
7
C O N T R A C T- O R I E N T E D P R O G R A M M I N G

The chapters of the first part of this book rely on a type-polymorphic
notion of computation, captured by the omnipresent use of the arrow
notation

B A
foo

where A and B are types.
The generalization from functions to relations carried out in the pre-

vious two chapters has preserved the same principle — all relational
combinators are typed in the same way. There is thus an implicit as-
sumption of static type checking in the overall approach — types are
checked at “compile time”. Expressions which don’t type are auto-
matically excluded.

However, examples such as the Alcuin puzzle show that this is in-
sufficient. Why? Because the types involved are most often “too
large”: the whole purpose of the puzzle is to consider only the in-
habitants of type BankBeing — functions that describe all possible con-
figurations in the puzzle — that satisfy the “starvation property”, re-
call (5.76). Moreover, the carry operation (5.208) should preserve this
property — something we didn’t at all check in the previous chapter!

Let us generalize the situation in this puzzle to that of a function
f : A → A and a predicate p : A → B that should be preserved by
f . Predicates such as p have become known as invariants by software
theorists. The preservation requirement is captured by:

〈∀ a : p a : p (f a)〉
Note how the type A is now divided in two parts — a “good one”,
{a | a ∈ A ∧ p a} and a “bad one”, {a | a ∈ A ∧ ¬ (p a)}. By
identifying p as an invariant, the programmer is obliged to ensure a
“good” output f a wherever a “good” input is passed to f . For “bad”
inputs nothing is requested.

The situation above can be generalized to some f : A → B where B
is subject to some invariant q : B → B. So f is obliged to ensure “good”
outputs satisfying q. It may well be the case that the only way for f
to ensure “good” outputs is to restrict its inputs by some precondition
p : A→ B. Thus the proof obligation above generalizes to:

〈∀ a : p a : q (f a)〉 (7.1)

244

7.1 C O N T R A C T S 245

One might tentatively try and express this requirement by writing

p
f // q

where predicates p and q take the place of the original types A and B,

respectively. This is what we shall do, calling assertion p
f // q a

contract. Note how are are back to the function-as-a-contract view of
section 2.1 but in a wider setting:

f commits itself to producing a “good” B-value (wrt. q) pro-
vided it is supplied with a “suitable” A-value (wrt. p).

The main difference compared to section 2.1 is that the well-typing

of p
f // q cannot be mechanically ascertained at “compile time” —

it has to be validated by a formal proof — the proof obligation (7.1)
mentioned above. This kind of type checking is often referred to as
“extended type checking”.

In real life software design data type invariants can be arbitrarily
complex — think of all legal restrictions imposed on the organized so-
cieties of today! The increasing “softwarization” of our times forces us
to think that, as in the regular functioning of such organized societies,
programs should interact with each other via formal contracts establish-
ing what they rely upon or guarantee among themselves. This is the
only way to ensure safety and security essential to reliable, mechanized
operations.

This chapter will use relation algebra to describe such contracts and
develop a simple theory about them, enabling compositionality as be-
fore. Relations (including functions) will play a double role — they
will not only describe computations but also the data structures in-
volved in such computations, in a unified and elegant way.

7.1 C O N T R A C T S

It should be routine work for the reader to check that

f ·Φp ⊆ Φq · f (7.2)

means exactly the same as (7.1) above. In software design terminology,
this is known as a (functional) contract, and we shall write

p
f // q (7.3)

to denote it — a notation that generalizes the type A → B of f , as
already observed. Thanks to (5.207), (7.2) can also be written:

f ·Φp ⊆ Φq · > (7.4)

7.1 C O N T R A C T S 246

Predicates p and q in contract p
f // q shall be referred to as the con-

tract’s precondition and postcondition, respectively. Contracts compose
sequentially, see the following exercise.

