
Model Checking

Alcino Cunha

October 18, 2017

Modeling Specification Verification Bibliography

Kripke Structures

Definition

Let A be a set of atomic propositions. A Kripke structure is a tuple:

pS , I ,R, Lq

where

S is a finite set of states.

I Ď S is the set of initial states.

R Ď S ˆ S is a total transition relation:

@s P S ¨ s.R ‰ H, where s.R “ ts 1 | ps, s 1q P Ru

L : S Ñ 2A is a function that labels each state with the set of
atomic propositions true in that state.

Modeling Specification Verification Bibliography

Kripke Structures

A path in a structure M “ pS , I ,R, Lq is an infinite sequence
of states π “ s0s1s2 . . ., such that @i ě 0 ¨ psi , si`1q P R.

Given a path π its i-th state will be denoted by πi .

The suffix of π starting at its i-th state will be denoted by πi .

Abusing the notation, we will usually denote the set of paths
in M by M.

Modeling Specification Verification Bibliography

Mutual exclusion with a semaphore

while true:

i1 : // iddle

w1 : request sem

c1 : // critical section

release sem

||

while true:

i2 : // iddle

w2 : request sem

c2 : // critical section

release sem

Modeling Specification Verification Bibliography

Mutual exclusion with a semaphore

c1 i2 i1 c2w1 w2
sem

w1 c2 c1 w2

i1 i2
sem

w1 i2
sem

i1 w2
sem

s0s1 s2

s3 s4 s5

s6 s7

Modeling Specification Verification Bibliography

Introduction

Properties of reactive systems usually fall under two
categories:

Safety A safety property states that “bad things” do
not happen.

Liveness A liveness property states that “good things” do
happen (eventually).

Most safety properties can be easily stated directly on Kripke
structures. For example, mutual exclusion:

tc1, c2u R s0.R
˚

But how to express safety properties like “an agent cannot be
in its critical section without requesting it before”?

Modeling Specification Verification Bibliography

Introduction

We can also state some animation properties directly on
Kripke structures. For example, reversibility:

@s P s0.R
˚ ¨ s0 P s.R

˚

But how to express properties like evolution in mutual
exclusion problems?

We need a richer formalism in which to express properties that
restrict the valid computations of the system.

Temporal logic can be such formalism: although time is not
mentioned explicitly, modal operators allow us to express rich
causal orders within computations.

Standard temporal logic is state oriented: the particular
sequence of actions that lead to a computation is irrelevant.

Modeling Specification Verification Bibliography

Models of Time

There are two basic models of time in temporal logic:

Linear Time The behavior of the system is the set of all
infinite paths starting in initial states.

Branching Time The behavior of the system is the set of all
infinite computation trees unrolled from initial
states.

Both can be determined from a Kripke structure.

Modeling Specification Verification Bibliography

Linear Time

s0
u0

s1
u2

s1
u1

s0
u0

s1
u2

s1
u2

s1
u2

s1
u2

s1
u2

s0
u0

s1
u1

s0
u0

s1
u2

s1
u2

s1
u2

s0
u0

s1
u1

s0
u0

s1
u1

s1
u2

s0
u0

s1
u1

s0
u0

s1
u1

s0
u0

s1
u1

...

s0
u0

Modeling Specification Verification Bibliography

Branching Time

s0
u0

s1
u2

s1
u1

s0
u0

s1
u2

s1
u2

s1
u2

s1
u2

s1
u2

s1
u1

s0
u0

s1
u2

s1
u2

s1
u2

s1
u1

s0
u0

s1
u2

s1
u1

Modeling Specification Verification Bibliography

CTL

Computation Tree Logic (CTL) is a branching time temporal
logic.

Besides classical operators, CTL has:

Path quantifiers Used to describe the branching structure in
the computation tree.

Temporal operators Used to describe properties of a path
through the tree.

There are two type of formulas in CTL:

State formulas Which are true in a specific state.
Path formulas Which are true along a specific path.

