

Semantics

- Will consider an *interpretation structure* $\mathcal{M} = (D, I)$ for the vocabulary describing the concrete syntax of program expressions.
- The interpretation of expressions depends on a *state*, which is a function that maps each variable into its value. $\Sigma = Var \rightarrow D$
- In the While^{int} the set of states is $\Sigma = \mathbf{Var} \to \mathbb{Z}$
- Expressions are interpreted as functions from states to the corresponding domain of interpretation.

Deductive Program Verification

- We are considering that expressions evaluation
 - ► are free of side-effects
 - does not go wrong

<ロ > < 合 > < 注 > < 注 > 注 の < ぐ VF 2018/19 9/68

◆□> ◆□> ◆豆> ◆豆> ・豆

VF 2018/19

11/68

Semantics of expressions

Maria João Frade (HASLab, DI-UM)

$$\begin{bmatrix} \operatorname{true}]\!](s) &= \mathbf{T} \\ \llbracket false]\!](s) &= \mathbf{F} \\ \llbracket \neg e]\!](s) &= \begin{cases} \mathbf{T} & \text{if } \llbracket e]\!](s) = \mathbf{F} \\ \mathbf{F} & \text{if } \llbracket e]\!](s) = \mathbf{T} \\ \mathbf{F} & \text{if } \llbracket e 1]\!](s) = \mathbf{F} \\ \llbracket e_2]\!](s) &= \begin{cases} \llbracket e_2]\!](s) & \text{otherwise} \\ \llbracket e_2]\!](s) & \text{otherwise} \\ \llbracket e_1 \lor e_2]\!](s) &= \\ \llbracket e_1]\!](s) & \text{otherwise} \\ \llbracket e_1 \odot e_2]\!](s) &= \\ \llbracket e_1]\!](s) \odot \llbracket e_2]\!](s), \text{ where } \odot \in \{=, \neq, <, \le, >, \ge\} \end{cases}$$

Deductive Program Verification

Semantics of expressions

• $\llbracket e \rrbracket : \Sigma \to \mathbb{Z}$ is defined inductively by:

Maria João Frade (HASLab, DI-UM) Deductive Program Verification

<□ > < 部 > < 注 > < 注 > 注 の < で VF 2018/19 10 / 68

Assertion semantics

- We take the usual interpretation of first-order formulas, noting two facts:
 - \blacktriangleright interpretation of assertions also depends on ${\cal M}$
 - \blacktriangleright states from Σ can be used as variable assignments
- The interpretation of the assertion $\phi \in \mathbf{Assert}$ is then given by $\llbracket \phi \rrbracket : \Sigma \to \{ \mathbf{F}, \mathbf{T} \}$
- Since assertions may also contain occurrences of functions and predicates provided by the user, the semantics of those must also be given axiomatically by the user.
- We will be reasoning in the context of a first-order theory that is specified in part by the semantics of program expressions and in part by user-provided axioms.

Maria João Frade (HASLab, DI-UM)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Maria João Frade (HASLab, DI-UM)

Program semantics

A natural semantics based on a deterministic evaluation relation

- $\bigcirc \langle \mathbf{skip}, s \rangle \! \rightsquigarrow \! s$
- $(a) \quad \langle x := e, s \rangle \! \rightsquigarrow \! s[x \mapsto \llbracket e \rrbracket(s)]$
- $\textcircled{3} \text{ if } \langle C_1,s\rangle \!\rightsquigarrow\! s' \text{ and } \langle C_2,s'\rangle \!\rightsquigarrow\! s'' \text{, then } \langle C_1\,;\,C_2,s\rangle \!\rightsquigarrow\! s''$
- one for a density of the constant of the co
- $I mit if [[b]](s) = \mathbf{F} and \langle C_f, s \rangle \rightsquigarrow s', then \langle \mathbf{if} \ b \ \mathbf{then} \ C_t \ \mathbf{else} \ C_f, s \rangle \rightsquigarrow s'$
- 6 if $\llbracket b \rrbracket(s) = \mathbf{T}$, $\langle C, s \rangle \rightsquigarrow s'$ and $\langle \mathbf{while} \ b \ \mathbf{do} \ C, s' \rangle \leadsto s''$, then $\langle \mathbf{while} \ b \ \mathbf{do} \ C, s \rangle \leadsto s''$
- **(**) if $\llbracket b \rrbracket(s) = \mathbf{F}$, then $\langle \mathbf{while} \ b \ \mathbf{do} \ C, s \rangle \leadsto s$

There is no possible *runtime error*, but the program may *diverge*.

