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Alloy in a nutshell

Declarative modeling language 

Automated analysis 

Lightweight formal method

http://alloy.mit.edu

http://alloy.mit.edu


Key ingredients

Everything is a relation 

Non-specialized logic 

Counterexamples within scope 

Analysis by off-the-shelf SAT solvers



Small scope hypothesis
Most bugs have small counterexamples 

Instead of building a proof look for a refutation 

A scope is defined that limits the size of instances



Relations

A1 B1
A1 B2
A2 B1
A3 B2

{(A1,B1),(A1,B2),(A2,B1),(A3,B2)}

A1 A2 A3

B1 B2 B3



Relations
Sets are relations of arity 1 

Scalars are relations with size 1 

Relations are first order... but we have multirelations

File   = {(F1),(F2),(F3)}
Dir    = {(D1),(D2)}
Time   = {(T1),(T2),(T3),(T4)}
root   = {(D1)}
now    = {(T4)}
path   = {(D2)}
parent = {(F1,D1),(D2,D1),(F2,D2)}
log    = {(T1,F1,D1),(T3,D2,D1),(T4,F2,D2)}



The special ones
none empty set
univ universal set
iden identity relation

File = {(F1),(F2),(F3)}
Dir  = {(D1),(D2)}
none = {}
univ = {(F1),(F2),(F3),(D1),(D2)}
iden = {(F1,F1),(F2,F2),(F3,F3),(D1,D1),(D2,D2)}



Composition
A1 A2 A3

B1 B2 B3

C1 C2 C3

A1 A2 A3

C1 C2 C3

R   = {(A1,B1),(A1,B2),(A2,B1),(A3,B2)}
S   = {(B1,C2),(B1,C3),(B2,C2),(B3,C1)}
R.S = {(A1,C2),(A1,C3),(A2,C2),(A2,C3),(A3,C2)}



Composition
The swiss army knife of Alloy 

It subsumes function application 

Encourages a navigational (point-free) style 

 R.S[x] = x.(R.S) 

Person = {(P1),(P2),(P3),(P4)}
parent = {(P1,P2),(P1,P3),(P2,P4)}
me = {(P1)}
me.parent = {(P2),(P3)}
parent.parent[me] = {(P4)}
Person.parent = {(P2),(P3),(P4)}



Operators
. composition
+ union
++ override
& intersection
- difference
-> cartesian product
<: domain restriction
:> range restriction
~ converse
^ transitive closure
* transitive-reflexive closure



Operators
File   = {(F1),(F2),(F3)}
Dir    = {(D1),(D2)}
root   = {(D1)}
new    = {(F3,D2),(F1,D1),(F2,D1)}
parent = {(F1,D1),(D2,D1),(F2,D2)}
File + Dir = {(F1),(F2),(F3),(D1),(D2)}
parent +  new = {(F1,D1),(D2,D1),(F2,D2),(F3,D2),(F2,D1)}
parent ++ new = {(F1,D1),(D2,D1),(F3,D2),(F2,D1)}
parent -  new = {(D2,D1),(F2,D2)}
parent &  new = {(F1,D1)}
parent :> root = {(F1,D1),(D2,D1)}
File -> root = {(F1,D1),(F2,D1),(F3,D1)}
new -> Dir = {(F3,D2,D1),(F3,D2,D2),(F1,D1,D1),...}
~parent = {(D1,F1),(D1,D2),(D2,F2)}



Closures
No recursion... but we have closures 

^R = R + R.R + R.R.R + ...

*R = ^R + iden

P1 P2

P4

P3

P5 P6



Multiplicities

A m -> m B

set any number
one exactly one
some at least one
lone at most one



Bestiary

A lone -> some B A -> one B A some -> lone B

representation function abstraction
A lone -> one B A some -> one B

injection surjection
A one -> one B

bijection

A lone -> B A -> some B A -> lone B A some -> B

injective entire simple surjective



Signatures
Signatures allow us to introduce sets 

Top-level signatures are mutually disjoint

sig File {}
sig Dir {}
sig Name {}



Signatures
A signature can extend another signature 

The extensions are mutually disjoint 

Signatures can be constrained with a multiplicity

sig Object {}
sig File extends Object {}
sig Dir extends Object {}
sig Exe,Txt extends File {}
one sig Root extends Dir {}



Signatures
A signature can be abstract 

They have no elements outside extensions 

Arbitrary subset relations can also be declared

abstract sig Object {}
abstract sig File extends Object {}
sig Dir extends Object {}
sig Exe, Txt extends File {}
one sig Root extends Dir {}
sig Temp in Object {}



Fields
Relations can be declared as fields 

By default binary relations are functions 

The range can be constrained with a multiplicity

abstract sig Object {
   name: Name,
   parent: lone Dir
}
sig File extends Object {}
sig Dir extends Object {}
sig Name {}