Modeling Specification Verification Bibliography

Path Quantifiers and Temporal Operators

Path quantifiers:

A f f holds for all computation paths.

E f f holds for some computation path.

Temporal operators:

X f f holds in the next state.

F f Eventually (or in the future) f holds.

G f f always (or globally) holds.
f U g g eventually holds and until then f always holds.
g R f f holds up to a state where g holds, although g

is not required to hold eventually.

Temporal operators X, F, and G are sometimes denoted using
©, ♦, and l, respectively.

Modeling Specification Verification Bibliography

CTL Syntax

Let A be the set of atomic propositions. State formulas are
built from the following rules:

If p P A, then p is a state formula.
If f and g are state formulas, then f , f _ g , f ^ g , and
f Ą g are state formulas.
If f is a path formula, then E f , and A f are state formulas.

The syntax of path formulas is given by the following rule:

If f and g are state formulas, then X f , F f , G f , f U g , and
g R f are path formulas.

Modeling Specification Verification Bibliography

CTL Semantics

We will define the semantics of CTL with respect to a Kripke
structure M “ pS , I ,R, Lq.

Given a state formula f we will denote the fact the f holds in
M by M |ù f .

M |ù f if and only if for all initial state s P I we have
M, s |ù f (see next slide).

Modeling Specification Verification Bibliography

Semantics of CTL State Formulas

If f is a state formula, M, s |ù f means that f holds at state s
in M. The relation |ù is defined inductively as follows (p is an
atomic proposition, f and g are state formulas, and h is a
path formula):

M, s |ù p ô p P Lpsq
M, s |ù f ô M, s |ù f
M, s |ù f _ g ô M, s |ù f _M, s |ù g
M, s |ù f ^ g ô M, s |ù f ^M, s |ù g
M, s |ù f Ą g ô M, s |ù f _M, s |ù g
M, s |ù A h ô @ π P M, π0 “ s ¨M, π |ù h
M, s |ù E h ô D π P M, π0 “ s ¨M, π |ù h

Modeling Specification Verification Bibliography

Semantics of CTL Path Formulas

If f is a path formula, M, π |ù f means that f holds along
path π in M. The relation |ù is defined inductively as follows
(f and g are state formulas):

M, π |ù X f ô M, π1 |ù f
M, π |ù F f ô Di ě 0 ¨M, πi |ù f
M, π |ù G f ô @i ě 0 ¨M, πi |ù f
M, π |ù f U g ô Di ě 0 ¨M, πi |ù g ^ @0 ď j ă i ¨M, πj |ù f
M, π |ù g R f ô @i ě 0 ¨M, πi |ù f _ D0 ď j ă i ¨M, πj |ù g

Modeling Specification Verification Bibliography

Basic CTL operators: AG f

f

f

f

f

f f

f f f

f f ff f

Modeling Specification Verification Bibliography

Basic CTL operators: EG f

f

f

f

f

Modeling Specification Verification Bibliography

Basic CTL operators: AF f

f

f f

f f

Modeling Specification Verification Bibliography

Basic CTL operators: f AU g

f

g f f

f g g

g g

Modeling Specification Verification Bibliography

Basic CTL operators: g AR f

f

g
f f f

f g
f f

f f g
f f

Modeling Specification Verification Bibliography

Minimal Set of CTL Operators

All CTL formulas can be expressed using five operators: , _,
EX, EU e EG.

f ^ g ” p f _ gq

f Ą g ” f _ g

AX f ” EX f

EF f ” true EU f

AG f ” EF f

AF f ” EG f

f AR g ” p f EU gq

f ER g ” EG g _ g EU pf ^ gq

f AU g ” p f ER gq

Modeling Specification Verification Bibliography

Examples of CTL formulas

c1 i2 i1 c2w1 w2
sem

w1 c2 c1 w2

i1 i2
sem

w1 i2
sem

i1 w2
sem

s0s1 s2

s3 s4 s5

s6 s7

Mutual exclusion: AG pc1 ^ c2q

Evolution: AGpw1 Ą AF c1q ^ AGpw2 Ą AF c2q

Reversibility: AG EFpi1 ^ i2 ^ sem ^ w1 ^ . . .q

No takeover: AGppw1 ^ i2q Ą pc1 AR c2qq ^ . . .