Maria João Frade (HASLab, DI-UM)

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の < ○ VF 2018/19 13/68

Hoare triples (for partial correction)

- Notation: $\{\phi\} C \{\psi\}$
 - ϕ is the *precondition*
 - ψ is the *postcondition*
- \bullet Denote the $partial\ correctness$ of program C relative to specification (ϕ,ψ)

Deductive Program Verification

Intended meaning of $\{\phi\} C \{\psi\}$

```
If \phi holds in a given state and C is executed in that state, then either execution of C does not stop, or if it does, \psi will hold in the final state.
```

• Examples

```
 \begin{array}{l} \{x = y\} \, x := x + y \, ; \, x := 10 * x \, \{x = 20 * y\} \\ \{x = 5\} \, \text{while} \, \, x > 0 \, \, \text{do skip} \, \{\texttt{false}\} \end{array}
```

Deductive Program Verification

化白色 化塑料 化医补尿医补尿管

VF 2018/19

15 / 68

Validity

- We assume the existence of "external" means for checking the validity of assertions, in the presence of some *background theory*.
- These tools should additionally allow us to write axioms concerning the uninterpreted functions and predicates.
- Suppose that we wish to encode in the logic a description of what the *factorial* of a number is. The following axioms could be given

 $\begin{array}{l} \textit{isfact}(0,1) \\ \forall n,r.\,n>0 \rightarrow \textit{isfact}(n-1,r) \rightarrow \textit{isfact}(n,n\times r) \end{array}$

Deductive Program Verification

 $\begin{array}{l} \forall \, n. \, is fact(n, fact(n)) \\ \forall \, n, r. \, is fact(n, r) \rightarrow r = fact(n) \end{array}$

▲□▶▲圖▶▲≧▶▲≧▶ ≧ の�?

VF 2018/19

14 / 68

Hoare triples (for total correction)

• Notation: $[\phi] C [\psi]$

Maria João Frade (HASLab, DI-UM)

 $\bullet\,$ Denote the $total\,\,correctness$ of program C relative to specification (ϕ,ψ)

Intended meaning of $[\phi] C [\psi]$

If ϕ holds in a given state and C is executed in that state, then execution of C will stop, and moreover ψ will hold in the final state of execution.

• Examples

$$[x = y] x := x + y; x := 10 * x [x = 20 * y]$$

[x = 5] while x > 0 do x := x - 1 [x = 0]
[\exists a.x = 10 * a] x := x + 18 [\exists v.x = 2 * v]

Maria João Frade (HASLab, DI-UM)

Deductive Program Verification

Semantics of Hoare triples

$\models \{\phi\} C \{\psi\}$

The Hoare triple $\{\phi\} C \{\psi\}$ is said to be *valid*, denoted $\models \{\phi\} C \{\psi\}$, whenever for all $s, s' \in \Sigma$,

if $\llbracket \phi \rrbracket(s) = \mathbf{T}$ and $\langle C, s \rangle \rightsquigarrow s'$, then $\llbracket \psi \rrbracket(s') = \mathbf{T}$.

$\models [\phi] C [\psi]$

The Hoare triple $[\phi] C [\psi]$ is said to be *valid*, denoted $\models [\phi] C [\psi]$, whenever for all $s \in \Sigma$,

if $\llbracket \phi \rrbracket(s) = \mathbf{T}$, then $\exists s' \in \Sigma$. $\langle C, s \rangle \rightsquigarrow s'$ and $\llbracket \psi \rrbracket(s') = \mathbf{T}$.

Deductive Program Verification

Maria João Frade (HASLab, DI-UM)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Loop invariants

- We call *loop invariant* to any property whose validity is preserved by executions of the loop's body.
- Since these executions may only take place when the loop condition is true, an invariant of the loop while b do C is any assertion θ such that {θ ∧ b} C {θ} is valid, in which case of course it also holds that {θ} while b do C {θ ∧ ¬b} is valid.

Deductive Program Verification

Warning

Find an adequate loop invariant may be a major difficulty!

Hoare logic as an Axiomatic Semantics (system H)

Deductive Program Verification

イロシィラシィミシィミシミックへで VF 2018/19 19 / 68

Maria João Frade (HASLab, DI-UM)

Soundness

- We will write $\vdash_{\mathsf{H}} \{\phi\} C \{\psi\}$ to denote the fact that the triple is derivable in this system H.
- Note that the system H contains one rule whose application is guarded by first-order conditions.

$$(\text{conseq}) \quad \frac{\{\phi\} C \{\psi\}}{\{\phi'\} C \{\psi'\}} \text{ if } \phi' \to \phi \text{ and } \psi \to \psi'$$

• We will consider that reasoning in this system takes place in the context of the *complete theory* Th(\mathcal{M}) of the implicit structure \mathcal{M} , so that when constructing derivations in H one simply checks, when applying the (conseq) rule, whether the side conditions are elements of Th(\mathcal{M}).

Deductive Program Verification

```
System H is sound w.r.t. the semantics of Hoare triples If \vdash_{\mathsf{H}} \{\phi\} C \{\psi\}, then \models \{\phi\} C \{\psi\}.
```

```
Maria João Frade (HASLab, DI-UM)
```

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

◆□ > ◆圖 > ◆臣 > ◆臣 > ─臣

VF 2018/19 23 / 68

Auxiliary variables

• How to specify formally what the following program does?

a := x; x := y; y := a

• Employ *auxiliary variables*, forbidden to occur in the program, to record initial values of variables.

 $\{x = x_0 \land y = y_0\} a := x; x := y; y := a \{x = y_0 \land y = x_0\}$

- In fact, auxiliary variables are required in every specification, to avoid trivial solutions.
 - For instance, an inappropriate specification of factorial would be (n ≥ 0, f = fact(n)) (Give some solutions!)