Exercise 7.1. Show that q p
g·foo holds provided r p

foo and q r
goo

hold.
2

W E A K E S T P R E - C O N D I T I O N S Note that more than one (pre) con-
dition p may ensure (post) condition q on the outputs of f . Indeed,

contract false
f // q always holds, but it is useless — pre-condition

false is “unacceptably strong”.
Clearly, the weaker p the better. The question is, then: is there a

weakest such p? We calculate:

f ·Φp ⊆ Φq · f
≡ { recall (5.207) }

f ·Φp ⊆ Φq · >
≡ { shunting (5.46); (5.205) }

Φp ⊆ f ◦ · true
q

≡ { (5.52) }

Φp ⊆
true
q · f

≡ { Φp ⊆ id ; (5.58) }

Φp ⊆ id ∩ true
q · f

≡ { (5.198) }
Φp ⊆ Φ(q·f)

We conclude that q · f is such a weakest pre-condition. Notation wp (f , q) =
q · f is often used to denote a weakest pre-condition (WP). This is the
weakest constraint on inputs for outputs by f to fall within q. The
special situation of a weakest precondition is nicely captured by the
universal property:

f ·Φp = Φq · f ≡ p = q · f (7.5)

where p = wp (f , q) could be written instead of p = q · f , as seen
above. Property (7.5) enables a “logic-free” calculation of weakest pre-
conditions, as we shall soon see: given f and post-condition q, there

7.1 C O N T R A C T S 247

always exists a unique (weakest) precondition p such that Φq · f can be
replaced by f ·Φp. Moreover:

f
f
·Φp = Φp ·

f
f
⇐ p 6 f (7.6)

where 6 denotes the injectivity preorder (5.230) on functions.1

Exercise 7.2. Calculate the weakest pre-condition wp (f , q) for the following func-
tion / post-condition pairs:

• f x = x2 + 1 , q y = y 6 10 (in R)

• f = N0
succ // N0 , q = even

• f x = x2 + 1 , q y = y 6 0 (in R)

2

I N VA R I A N T S In case p = q in a contract (7.3), that is, in case of

q
f // q holding, we say that q is an invariant of f , meaning that the

“truth value” of q remains unchanged by execution of f . More gener-

ally, invariant q is preserved by function f provided contract p
f // q

holds and p⇒ q, that is, Φp ⊆ Φq.
Some pre-conditions are weaker than others wrt. invariant preserva-

tion. We shall say that w is the weakest pre-condition for f to preserve
invariant q wherever wp (f , q) = w ∧ q, where Φp∧q = Φp ·Φq.

Recalling the Alcuin puzzle, let us define the starvation invariant as
a predicate on the state of the puzzle, passing the where function as a
parameter w:

starving w = w · CanEat ⊆ w · Farmer

Then the contract

starving
carry b // starving

would mean that the function carry b — that should transfer the beings
in b to the other bank of the river — always preserves the invariant:

wp (carry b, starving) = starving.

Things are not that easy, however: there is a need for a pre-condition
ensuring that b includes the farmer together with a good choice of the
being to carry!

Let us see some simpler examples first.

1 The interested reader will find the proofs of (7.5) and (7.6) in reference [50].

7.2 L I B R A RY L O A N E X A M P L E 248

7.2 L I B R A RY L O A N E X A M P L E

Consider the following relational data model of a library involving
books and users that can borrow its books:

ISBN Name

Title Booktitleoo

Auth
��

isbn

OO

R // User
addr

//

card
��

name

OO

Address

Author Id

(7.7)

All arrows denote attributes (functions) but two — Auth and R. The
former is a relation because a book can have more that one author.2

The latter is the most interesting relation of the model, u R b meaning
“book b currently on loan to library user u”. Quite a few invariants are
required in this model, for instance:

• the same book cannot be not on loan to more than one user;

• no book exists with no authors;

• no two different users have the same card Id;

• books with the same ISBN should have the same title and the same
authors.

Such properties (invariants) are easy to encode:

• no book on loan to more than one user:

Book R // User is simple

• no book without an author:

Book Auth // Author is entire

• no two users with the same card Id:

User card // Id is injective

• ISBN is a key attribute:

ISBN title·isbn◦ // Title and ISBN ΛAuth·isbn◦ // P Author
are simple relations.

Since all other arrows are functions, they are simple and entire.
Let us now spell out such invariants in terms of relational assertions

(note the role of the injectivity preorder):

• no book on loan to more than one user:

2 Its power transpose (5.247) — ΛAuth : Book → PAuthor — gives the set of authors of
a book.

7.2 L I B R A RY L O A N E X A M P L E 249

id 6 R◦

equivalent to img R ⊆ id;

• no book without an author:

id ⊆ ker Auth

• no two users with the same card Id:

id 6 card

equivalent to ker card ⊆ id.