Modeling Specification Verification Bibliography

LTL Syntax

Unlike CTL, the Linear Temporal Logic LTL has no path
quantifiers and all formulas are path formulas.

Let A be the set of atomic propositions. The syntax of path
formulas is given by the following rules:

If p P A, then p is a path formula.
If f and g are path formulas, then f , f _ g , f ^ g , and
f Ą g , X f , F f , G f , f U g , and g R f are path formulas.

Modeling Specification Verification Bibliography

LTL Semantics

We will define the semantics of LTL with respect to a Kripke
structure M “ pS , I ,R, Lq.

Given a path formula f we will denote the fact the f holds in
M by M |ù f .

M |ù f if and only if for all paths π P M such that π0 P I we
have M, π |ù f (see next slide).

Modeling Specification Verification Bibliography

Semantics of LTL Path Formulas

If f is a path formula, M, π |ù f means that f holds along
path π in M. The relation |ù is defined inductively as follows
(p is an atomic proposition and f and g are path formulas):

M, π |ù p ô p P Lpπ0q

M, π |ù f ô M, π |ù f
M, π |ù f _ g ô M, π |ù f _M, π |ù g
M, π |ù f ^ g ô M, π |ù f ^M, π |ù g
M, π |ù f Ą g ô M, π |ù f _M, π |ù g
M, π |ù X f ô M, π1 |ù f
M, π |ù F f ô Di ě 0 ¨M, πi |ù f
M, π |ù G f ô @i ě 0 ¨M, πi |ù f
M, π |ù f U g ô Di ě 0 ¨M, πi |ù g ^ @0 ď j ă i ¨M, πj |ù f
M, π |ù g R f ô @i ě 0 ¨M, πi |ù f _ D0 ď j ă i ¨M, πj |ù g

Modeling Specification Verification Bibliography

Examples of LTL formulas

c1 i2 i1 c2w1 w2
sem

w1 c2 c1 w2

i1 i2
sem

w1 i2
sem

i1 w2
sem

s0s1 s2

s3 s4 s5

s6 s7

Mutual exclusion: G pc1 ^ c2q

Evolution: Gpw1 Ą F c1q ^ Gpw2 Ą F c2q

No takeover: Gppw1 ^ i2q Ą pc1 R c2qq ^ . . .

Modeling Specification Verification Bibliography

LTL vs CTL

Most properties can be expressed both in LTL and CTL, but
the expressive power of both logics is incomparable.

For example, reversibility cannot be expressed in LTL:

AG EF init

LTL formulas are also not equivalent to the CTL formulas
obtained by preceding each temporal operator by A. For
example, AF AX p and F X p have different semantics.

p

p p

p

Modeling Specification Verification Bibliography

LTL vs CTL

Although a computation tree is more expressive than a set of
computations, there are properties that can only be expressed
in LTL.

For example, F G p cannot be expressed in CTL. Namely, its
not equivalent to AF AG p.

p p

s1 s2 s3

p

p

pp

p

p

Modeling Specification Verification Bibliography

Spec Patterns

http://patterns.projects.cs.ksu.edu

http://patterns.projects.cs.ksu.edu

Modeling Specification Verification Bibliography

Model Checking

We will focus on model checking techniques for CTL.

Given a Kripke structure M “ pS , I ,R, Lq and a CTL formula
f , the goal of model checking is to find the set of all states in
M that satisfy f :

vf wM ” ts P S |M, s |ù f u

Formula f holds in a model M iff it holds in its initial states:

M |ù f ô I Ď vf wM

Two different approaches to model checking:

Explicit Based on an explicit enumeration and traversal
of the Kripke structure.