Program verification SW uses a *state label mechanism* that allows to refer to the value of a variable in any state.

Maria João Frade (HASLab, DI-UM) Deductive Program Verification

Completeness

- Two major difficulties for proving a program:
 - guess the appropriate intermediate formulas (for sequence, for the loop invariant)
 - prove the logical premises of consequence rule
- System H is complete as long as the assertion language is *sufficiently expressive* to grant the existence of intermediate assertions for reasoning.

System H is complete w.r.t. the semantics of Hoare triples

With Assert expressive in the above sense, if $\models \{\phi\} C \{\psi\}$ then $\vdash_{\mathsf{H}} \{\phi\} C \{\psi\}$.

Deductive Program Verification

• This is usually called *relative completeness* [Cook, 1978]

```
Maria João Frade (HASLab, DI-UM)
```

VF 2018/19 22 / 68

(日) (日) (日) (日) (日) (日) (日) (日)

Exercises

• Prove the validity of the following Hoare triple

 $\{x = x_0 \land y = y_0\} a := x; x := y; y := a \{x = y_0 \land y = x_0\}$

• How to specify formally what the following program does?

if x < 0 then x := -x else skip

Prove its correction w.r.t. the specification proposed.

 $\bullet\,$ Consider the following While^{\rm int}-program for calculating x^e

```
\begin{array}{l} r:=1\,;\\ {\bf while}\; e>0\; {\bf do}\; \{\\ r:=r\times x\,;\\ e:=e-1\\ \} \end{array}
```

Specify formally what the following program does and prove its correction w.r.t. the specification proposed.

Maria João Frade (HASLab, DI-UM)

Deductive Program Verification

Annotated programs Annotated programs • We are interested in automated verification invariants are notoriously difficult to infer automatically • Whereas in the standard presentation a program can be proved correct with ▶ in practice loop invariants are typically given by the programmer as an respect to a specification if there exists adequate invariants for proving it, input to the program verification process with annotated loops a program can only be proved correct if it is *correctly* annotated. • The syntactic class of *annotated programs* **AComm** \ni *C* ::= skip | *C*; *C* | *x* := *e* | if *b* then *C* else *C* | while *b* do { θ } *C* • Soundness is preserved. • Annotations do not affect the operational semantics. • Completeness does not hold, since the annotated invariants may be inadequate for deriving the triple. • The (while) rule $\{\theta \wedge b\} C \{\theta\}$ $\{\theta\}$ while b do $\{\theta\} C \{\theta \land \neg b\}$ ◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々で Maria João Frade (HASLab, DI-UM) Deductive Program Verification Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 25 / 68 VF 2018/19 26 / 68 The factorial example The following is an example of a correctly annotated program w.r.t. the specification $(n \ge 0, f = fact(n))$ Handling Arrays Let fact be f := 1; i := 1;while $i \le n$ do { $f = fact(i-1) \land i \le n+1$ } { $f := f \times i;$ i := i + 1A proof of $\{n \ge 0\}$ fact $\{f = fact(n)\}$ will be given later.

Maria João Frade (HASLab, DI-UM)

Deductive Program Verification VF 2018/19

・ロト ・四ト ・ヨト ・ヨト

27 / 68

Maria João Frade (HASLab, DI-UM) Deduct

Deductive Program Verification

VF 2018/19 28/68

A D N A B N A B N A

Aliasing

• *Aliasing* in general is a phenomenon that occurs in programming whenever the same object can be accessed through more than one name.

What should be the H rule to deal with array assignment?

• If the standard rule for assignment is used naively, aliasing is handled inadequately.

```
\overline{\{\psi[e'/u[e]]\}\,u[e]:=e'\,\{\psi\}}
```

• This axiom is **wrong!** It would derive the invalid triple (note that *i* and *j* may have equal values)

Deductive Program Verification

$$\{u[j] > 100\} u[i] := 8 \{u[j] > 100\}$$

This phenomenon is called subscript aliasing.

```
Maria João Frade (HASLab, DI-UM)
```

```
VF 2018/19 29 / 68
```

・ロト (個) (目) (目) (目) (日) (の)

Semantics of expressions of Whilearray

The semantics of While^{array} expressions is given by extending the semantics of While^{int} expressions as follows

• $\llbracket \cdot \rrbracket$ maps every array $a \in \mathbf{Exp}_{\mathbf{array}}$ to a function $\llbracket a \rrbracket : \Sigma \to (\mathbb{Z} \to \mathbb{Z})$ defined inductively by

 $\llbracket u \rrbracket(s) = s(u)$ $\llbracket a [e \triangleright e'] \rrbracket(s) = \llbracket a \rrbracket(s) [\llbracket e \rrbracket(s) \mapsto \llbracket e' \rrbracket(s)]$

