An introduction to Alloy Alcino Cunha

Alloy in a nutshell

- Declarative modeling language
- Automated analysis
- Lightweight formal method

hitovalloymitedu

Key ingredients

- Everything is a relation
- Non-specialized logic
- Counterexamples within scope
- Analysis by off the shelf SAT Solvers

Small scope hypothesis

- Most bugs have small counterexamples
- Instead of building a proof look for a refútation
- A scope is defined that limits the size of instances

Relations

$$
\{(A 1, B 1),(A 1, B 2),(A 2, B 1),(A 3, B 2)\}
$$

Relations

* Sets are relations of arity 1
- Scalars are relations with size 1
- Relations are first order . but we have multirelations

$$
\begin{aligned}
& \text { File }=\{(\mathrm{F} 1),(\mathrm{F} 2),(\mathrm{F} 3)\} \\
& \text { Dir }=\{(\mathrm{D} 1),(\mathrm{D} 2)\} \\
& \text { Time }=\{(\mathrm{T} 1),(\mathrm{T} 2),(\mathrm{T} 3),(\mathrm{T} 4)\} \\
& \text { root }=\{(\mathrm{D} 1)\} \\
& \text { now }=\{(\mathrm{T} 4)\} \\
& \text { path }=\{(\mathrm{D} 2)\} \\
& \text { parent }=\{(\mathrm{F} 1, \mathrm{D} 1),(\mathrm{D} 2, \mathrm{D} 1),(\mathrm{F} 2, \mathrm{D} 2)\} \\
& \text { log }
\end{aligned}=\{(\mathrm{T} 1, \mathrm{~F} 1, \mathrm{D} 1),(\mathrm{T} 3, \mathrm{D} 2, \mathrm{D} 1),(\mathrm{T} 4, \mathrm{~F} 2, \mathrm{D} 2)\} \text {) }
$$

The special ones

none

$$
\begin{aligned}
& \text { File }=\{(F 1),(F 2),(F 3)\} \\
& \text { Dir }=\{(D 1),(D 2)\} \\
& \text { none }=\{ \} \\
& \text { univ }=\{(F 1),(F 2),(F 3),(D 1),(D 2)\} \\
& \text { iden }=\{(F 1, F 1),(F 2, F 2),(F 3, F 3),(D 1, D 1),(D 2, D 2)\}
\end{aligned}
$$

Composition

$$
\begin{aligned}
& R=\{(A 1, B 1),(A 1, B 2),(A 2, B 1),(A 3, B 2)\} \\
& S=\{(B 1, C 2),(B 1, C 3),(B 2, C 2),(B 3, C 1)\} \\
& R \cdot S=\{(A 1, C 2),(A 1, C 3),(A 2, C 2),(A 2, C 3),(A 3, C 2)\}
\end{aligned}
$$

Composition

* The swiss army knife of Alloy
- It subsumes function application
- Encourages a navigational (point-free) style
- R. S $[X], x \cdot(R \cdot S)$

```
Person = {(P1),(P2),(P3),(P4)}
parent = {(P1,P2),(P1,P3),(P2,P4)}
me = {(P1)}
me.parent = {(P2),(P3)}
parent.parent[me] = {(P4)}
Person.parent = {(P2),(P3),(P4)}
```


Operators

	composition
t	Union
++	override
8	intersection
-	difference
\rightarrow	cartesian product
< :	domain restriction
\%	range restriction
\sim	converse
\wedge	transitive closure
*	transitive-reflexive closure

Operators

```
File = {(F1),(F2),(F3)}
Dir = {(D1),(D2)}
root = {(D1)}
new = {(F3,D2),(F1,D1),(F2,D1)}
parent = {(F1,D1),(D2,D1),(F2,D2)}
File + Dir = {(F1),(F2),(F3),(D1),(D2)}
parent + new = {(F1,D1),(D2,D1),(F2,D2),(F3,D2),(F2,D1)}
parent ++ new = {(F1,D1),(D2,D1),(F3,D2),(F2,D1)}
parent - new = {(D2,D1),(F2,D2)}
parent & new = {(F1,D1)}
parent :> root = {(F1,D1),(D2,D1)}
File -> root = {(F1,D1),(F2,D1),(F3,D1)}
new -> Dir = {(F3,D2,D1),(F3,D2,D2),(F1,D1,D1),\ldots}
~parent = {(D1,F1),(D1,D2),(D2,F2)}
```


Closures

- No recursion. but we have closures
$\because \wedge R=R+R \cdot R+R \cdot R \cdot R+$
$\because * R=\wedge R+$ iden

Multiplicities

$A m \rightarrow m B$	
set	any number
one	exactly one
some	at least one
Lone	at most one

Bestiary

A lone \rightarrow B $\quad A \quad>$ some $B \quad A \quad \rightarrow$ lone $B \quad A \quad$ some $\rightarrow B$

A lone $->$ some B	$A \rightarrow>$ one B	A some \rightarrow lone B
representation	function	abstraction
A lone $\rightarrow>$ one		A some $->$ one B
injection		surjection
A one \gg one B		

Signatures

* Signatures allow us to introduce sets
- Top-level signatures are mutually disjoint

$$
\begin{aligned}
& \text { sig File }\} \\
& \text { sig Dir }\} \\
& \text { sig Name }\}
\end{aligned}
$$

Signatures

- A signature can extend another signature
* The extensions are mutually olisjoint
- Signatures can be constrained with a multiplicity

```
sig Object {}
sig File extends Object {}
sig Dir extends Object {}
sig Exe,Txt extends File {}
one sig Root extends Dir {}
```