Symbolic When the Kripke structure is implicitly modeled
by propositional formulas.

Modeling Specification Verification Bibliography

Explicit Model Checking

It suffices to handle six cases: atomic propositions and
operators , _, EX, EG, and EU.

Given a Kripke structure M “ pS , I ,R, Lq, an atomic
proposition p, and state formulas f and g we have:

vpwM “ L´1ppq “ ts P S | p P Lpsqu

v f wM “ S ´ vf wM

vf _ gwM “ vf wM Y vgwM

The states that satisfy EX f are the predecessors of states
that satisfy f :

vEX f wM “ R.vf wM “ ts P S | Dt P vf wM ¨ ps, tq P Ru

Modeling Specification Verification Bibliography

Explicit Model Checking EU

To compute vf EU gw we start from set vgw and successively
add predecessors that satisfy f :

checkEU pvf w, vgwq ”
T Ð vgw;
vf EU gw Ð vgw;
while T ‰ H

choose s P T ;
T Ð T ´ tsu;
for t P R.s

if t R vf EU gw ^ t P vf w
vf EU gw Ð vf EU gw Y ttu;
T Ð T Y ttu;

return vf EU gw;

Modeling Specification Verification Bibliography

Explicit Model Checking EG

Given a Kripke structure M “ pS , I ,R, Lq, to model check
EG f it suffices to restrict M to the states that satisfy f :

Mf “ pvf w, I X vf w,R X pvf w ˆ vf wq, LX pvf w ˆ vf wqq

Lemma

M, s |ù EG f iff s P vf w and there exists a path in Mf from s to
some node t in a nontrivial strongly connected component of Mf .

A SCC (strongly connected component) C is a maximal
subgraph where every node is reachable from every other node
along a directed path entirely contained in C .

C is also nontrivial iff it has more than one node or it contains
one node with a self-loop.

Modeling Specification Verification Bibliography

Explicit Model Checking EG

To compute vEG f w we first compute all states belonging to
nontrivial SCCs of Mf with function scc and successively add
all predecessors in vf w.

sccpMf q can be computed efficiently with Tarjan’s algorithm.

checkG pvf wq ”
T Ð YtC |C P sccpMf q ^ trivialpC qu;
vEG f w Ð T ;
while T ‰ H

choose s P T ;
T Ð T ´ tsu;
for t P Rf .s

if t R vEG f w
vEG f w Ð vEG f w Y ttu;
T Ð T Y ttu;

return vEG f w;

Modeling Specification Verification Bibliography

Fairness

Some liveness properties can only be satisfied assuming that
some kind of fairness holds in the system.

For example, evolution in mutual exclusion algorithms usually
only holds if we assume the scheduler is fair to the processes,
i.e., all processes have the opportunity to execute once in a
while.

A fairness constraint can usually be specified with formula f
that is required to hold infinitely often in valid execution
paths.

The verification of specification g under such fairness
constraint f can be directly expressed in LTL as pG F f q Ą g .

Unfortunately it cannot be expressed in CTL.

Modeling Specification Verification Bibliography

Explicit Model Checking CTL with Fairness

To model check the operator EG under fairness it suffices to
restrict the model to fair SCCs. A SCC is fair if C X vf w ‰ H.

Now the formula EG true only holds in a state s iff there is a
fair path starting from s.

Given that a path is fair iff any of its suffixes is fair, we can
model check f EU g under fairness by invoking the standard
model checking procedure as follows:

checkEUpvf w, vgw X vEG truewq

Similarly for the remaining operators.

Modeling Specification Verification Bibliography

Symbolic Model Checking

Although explicit model checking is rather efficient it cannot
cope with the state explosion that occurs in many reactive
systems.