• the definition of $\llbracket e \rrbracket : \Sigma \to \mathbb{Z}$ has the following additional case for integer expressions of the form a[e]:

$$[\![a[e]]\!](s) = [\![a]\!](s)([\![e]\!](s))$$

化白色 化塑料 化医医水管

VF 2018/19

31 / 68

Whilearray

We extend the language with arrays as follows

$$\mathbf{Type} \hspace{0.2cm}
i \hspace{0.2cm} o \hspace{0.2cm} au \hspace{0.2cm} ::= \hspace{0.2cm} \mathbf{bool} \mid \mathbf{int} \mid \mathbf{array}$$

$$\begin{aligned} \mathbf{Exp_{int}} & \ni e & ::= & \dots |-1| \ 0 \ | \ 1 \ | \dots | \ x \ | \\ & -e \ | \ e_1 + e_2 \ | \ e_1 - e_2 \ | \ e_1 \times e_2 \ | \ e_1 \ \mathtt{div} \ e_2 \ | \ e_1 \ \mathtt{mod} \ e_2 \\ & a[e] \end{aligned}$$

```
\mathbf{Exp}_{\mathbf{array}} \quad \ni \quad a \quad ::= \quad u \mid a[e \triangleright e']
```

The command language is the same. And

```
u[e] := e' is an abbreviation of u := u[e \triangleright e']
```

where an array update operator is used at the term level.

イロトイクト モン モン モン モン シーン つくつ Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 30/68

A rule for array assignment

• A correct axiom for array assignment

 $(array \ assign) \qquad \overline{\{\psi[u[e \triangleright e']/u]\}\, u[e] := e'\,\{\psi\}}$

• This would derive the following valid triple

 $\{u[i \triangleright 8][j] > 100\} u[i] := 8\{u[j] > 100\}$

since the interpretation of $u[i \triangleright 8]$ correctly handles aliasing.

• Arrays are modeled in logic as applicative data structures. Recall the theory of arrays.

Maria João Frade (HASLab, DI-UM)

Deductive Program Verification

VF 2018/19 32/68

A D N A B N A B N A

A strategy for proofs

- Focus on the command and postcondition; guess an appropriate precondition that guarantees the given postcondition.
- In the rules for skip, assignment, and while, the precondition is determined by looking at the side condition and choosing the weakest condition that satisfies it.
- In the sequence rule, we obtain the intermediate condition by propagating the postcondition.

Deductive Program Verification

Maria João Frade (HASLab, DI-UM)

VF 2018/19

(ロ) (部) (三) (三) (三) (000)

VF 2018/19

39 / 68

37 / 68

A strategy for proofs

- $\{\phi\} x := e_1 ; y := e_2 ; z := e_3 \{\psi\}$
 - $\begin{array}{|c|c|c|c|} \hline 1. & \{\phi\} \, x := e_1 \, ; \, y := e_2 \, \{\psi[e_3/z]\} \\ \hline 1.1. & \{\phi\} \, x := e_1 \, \{\psi[e_3/z][e_2/y]\} \\ \hline 1.2. & \{\psi[e_3/z][e_2/y]\} \, y := e_2 \, \{\psi[e_3/z]\} \\ \end{array}$
 - 2. $\{\psi[e_3/z]\} z := e_3 \{\psi\}$
- $\{\phi\} x := e_1; y := e_2; z := e_3 \{\psi\}$
 - 1. $\{\phi\} x := e_1; y := e_2 \{\psi[e_3/z]\}$ 1.1. $\{\phi\} x := e_1 \{\psi[e_3/z][e_2/y]\},$ 1.2. $\{\psi[e_3/z][e_2/y]\} y := e_2 \{\psi[e_3/z]\}$ 2. $\{\psi[e_3/z]\} z := e_3 \{\psi\}$
- In step 1.1 we were not free to choose the precondition for the assignment since this is now the first command in the sequence. Thus the side condition φ → ψ[e₃/z][e₂/y][e₁/x] is introduced.

Maria João Frade (HASLab, DI-UM)

Deductive Program Verification

A strategy for proofs

- $\{\phi\} x := e_1; y := e_2; z := e_3 \{\psi\}$ 1. $\{\phi\} x := e_1; y := e_2 \{\theta\}$ 2. $\{\theta\} z := e_3 \{\psi\}$
- Now the second sub-goal is an assignment, which means that the corresponding axiom can be applied by simply taking the precondition to be the one that trivially satisfies the side condition, i.e. $\theta = \psi[e_3/z]$. Now of course this can be substituted globally in the current proof construction
- $\{\phi\} x := e_1; y := e_2; z := e_3 \{\psi\}$ 1. $\{\phi\} x := e_1; y := e_2 \{\psi[e_3/z]\}$ 2. $\{\psi[e_3/z]\} z := e_3 \{\psi\}$

Maria João Frade (HASLab, DI-UM) Deductive Program Verification

```
<□ > < 部 > < 注 > < 注 > 注 の < で
VF 2018/19 38 / 68
```

Using the weakest precondition strategy to verify **fact**

```
 \{n \ge 0\} \text{ fact } \{f = fact(n)\} 
 1. \{n \ge 0\} f := 1; i := 1 \{n \ge 0 \land f = 1 \land i = 1\} 
 1.1. \{n \ge 0\} f := 1 \{n \ge 0 \land f = 1\} 
 1.2. \{n \ge 0 \land f = 1\} i := 1 \{n \ge 0 \land f = 1 \land i = 1\} 
 2. \{n \ge 0 \land f = 1 \land i = 1\} 
 while i \le n \text{ do } \{f = fact(i - 1) \land i \le n + 1\} C_w 
 \{f = fact(n)\} 
 2.1. \{f = fact(i - 1) \land i \le n + 1 \land i \le n\} C_w \{f = fact(i - 1) \land i \le n + 1\} 
 2.1.1. \{f = fact(i - 1) \land i \le n + 1 \land i \le n\} f := f \times i \{f = fact(i - 1) \land i \le n\} 
 2.1.2. \{f = fact(i - 1) \land i \le n\} i := i + 1 \{f = fact(i - 1) \land i \le n + 1\}
```

where C_w represents the command $f := f \times i$; i := i + 1.

