
Verifying Safety & Liveness in Alloy

Alcino Cunha

November 3, 2014



Safety properties

Something bad will not happen!
A property φ is a safety property if it must be true at all
reachable states.
A counter-example to a safety property is a finite prefix of a
path that leads to a state where φ does not hold.



Liveness properties

Something good will happen!
A property φ is a liveness property if it must eventually be
true at some state in all paths starting from all initial states.
A counter-example to a liveness property is an (infinite)
path where φ never holds.



The farmer puzzle: static model

abstract sig Being {
eats : set Being,
where : one Bank

}

one sig Farmer, Wolf, Sheep, Beans extends Being {}

fact Eats {
eats = Farmer->Being + Sheep->Beans + Wolf->Sheep

}

abstract sig Bank {
cross : one Bank

}

one sig Left, Right extends Bank {}

fact Cross {
cross = Left->Right + Right->Left

}



Modeling state machines in Alloy

Add a signature State for representing states.
Add State as an extra column to all mutable relations.

Global-state idiom: the State is the first column - all
mutable relations are declared in the State signature.
Local-state idiom: the State is the last column - each
mutable relation is still declared in the same signature as
before.

Specify the initial states with a predicate.
Specify transitions (operations) using predicates relating
pre- and post-states (with pre- and post-conditions).
Do not forget the frame-conditions to specify what is
unchanged!



The farmer puzzle: dynamic model and initial state

sig State {}

abstract sig Being {
eats : set Being,
where : Bank one -> State

}

. . .

pred init [s : State] {
Being = (s.where).Left

}



The farmer puzzle: crossing alone

pred alone [s,s’ : State] {
// Pre-conditions

no x,y : (s.where).(Farmer.(s.where))-Farmer | x in y.eats

// Post-conditions

Farmer.(s’.where) = Farmer.(s.where).cross

// Frame-conditions

all b : Being-Farmer | b.(s’.where) = b.(s.where)
}



The farmer puzzle: crossing with another being

pred notalone [b : Being, s,s’ : State] {
// Pre-conditions

b != Farmer

b.(s.where) = Farmer.(s.where)

no x,y : (s.where).(Farmer.(s.where))-(Farmer+b) | x in y.eats

// Post-conditions

Farmer.(s’.where) = Farmer.(s.where).cross

b.(s’.where) = b.(s.where).cross

// Frame-conditions

all x : Being-(Farmer+b) | x.(s’.where) = x.(s.where)
}



The farmer puzzle: some properties

Safety properties:
The beings never eat each other.
The beings will never be together in the right margin (if not
true, a counter-example solves the puzzle).

Liveness properties:
The beings will always end up together in the right margin.



The farmer puzzle: some properties

pred noeating [s : State] {
all b : Bank {
Farmer.(s.where) = b

or
no x,y : (s.where).b | x in y.eats

}

}

pred notright [s : State] {
Being not in (s.where).Right

}

pred allright [s : State] {
Being in (s.where).Right

}



Verification with the indirect (or inductive) method

For safety property φ:
Check that φ holds in the initial states.
Check that φ is preserved by all operations.

For liveness property φ:
Find a postive metric on states that is zero iff φ holds.
Check that it strictly decreases with all operations.

This method over-approximates the set of reachable
states, and is geared towards verification:

If the above checks hold the property is true.
If not, verification is inconclusive (counter-examples may be
invalid).



Verifying noeating with the inductive method

check init_satisfies_noeating {
all s : State |
init[s] implies noeating[s]

} for 3 but 1 State

check alone_preserves_noeating {
all s,s’ : State |
noeating[s] and alone[s,s’] implies noeating[s’]

} for 3 but 2 State

check notalone_preserves_noeating {
all s,s’ : State, b : Being |
noeating[s] and notalone[b,s,s’] implies noeating[s’]

} for 3 but 2 State



Verification with the direct method

Model valid path prefixes over the state machine.
A popular idiom to do so in Alloy is to use the
util/ordering module, and represent prefixes with a
total order on states.

For safety property φ:
Check that φ holds for all states in all path prefixes.

For liveness property φ:
Check that φ holds in some state in all paths prefixes with a
back loop (i.e. modeling infinite paths).

This method under-approximates the set of reachable
states, and is geared towards falsification:

If a counter-example is found the property is false.
If not, verification is inconclusive (a longer prefixe might
reach a problematic state).



Refuting notright with the direct method

open util/ordering[State]
. . .
fact valid_path_prefixes {
init[first]

all s : State - last {
alone[s,s.next]

or
some b : Being | notalone[b,s,s.next]

}

}

// The following check yields a counter-example that

// is the solution to the puzzle.

check puzzle_cannot_be_solved {
all s : State | notright[s]

} for 3 but 8 State



Refuting allright with the direct method

// Two states are equal if all mutable relations are equal.

pred equal [s,s’ : State] {
s.where = s’.where

}

// A path prefix has a loop if two states are equal.

pred loop {
some disj s,s’ : State | equal[s,s’]

}

// The following check yields a counter-example where

// the farmer keeps crossing the sheep forward and backward.

check puzzle_will_always_be_solved {
loop implies (some s : State | allright[s])

} for 3 but 3 State



Homework

What are the (ideally, weakest) pre-conditions that must be
added to the operations so that allright holds?
After adding such pre-conditions, can you find a metric to
verify allright with the direct method?