Fields
Higher arity relations can also be declared as fields 

Fields can depend on other fields 

Overloading is allowed for non-overlapping signatures

abstract sig Object {}
sig File, Dir extends Object {}
sig Name {}
sig FileSystem {
objects: set Object,
parent: objects -> lone (Dir & objects),
name: objects lone -> one Name

}



Command run
Instructs analyzer to search for instances within scope 

Scope can be fine tuned for each signature 

The default scope is 3 

Instances are built by populating sets with atoms up to 
the given scope 

Atoms are uninterpreted, indivisible, immutable  

It returns all (non-symmetric) instances of the model



Command run
abstract sig Object {
   name: Name,
   parent: lone Dir
}
sig File, Dir extends Object {}
sig Name {}
run {} for 3 but 2 Dir, exactly 3 Name

Dir0 File Dir1

Name0 Name1 Name2



Facts
Constraints that are assumed to always hold 

Be careful what you wish for...  

First-order logic + relational calculus

abstract sig Object {
   name: Name,
   parent: lone Dir
}
sig File, Dir extends Object {}
sig Name {}
fact AllNamesDifferent {}
fact ParentIsATree {}



Operators

! not negation
&& and conjunction
|| or disjunction
=> implies implication
<=> iff equivalence
A => B else C <=> (A && B) || (!A && C)



Operators

= equality
!= inequality
in is subset
no is empty
some is not empty
one is a singleton
lone is empty or a singleton



Quantifiers

∆ x:A | P[x]
all P holds for every x in A
some P holds for at least one x in A
lone P holds for at most one x in A
one P holds for exactly one x in A
no P holds for no x in A

∆ disj x,y:A | P[x,y] <=> ∆ x,y:A | x!=y => P[x,y]



A question of style
The classic (point-wise) logic style 

The navigational style 

The multiplicities style 

The relational (point-free) style

all disj x,y : Object | name[x] != name[y]

name in Object lone -> Name

name.~name in iden

all x : Name | lone name.x



A static filesystem
abstract sig Object {
   name: Name,
   parent: lone Dir
}
sig File, Dir extends Object {}
sig Name {}
fact AllNamesDifferent {
   name in Object lone -> Name    // name is injective
}
fact ParentIsATree {

all f : File | some f.parent   // no orphan files
lone r : Dir | no r.parent     // only one root
no o : Object | o in o.^parent // no cycles

}



Assertions and check
Assertions are constraints intended to follow from facts 
of the model 

check instructs analyzer to search for counterexamples 
within scope

assert AllDescendFromRoot {
lone r : Object | Object in *parent.r

}

check AllDescendFromRoot for 6

check {name in Object lone -> Name <=> name.~name in iden}



Predicates and functions
A predicate is a named formula with zero or more 
declarations for arguments 

A function also has a declaration for the result

fun content [d : Dir] : set Object {
parent.d

} 

pred leaf [o : Object] {
o in File || no content[o]

}



Lets and comprehensions

fun siblings [o : Object] : set Object {
let p = o.parent | parent.p

}
check {all o : Object | o in siblings[o]}

fun iden : univ -> univ {
   {x,y : univ | x = y}
}

let x = e | P[x]

{x1 : A1, ..., xn : An | P[x1,...,xn]}



Modules

util/ordering[elem]

Creates a single linear ordering over atoms in elem

Constrains all the permitted atoms to exist 

Good for abstracting time, model traces, ... 

util/integer

Collection of utility functions over integers



Integers
Scope for Int defined bitwidth 

Default semantics is 2’s complement arithmetic 

Be careful with overflows! 

Forbid overflows semantics also available

open util/integer
check {all x,y : Int | pos[y] => gt[add[x,y],x]}



Subtleties of bounded verification

Counterexamples are found 

Set is not “saturated” enough 

Not all possible sets are forced to exist in an instance

sig Set { elems : set Elem }
sig Elem {}

check {
  all s0, s1 : Set | 
    some s2 : Set | s2.elems = s0.elems + s1.elems
}



Subtleties of bounded verification

As long as universal quantifiers in runs, or existential 
quantifiers in checks, are bounded there are no 
problems 

Bounded means that the quantifier scope does not 
mention names of problematic signatures

check {
  all s0, s1, s2 : Set |
    s0.elems + s1.elems = s2.elems => 
      s1.elems + s0.elems = s2.elems
}



Generator axioms

A generator axiom could be used to force the existence 
of all possible sets  

Unfortunately the scope explodes 

To verify a model with n elements 2n sets are needed 

Sometimes generator axioms force infinite scopes 

The risk of inconsistency is very high

fact SetGenerator {
  some s : Set | no s.elems
  all s : Set, e : Elem | 
    some s’ : Set | s’.elems = s.elems + e
}