Maria João Frade (HASLab, DI-UM)

Deductive Program Verification

★白>★檀>★ヨ>★ヨ>

Using the weakest precondition strategy to verify **fact**

• The following side conditions are required for each node of the tree:

 $\begin{array}{ll} 1.1 & n \geq 0 \rightarrow (n \geq 0 \wedge f = 1)[1/f] \\ 1.2 & n \geq 0 \wedge f = 1 \rightarrow (n \geq 0 \wedge f = 1 \wedge i = 1)[1/i] \\ 2. & n \geq 0 \wedge f = 1 \wedge i = 1 \rightarrow f = fact(i-1) \wedge i \leq n+1 \text{ and} \\ & f = fact(i-1) \wedge i \leq n+1 \wedge \neg (i \leq n) \rightarrow f = fact(n) \\ 2.1.1. & f = fact(i-1) \wedge i \leq n+1 \wedge i \leq n \rightarrow (f = fact(i-1) \times i \wedge i \leq n)[f \times i/f] \\ 2.1.2. & f = fact(i-1) \times i \wedge i \leq n \rightarrow (f = fact(i-1) \wedge i \leq n+1)[i+1/i] \end{array}$

• The validity of these conditions is fairly obvious in the current theory.

Deductive Program Verification

Maria João Frade (HASLab, DI-UM)

An architecture for program verification

An architecture for program verification

At this point we may outline a method for program verification as follows.

- Mechanically produce a derivation with $\{\phi\} C \{\psi\}$ as conclusion, assuming that all the side conditions created in this process hold. The side conditions are called *Verification Conditions* (*VCs*) or *Proof Obligations* (*POs*)
- **2** Send the VCs generated in step 1 to some proof tool in order to be checked.
- **③** If all VCs are shown to be valid by a proof tool, then $\{\phi\} C \{\psi\}$ is valid.

Verification Conditions Generator

The mechanisation of the construction of the proof tree following the weakeast precondition strategy does not even explicitly construct the proof tree; it just outputs the set of verification conditions. This algorithm is called a *Verification Conditions Generator (VCGen)*.

Deductive Program Verification

Maria João Frade (HASLab, DI-UM)

<□ > < 部 > < 注 > < 注 > 注 の < で VF 2018/19 42/68

Discharging the VCs

- VCs are first-order formulas whose validity is to be checked w.r.t. a *background theory*.
- The VCs are discharged using proof tools.
- Automated proof tools (such as SMT-solvers) are usually the first choice.
 - It is possible to use a multi-prover approach (as we will see with Frama-C/Why3)
- If no conclusive answer is given (recall FOL is semi-decidable) one must use a *proof assistant*.
- If the automated prover find a counter-example (or if the interactive proof does not succeed), then we do not have a proof tree for the Hoare triple. That means the verification of the program has *failed*!

Warning

This may be due to errors in the program, specification or annotations!

Maria João Frade (HASLab, DI-UM)

Deductive Program Verification

VF 2018/19 44 / 68

Weakest liberal precondition

[Dijkstra, 1975]

Given a command C and a postcondition ψ , wlp (C, ψ) should return the minimal precondition ϕ that validates the triple $\{\phi\} C \{\psi\}$.

$$\begin{split} \mathsf{wlp}(\mathbf{skip},\psi) &= \psi \\ \mathsf{wlp}(x:=e,\psi) &= \psi[e/x] \\ \mathsf{wlp}(C_1;C_2,\psi) &= \mathsf{wlp}(C_1,\mathsf{wlp}(C_2,\psi)) \\ \mathsf{wlp}(\mathbf{if}\;b\;\mathbf{then}\;C_t\;\mathbf{else}\;C_f,\psi) &= (b\to\mathsf{wlp}(C_t,\psi))\wedge (\neg b\to\mathsf{wlp}(C_f,\psi)) \\ \mathsf{wlp}(\mathbf{while}\;b\;\mathbf{do}\;\{\theta\}\;C,\psi) &= \theta \end{split}$$

Deductive Program Verification

Maria João Frade (HASLab, DI-UM)

↓ ロ ト (書 ト (書 ト (書 ト) 書) のへで VF 2018/19 45/68

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

VF 2018/19

47 / 68

VCGen algorithm

Some observations:

- The function VC simply follows the structure of the rules of system Hg to collect the union of all sets of verification conditions.
- According to the weakest precondition strategy the side conditions generated are trivially satisfied (so we do not collect them).
- In fact, only the loop rule actually introduces verification conditions that need to be checked.
- To understand the clause for loops, it may help to observe that this clause is just an expansion of

```
\mathsf{VC}(\mathbf{while}\ \theta\ \mathbf{do}\ \{b\}\ C,\psi) = \{(\theta \land \neg b) \to \psi\} \cup \mathsf{VCG}(\{\theta \land b\}\ C\ \{\theta\})
```