Symbolic model checking tackles this problem by avoiding the
explicit construction of the state space: the states and the
transition relation of a Kripke structure are captured by
propositional formulas, defined over the variables that encode
the state of the model.

Model checking is reduced to checking the validity and
equivalence of propositional formulas.

These can be done very efficiently by using techniques like
Ordered Binary Decision Diagrams.

Modeling Specification Verification Bibliography

Symbolic Model Checking for CTL

The set of states vf w where a formula f is valid is no longer
represented extensionally: instead it is represented by a
propositional formula that is valid precisely in those states.

For temporal operators EG and EU it can be determined by
fixpoints based on the respective expansion laws:

EGf ” f ^ EX EG f
vEG f w “ νpΠq, where Πphq “ vf w ^ vEX hw

f EU g ” g _ pf ^ EXpf EU gqq
vf EU gw “ µpΠq, where Πphq “ vgw _ pvf wM ^ vEX hwq

Notice that fixpoints are computed symbolically: for example,
to compute a least fixpoint we start with formula false and
perform disjunctions until two equivalent formulas are
computed in successive iterations.

Modeling Specification Verification Bibliography

Encoding Transitions

The transitions R of a model M can encoded by a formula φR
that mentions normal variables to denote their value in the
pre-state and primed versions to denote the value in the
post-state.

c1 i2 i1 c2w1 w2
sem

w1 c2 c1 w2

i1 i2
sem

w1 i2
sem

i1 w2
sem

s0s1 s2

s3 s4 s5

s6 s7

in1 ” w1 ^ sem ^ w 11 ^ c 11 ^ sem
1

^

i 11 “ i1 ^ i 12 “ i2 ^ w 12 “ w2 ^ c 12 “ c2

. . .

φR ” req1 _ in1 _ out1 _ req2 _ in2 _ out2

Modeling Specification Verification Bibliography

Symbolic Model Checking EX

To model check EX f a temporary existential quantifier is
used.

vEX f w “ Dx 1 ¨ vf w1 ^ φR

vf w1 is the formula obtained from vf w by replacing all variables
by the corresponding primed version.

Intuitively, the formula vEX f w will be valid in a state s if there
is some valuation to the primed variables that is accessible
from s and for which f is valid.

The existential quantifier is then eliminated by expansion. For
example, for boolean variables we have:

Dx ¨ f ” f |xÐtrue _ f |xÐfalse

Modeling Specification Verification Bibliography

Symbolic Model Checking EX

φR ” pa^ b ^ a
1 ^ b1q _ p a^ b ^ a1 ^ b1q

vEX bw ” Da1, b1 ¨ φR ^ b1

” Da1, b1 ¨ φR

” Da1 ¨ φR |b1Ðtrue _ φR |b1Ðfalse

” Da1 ¨ pa^ b ^ a1q _ p a^ b ^ a1q

” pa^ bq _ p a^ bq

vEX aw ” Da1, b1 ¨ φR ^ a1

” Da1, b1 ¨ pa^ b ^ a1 ^ b1 ^ a1q _ . . .

” false

Modeling Specification Verification Bibliography

Bibliography

C. Baier and J.-P. Katoen. Principles of Model Checking.
MIT Press, 2008.

Robert Tarjan. Depth-First Search and Linear Graph
Algorithms. SIAM Journal of Computing 1: 146–160. 1972.

Edmund M. Clarke, E. Allen Emerson, A. Prasad Sistla.
Automatic Verification of Finite-State Concurrent Systems
Using Temporal Logic Specifications. ACM TOPLAS 8(2):
244-263. 1986.

Randal E. Bryant. Graph-based Algorithms for Boolean
Function Manipulation. IEEE Transactions on Computers
C-35(8):677–691. 1986.

Kenneth L. McMillan. Symbolic Model Checking. Springer,
1993.

	Modeling
	Modeling

	Specification
	Specification

	Verification
	Verification

	Bibliography
	Bibliography

