6= error

and 0 [[e]](s) < [[len(a)]](s)
and [[e0]](s) 6= error

error otherwise

For integer expressions the definition of [[e]] : ⌃ ! (Z [{error}) has the following
additional cases:

[[len(aarray[N])]](s) = N

[[a[e]]](s) =

8
<

:

[[a]](s)([[e]](s)) if [[a]](s) 6= error and [[e]](s) 6= error

and 0 [[e]](s) < len(a)
error otherwise

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 62 / 68

Safe While
array[N]

Programs

For the Whilearray[N], safe has the following additional cases:

safe(u) = true
safe(len(a)) = true
safe(a[e]) = safe(a) ^ safe(e) ^ 0 e < len(a)

safe(a[eB e0]) = safe(a) ^ safe(e) ^ 0 e < len(a) ^ safe(e0)

A rule of system Hs can be given for array assignment, as a special case of
rule (assign), by expanding the syntactic sugar:

if �! safe(u[eB e0]) and �! [u[eB e0]/u]
{|�|}u[e] := e0 {| |}

Clauses of the safety-sensitive VCGen can also be obtained in the same way:

wlps (u[e] := e0,) = safe(u[eB e0]) ^ [u[eB e0]/u]
VCs(u[e] := e0,) = ;

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 63 / 68

Exercise

Consider again the program maxarray. Show that ehe verification
conditions produced by the safety-sensitive VCGen cannot all be proved.

Consider the following defined predicates concerning the safety of accesses
to an individual array position or a contiguous set of positions.

valid index (u, i)
def
= 0 i < len(u)

valid range(u, i, j)
def
= 0 i j < len(u) _ i > j

Prove that

{|size � 1 ^ valid range(u, 0, size� 1)|}
maxarray
{|0 max < size ^ 8 a. 0 a < size ! u[a] u[max]|}

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 64 / 68

Continuous invariants

Let factab be k := 0 ;
while k < size do {✓02 ^ ✓2} {

f := 1 ; i := 1 ; n := in[k] ;
while i n do {✓01 ^ ✓1} {

f := f ⇥ i ;
i := i+ 1

}
out[k] := f ;
k := k + 1

}where

✓02 is size � 0 ^ 8 a. 0 a < size ! in[a] � 0
✓2 is 0 k size ^ 8 a. 0 a < k ! out[a] = fact(in[a])
✓01 is ✓02 ^ n = in[k] ^ 0 k < size ^ 8 a. 0 a < k ! out[a] = fact(in[a])
✓1 is 1 i n+ 1 ^ f = fact(i� 1)

The invariants of the loops have two components:

I one concerns to the loop task itself (✓2 and ✓1)
I the other just transport information between the initial and final states of the

loop execution. These are usually called continuous invariants.

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 65 / 68

Continuous invariants

The need for continuous invariants comes from the verification condition
that relates the loop invariant (together with the negated loop condition)
and the calculated weakest precondition of the subsequent command.

The weakest precondition of the loop “forgets” (the postcondition with
respect to which it was calculated).

The continuous invariant plays the role of transporting information between
the initial and final states of the loop execution.

Tools for realistic languages (like the VCGen of Frama-C) are capable of
keeping this transported information in the context automatically; there is
no need to explicitly include continuous invariants.

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 66 / 68

Frame conditions

The following rule is admissible in Hoare logic

(frame)

{�}C { }
{� ^ ✓}C { ^ ✓}

if no free variable of ✓ is modified by C

This rule justifies that program verification tools usually take continuous
invariants as implicit. So, they can be omitted in loop invariants. This
substantially simplifies the annotated invariants.

Related to this, its worth mention that annotation languages (like ACSL)
usually provide an annotation assigns with the list of the variables assigned.
These kind of annotations can be placed in routine contracts or in loops.

Lists of assigned variables explicitly included in contracts are usually called
frame conditions.

This kind of annotations will cause specific VCs to be generated.

A frame condition is an important part of a routine’s contract when
reasoning about calls to that routine, since it immediately implies the
preservation of the values contained in all locations not mentioned.

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 67 / 68

Bibliography

[RSD 2011] Rigorous Software Development: An Introduction to Program
Verification. J.B. Almeida & M.J. Frade & J.S. Pinto & S.M. de Sousa.
Springer (2011)

Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 68 / 68