VCGen algorithm

VC produces a set of verification conditions from a program and a postcondition

 $VC(\mathbf{skip}, \psi) = \emptyset$ $VC(x := e, \psi) = \emptyset$ $VC(C_1; C_2, \psi) = VC(C_1, wlp(C_2, \psi)) \cup VC(C_2, \psi)$ $VC(\text{if } b \text{ then } C_t \text{ else } C_f, \psi) = VC(C_t, \psi) \cup VC(C_f, \psi)$ $VC(\text{while } b \text{ do } \{\theta\} C, \psi) = \{(\theta \land b) \rightarrow wlp(C, \theta), (\theta \land \neg b) \rightarrow \psi\}$ $VCG(\{\phi\} C\{\psi\}) = \{\phi \rightarrow wlp(C, \psi)\} \cup VC(C, \psi)$ Maria João Frade (HASLab, DI-UM) Deductive Program Verification VF 2018/19 46/68

Properties of VCGen Soundness If $\vdash_{Hg} \{\phi\} C \{\psi\}$, then $\bullet \vdash_{Hg} \{wlp(C,\psi)\} C \{\psi\}$ $\bullet \models \phi \rightarrow wlp(C,\psi)$ Adequacy of VCGen $\models VCG(\{\phi\} C \{\psi\}) \text{ iff } \vdash_{Hg} \{\phi\} C \{\psi\}$

Deductive Program Verification

50 / 68

Handling errors

- It is easy to adapt the language semantics to make it more realistic, and to deal with expressions and commands that "can go wrong", by
 - incorporating in the language semantics a special error value in the interpretation domains of expressions.
 - modifying the evaluation relation to admit evaluation of commands to a special error state.
- For instance, let s be a state such that s(x) = 10 and s(y) = 0.

```
[\![(x\operatorname{div} y)>2]\!](s)=\operatorname{error}, \ \operatorname{because}\ [\![y]\!](s)=0
```

and

```
\langle \mathbf{if} (x \operatorname{div} y) > 2 \mathbf{then} C_t \mathbf{else} C_f, s \rangle \! \rightsquigarrow \! \mathbf{error}
```

Deductive Program Verification

no matter what C_t and C_f are.

Maria João Frade (HASLab, DI-UM)

Safety-sensitive semantics of Hoare triples

$\models \{\!\!\{\phi\}\} C \{\!\!\{\psi\}\!\!\}$

The Hoare triple $\{\!\!\{\phi\}\!\!\} C \{\!\!\{\psi\}\!\!\}$ is said to be *valid*, denoted $\models \{\!\!\{\phi\}\!\!\} C \{\!\!\{\psi\}\!\!\}$, whenever for all $s, s' \in \Sigma$, if $[\!\![\phi]\!](s) = \mathbf{T}$ and $\langle C, s \rangle \rightsquigarrow s'$, then $s' \neq \operatorname{error}$ and $[\!\![\psi]\!](s') = \mathbf{T}$.

$\models \llbracket \phi \rrbracket C \llbracket \psi \rrbracket$

The Hoare triple $[\phi] C [\psi]$ is said to be *valid*, denoted $\models [\phi] C [\psi]$, whenever for all $s \in \Sigma$, if $\llbracket t \rrbracket(c)$. To then $\exists c \in \Sigma$, $(C, c) \rightarrow c' = c'$, $(c \in \Sigma) (C, c) \rightarrow c' = c'$.

 $\text{if } \llbracket \phi \rrbracket(s) = \mathbf{T} \text{, then } \exists s' \in \Sigma. \ \langle C, s \rangle \! \rightsquigarrow \! s', \ s' \neq \textbf{error} \text{ and } \llbracket \psi \rrbracket(s') = \mathbf{T}.$

Evaluation semantics with error state

(skip, s) → s.
If [[e]](s) = error, then ⟨x := e, s⟩ → error.
If [[e]](s) ≠ error, then ⟨x := e, s⟩ → s[x ↦ [[e]](s)].
If ⟨C₁, s⟩ → error, then ⟨C₁; C₂, s⟩ → error.
If ⟨C₁, s⟩ → s', s' ≠ error, and ⟨C₂, s'⟩ → s'', then ⟨C₁; C₂, s⟩ → s''.
If [[b]](s) = error, then ⟨if b then C_t else C_f, s⟩ → error.
If [[b]](s) = T and ⟨C_t, s⟩ → s', then ⟨if b then C_t else C_f, s⟩ → s'.
If [[b]](s) = F and ⟨C_f, s⟩ → s', then ⟨if b then C_t else C_f, s⟩ → s'.
If [[b]](s) = F and ⟨C_f, s⟩ → s', then ⟨if b then C_t else C_f, s⟩ → s'.
If [[b]](s) = error, then ⟨while θ do {b} C, s⟩ → error.
If [[b]](s) = T and ⟨C, s⟩ → error, then ⟨while θ do {b} C, s⟩ → error.
If [[b]](s) = T and ⟨C, s⟩ → error, then ⟨while θ do {b} C, s⟩ → error.
If [[b]](s) = T, ⟨C, s⟩ → s', s' ≠ error, and ⟨while b do {θ} C, s'⟩ → s'', then ⟨while b do {θ} C, s⟩ → s''.
If [[b]](s) = F, then ⟨while b do {θ} C, s⟩ → s.