Signatures

- A signature can be abstract
- They have no elements outside extensions
- Arbitrary subset relations can also be declared

```
abstract sig Object {}
abstract sig File extends Object {}
sig Dir extends Object {}
sig Exe, Txt extends File {}
one sig Root extends Dir {}
sig Temp in Object {}
```


Fields

- Relations can be declared as fields
- By default binary relations are functions
- The range can be constrained with a multiplicity

```
abstract sig Object {
    name: Name,
    parent: lone Dir
}
sig File extends Object {}
sig Dir extends Object {}
sig Name {}
```


Fields

* Higher arity relations can also be declared as fields
* Fields can depend on other fields
- Overloading is allowed for non-overlapping signatures

```
abstract sig Object {}
sig File, Dir extends Object {}
sig Name {}
sig FileSystem {
    objects: set Object,
    parent: objects -> lone (Dir & objects),
    name: objects lone -> one Name
}
```


Command run

* Instructs analyzer to search for instances within scope
- Scope can be fine tuned for each signature
- The default scope is 3
- Instances are built by populating sets with atoms up to the given scope
- Atoms are uninterpreted, indivisible, immutable
- It returns all (non-symmetric) instances of the model

Command run

```
abstract sig Object {
    name: Name,
    parent: lone Dir
}
sig File, Dir extends Object {}
sig Name {}
run {} for 3 but 2 Dir, exactly 3 Name
```


Facts

* Constraints that are assumed to always hold
- Be careful what you wish for:.
- First-order logic + relational calculus

```
abstract sig Object {
    name: Name,
    parent: lone Dir
}
sig File, Dir extends Object {}
sig Name {}
fact AllNamesDifferent {}
fact ParentIsATree {}
```


Operators

$!$	not	negation
88	and	Conjunction
11	or	disjunction
$\xrightarrow{2}$	amplies	mplication
<>	iff	equivalence
$A \Rightarrow B$ else $C \times \%$ (A \&\& B) 11 (1 \& \& C)		

Operators

Quantifiers

$\triangle \mathrm{x}: \mathrm{A} \mid \mathrm{P}[\mathrm{X}]$	
al1.	P holds for every x in A
some	P holds for at least one x in A
lone	P holds for at most one x in A
one	P holds for exactly one x in A
no	P holds for no x in A
Δ disj $x, y: A \mid P[x, y] \Leftrightarrow \Delta x, y: A \quad 1 \quad x!=y \Rightarrow P[x, y]$	

A question of style

* The classic (point-wise) logic style

$$
\text { all disj } x, y \text { : Object } \mid \text { name }[x]!=\text { name }[y]
$$

- The navigational style

$$
\text { all } x \text { : Name I lone name. } x
$$

- The multiplicities style
name in Object lone \rightarrow Name
- The relational (point-free) style
name. nname in iden

A static filesystem

```
abstract sig Object {
    name: Name,
    parent: lone Dir
}
sig File, Dir extends Object {}
sig Name {}
fact AllNamesDifferent {
    name in Object lone -> Name // name is injective
}
fact ParentIsATree {
    all f : File I some f.parent // no orphan files
    lone r : Dir I no r.parent // only one root
    no o : Object I o in o.^parent // no cycles
}
```


Assertions and check

* Assertions are constraints intended to follow from facts of the model
- check instructs analyzer to search for counterexamples within scope

```
assert AllDescendFromRoot {
    lone r : Object I Object in *parent.r
}
```

check AllDescendFromRoot for 6
check \{name in Object lone \rightarrow Name $<=>$ name. nname in iden\}

Predicates and functions

- A predicate is a named formula with zero or more declarations for arguments
- A function also has a declaration for the result

```
fun content [d : Dir] : set Object {
    parent.d
}
pred leaf [o : Object] {
    o in File || no content[0]
}
```


Lets and comprehensions

$$
\text { let } x=\mathrm{e} \mid \mathrm{P}[\mathrm{x}]
$$

fun siblings [o : Object] : set Object \{ let $p=0$.parent \mid parent. p
\}
check \{all o: Object | o in siblings[0]\}
fun iden : univ \rightarrow univ $\{$

$$
\{x, y: \text { univ } \mid x=y\}
$$

\}

Modules

* util/ordering[elem]
- Creates a single linear ordering over atoms in elem
- Constrains all the permitted atoms to exist
- Good for abstracting time model traces,.
- util/integer
- Collection of utility functions over integers

Integers

* Scope for Int defined bitwidth
- Default semantics is 2s complement arithmetic
- Be careful with overiflows!
- Forbid overflows semantics also available

```
open util/integer
check {all x,y : Int I pos[y] => gt[add[x,y],x]}
```


Subtleties of bounded verification

```
sig Set { elems : set Elem }
sig Elem {}
check {
    all s0, s1 : Set I
        some s2 : Set | s2.elems = s0.elems + s1.elems
}
```

- Counterexamples are found
- Set is not saturated' enough
- Not all possible sets are forced to exist in an instance

Subtleties of bounded verification

- As long as universal quantifiers in runs, or existential quantifiers in checks, are bounded there are no problems
- Bounded means that the quantifier scope does not mention names of problematic signatures

```
check {
    all s0, s1, s2 : Set |
    s0.elems + s1.elems = s2.elems =>
    s1.elems + s0.elems = s2.elems
```

\}

Generator axioms

```
fact SetGenerator {
    some s : Set I no s.elems
    all s : Set, e : Elem I
        some s': Set I s'.elems = s.elems + e
}
```

- A generator axiom could be used to force the existence of all possible sets
- Unfortunately the scope explodes
- To verify a model with n elements $2 n$ sets are needed
- Sometimes generator axioms force infinite scopes
* The risk of inconsistency is very high