Safety conditions

Maria João Frade (HASLab, DI-UM)

• We now need to adapt the inference system Hg to cope with this new notion of correctness.

Deductive Program Verification

- In order to be able to infer that a command executes without ever going wrong, we need to have the capacity to describe sufficient conditions guaranteeing that program expressions do not evaluate to **error**. These new side conditions will be called *safety conditions*.
- We introduce a function safe : $\bigcup_{\tau \in \mathbf{Type}} \mathbf{Exp}_{\tau} \to \mathbf{Assert}.$
- The idea is that the truth of the assertion $safe(e^{\tau})$ in a given state implies that the evaluation of e^{τ} in that state will not produce an error the evaluation is safe.
- We define the inference system Hs for safety-sensitive Hoare triples. Naturally its soundness depends on the safe property.

```
Maria João Frade (HASLab, DI-UM)
```

イロト イボト イヨト イヨト

VF 2018/19

54 / 68

Deductive Program Verification

VF 2018/19

Bounded arrays: the While^{array[N]} language

Instead of having a single type \mathbf{array} , we will have a family of array types $\{\mathbf{array}[N]\}_{N\in\mathbb{N}}$. Expressions of type $\mathbf{array}[N]$ are arrays of length N that admit as valid indexes non-negative integers below N.

 $\begin{aligned} \mathbf{Exp}_{\mathbf{array}[N]} & \ni \ a \ ::= \ u \mid a[e \triangleright e'] \\ \mathbf{Exp}_{\mathbf{int}} & \ni \ e \ ::= \ \dots \mid -1 \mid 0 \mid 1 \mid \dots \mid x \mid \\ & -e \mid e_1 + e_2 \mid e_1 - e_2 \mid e_1 \times e_2 \mid e_1 \operatorname{div} e_2 \mid e_1 \operatorname{mod} e_2 \mid \\ & a[e] \mid \operatorname{len}(a) \end{aligned}$ $\begin{aligned} \mathbf{Exp}_{\mathbf{bool}} & \ni \ b \ ::= \ \operatorname{true} \mid \operatorname{false} \mid \neg b \mid b_1 \wedge b_2 \mid b_1 \lor b_2 \mid e_1 = e_2 \mid e_1 \neq e_2 \\ & e_1 < e_2 \mid e_1 \leq e_2 \mid e_1 > e_2 \mid e_1 \geq e_2 \end{aligned}$

Deductive Program Verification

VF 2018/19

63 / 68

Safe While^{array[N]} Programs

Maria João Frade (HASLab, DI-UM)

• For the While^{array[N]}, safe has the following additional cases:

 $\begin{array}{lll} \operatorname{safe}(u) & = & \operatorname{true} \\ \operatorname{safe}(\operatorname{len}(a)) & = & \operatorname{true} \\ \operatorname{safe}(a[e]) & = & \operatorname{safe}(a) \wedge \operatorname{safe}(e) \wedge 0 \leq e < \operatorname{len}(a) \\ \operatorname{safe}(a[e \rhd e']) & = & \operatorname{safe}(a) \wedge \operatorname{safe}(e) \wedge 0 \leq e < \operatorname{len}(a) \wedge \operatorname{safe}(e') \end{array}$

• A rule of system Hs can be given for array assignment, as a special case of rule (*assign*), by expanding the syntactic sugar:

 $\frac{}{\{\!\!|\phi|\!\!\}\, u[e]:=e'\,\{\!\!|\psi|\!\!\}} \quad \text{ if } \phi \to \mathsf{safe}(u[e \rhd e']) \text{ and } \phi \to \psi[u[e \rhd e']/u]$

• Clauses of the safety-sensitive VCGen can also be obtained in the same way:

$$\begin{split} \mathsf{wlp^s}\left(u[e] := e', \psi\right) &= \mathsf{safe}(u[e \rhd e']) \land \psi[u[e \rhd e']/u] \\ \mathsf{VC^s}(u[e] := e', \psi) &= \emptyset \\ \end{split}$$

Maria João Frade (HASLab, DI-UM)

Deductive Program Verification

Semantics of expressions of $While^{array[N]}$ with error

The semantics of $While^{array[N]}$ expressions is given by extending the semantics of $While^{int}$ expressions as follows:

• $\llbracket a \rrbracket : \Sigma \to ((\mathbb{Z} \to \mathbb{Z}) \cup \{\text{error}\})$ is defined inductively by

 $\llbracket u \rrbracket(s) = s(u)$ $\llbracket a \llbracket e \triangleright e' \rrbracket(s) = \begin{cases} \llbracket a \rrbracket(s) \llbracket e \rrbracket(s) \mapsto \llbracket e' \rrbracket(s) \rrbracket & \text{if } \llbracket a \rrbracket(s) \neq \text{error} \\ & \text{and } \llbracket e \rrbracket(s) \neq \text{error} \\ & \text{and } 0 \leq \llbracket e \rrbracket(s) < \llbracket \text{len}(a) \rrbracket(s) \\ & \text{and } \llbracket e' \rrbracket(s) \neq \text{error} \\ & \text{error} & \text{otherwise} \end{cases}$

For integer expressions the definition of [[e]] : Σ → (ℤ ∪ {error}) has the following additional cases:

$$\llbracket \mathsf{len}(a^{\mathbf{array}[N]}) \rrbracket(s) = N$$

$$\llbracket a[e] \rrbracket(s) = \begin{cases} \llbracket a \rrbracket(s)(\llbracket e \rrbracket(s)) & \text{ if } \llbracket a \rrbracket(s) \neq \text{ error } \text{ and } \llbracket e \rrbracket(s) \neq \text{ error } \\ & \text{ and } 0 \leq \llbracket e \rrbracket(s) < \text{len}(a) \\ \text{ error } & \text{ otherwise } \end{cases}$$

Deductive Program Verification

< □ > < 部 > < 注 > < 注 > 注 今 Q (?)

VF 2018/19 62 / 68

Exercise

- Consider again the program maxarray. Show that ehe verification conditions produced by the safety-sensitive VCGen cannot all be proved.
- Consider the following defined predicates concerning the safety of accesses to an individual array position or a contiguous set of positions.

$$\begin{array}{ll} valid_index(u,i) & \stackrel{\mathsf{def}}{=} & 0 \leq i < \mathsf{len}(u) \\ valid_range(u,i,j) & \stackrel{\mathsf{def}}{=} & 0 \leq i \leq j < \mathsf{len}(u) \lor i > j \end{array}$$

Prove that

$$\begin{split} & \{ size \geq 1 \land valid_range(u, 0, size - 1) \} \\ & \textbf{maxarray} \\ & \{ 0 \leq max < size \land \forall a. 0 \leq a < size \rightarrow u[a] \leq u[max] \} \end{split}$$

Maria João Frade (HASLab, DI-UM)

Deductive Program Verification

VF 2018/19 64 / 68

イロト イポト イヨト イヨト

Continuous invariants

```
l et factab be
                                   k := 0:
                                   while k < size \operatorname{do} \{\theta_2^0 \land \theta_2\}
                                     f := 1; i := 1; n := in[k];
                                     while i \leq n \operatorname{do} \{\theta_1^0 \wedge \theta_1\} \{
                                        f := f \times i;
                                        i := i + 1
                                      out[k] := f;
                                      k := k + 1
where
          is size > 0 \land \forall a. 0 \le a \le size \to in[a] > 0
    \theta_2^0
         is 0 \le k \le size \land \forall a. 0 \le a \le k \rightarrow out[a] = fact(in[a])
         is \theta_2^0 \wedge n = in[k] \wedge 0 \leq k \leq size \wedge \forall a. 0 \leq a \leq k \rightarrow out[a] = fact(in[a])
    \theta_1 is 1 \le i \le n+1 \land f = fact(i-1)
   • The invariants of the loops have two components:
          • one concerns to the loop task itself (\theta_2 and \theta_1)
          the other just transport information between the initial and final states of the
              loop execution. These are usually called continuous invariants.
```

```
Maria João Frade (HASLab, DI-UM)
```

VF 2018/19 65/68

VF 2018/19

67 / 68

Frame conditions

• The following rule is admissible in Hoare logic

(frame) $\frac{\{\phi\} C \{\psi\}}{\{\phi \land \theta\} C \{\psi \land \theta\}}$ if no free variable of θ is modified by C

Deductive Program Verification

- This rule justifies that program verification tools usually take continuous invariants as implicit. So, they can be omitted in loop invariants. This substantially simplifies the annotated invariants.
- Related to this, its worth mention that annotation languages (like ACSL) usually provide an annotation *assigns* with the list of the variables assigned. These kind of annotations can be placed in routine contracts or in loops.
- Lists of assigned variables explicitly included in contracts are usually called *frame conditions*.
- $\bullet\,$ This kind of annotations will cause specific VCs to be generated.
- A frame condition is an important part of a routine's contract when reasoning about calls to that routine, since it immediately implies the preservation of the values contained in all locations not mentioned.

Maria João Frade (HASLab, DI-UM)

Continuous invariants

- The need for continuous invariants comes from the verification condition that relates the loop invariant (together with the negated loop condition) and the calculated weakest precondition ψ of the subsequent command.
- The weakest precondition of the loop "forgets" ψ (the postcondition with respect to which it was calculated).
- The continuous invariant plays the role of transporting information between the initial and final states of the loop execution.
- Tools for realistic languages (like the VCGen of Frama-C) are capable of keeping this transported information in the context automatically; there is no need to explicitly include continuous invariants.

Deductive Program Verification

Maria João Frade (HASLab, DI-UM)

Bibliography

[RSD 2011] *Rigorous Software Development: An Introduction to Program Verification.* J.B. Almeida & M.J. Frade & J.S. Pinto & S.M. de Sousa. Springer (2011)

Deductive Program Verification

イロト イポト イラト イラト

(日) (日) (日) (日) (日) (日) (日) (日)

VF 2018/19