• ISBN is a key attribute:

title 6 isbn ∧ ΛAuth 6 isbn

equivalent to isbn
isbn ⊆ title

title and isbn
isbn ⊆ Auth

Auth , respectively.3

Below we focus on the first invariant, no book on loan to more than
one user. To bring life to our model, let us think of two operations on

User BookRoo , one that returns books to the library and another that
records new borrowings:

(return S) R = R− S (7.8)

(borrow S) R = S∪ R (7.9)

Note that parameter S is of type User BookRoo , indicating which
users borrow/return which books. Clearly, these operations only change
the books-on-loan relation R, which is conditioned by invariant

inv R = img R ⊆ id (7.10)

The question is, then: are the following “types”

inv invreturn Soo (7.11)

inv invborrow Soo (7.12)

valid? Let us check (7.11):

inv (return S R)

≡ { inline definitions }
img (R− S) ⊆ id

⇐ { since img is monotonic }
img R ⊆ id

≡ { definition }
inv R

2

3 Note the use of (5.170) in the second case.

7.2 L I B R A RY L O A N E X A M P L E 250

So, for all R, inv R ⇒ inv (return S R) holds — invariant inv is pre-
served.

At this point note that (7.11) was checked only as a warming-up ex-
ercise — we don’t actually need to worry about it! Why?

As R− S is smaller than R (exercise 5.41) and “smaller than
injective is injective” (5.82), it is immediate that inv (7.10) is
preserved.

To see this better, we unfold and draw definition (7.10) in the form of
a diagram:

inv R =

Book

R

��

UserR◦oo

id
��

⊆

User User
id

oo

As R occurs only in the lower-path of the diagram, it can always get
smaller.

This “rule of thumb” does not work for borrow S because, in general,
R ⊆ borrow S R. This time R gets bigger, not smaller, and we do have
to check the contract:

inv (borrow S R)

≡ { inline definitions }
img (S∪ R) ⊆ id

≡ { exercise 5.15 }
img R ⊆ id ∧ img S ⊆ id ∧ S · R◦ ⊆ id

≡ { definition of inv }
inv R ∧ img S ⊆ id ∧ S · R◦ ⊆ id︸ ︷︷ ︸

wp (borrow S,inv)

Thus the complete definition of the borrow operation becomes, in the
notation of section 5.3:

Borrow (S, R : Book→ User) R′ : Book→ User

pre S · S◦ ⊆ id ∧ S · R◦ ⊆ id

post R′ = R∪ S

Why have we written Borrow instead of borrow as before? This is be-
cause borrow has become a simple relation

Borrow = borrow ·Φpre

It is no longer a function since its (weakest) precondition is not the
predicate true. (Recall that lowercase identifiers are reserved to func-
tions only.) This precondition was to be expected, as spelt out by ren-
dering S · R◦ ⊆ id in pointwise notation: for all users u, u′,

7.2 L I B R A RY L O A N E X A M P L E 251

〈∃ b : u S b : u′ R b〉 ⇒ u = u′

should hold. So, after the operation takes place, the result state R′ =
R ∪ S won’t have the same book on loan twice to different users. (Of
course, the same must happen about S itself, which is the same pred-
icate for R = S.) Interestingly, the weakest precondition is not ruling
out the situation in which u S b and u R b hold, for some book b and
user u. Not only this does not harm the model but also it corresponds
to a kind of renewal of a previous borrowing.

E V O L U T I O N The library loan model (7.7) given above is not real-
istic in the following sense — it only “gives life” to the borrowing
relation R. In a sense, it assumes that all books have been bought and
all users are registered.

How do we improve the model so that new books can be acquired
and new users can join the library? Does this evolution entail a com-
plete revision of (7.7)? Not at all. What we have to do is to add two
new relations, say M and N, the first recording the books currently
available in the library and the second the users currently registered
for loaning:

ISBN Name

Title Booktitleoo

Auth
��

isbn

OO

#B R //Moo #U N // User
addr

//

card
��

name

OO

Address

Author Id

Two new datatypes have been added: #U (unique identifier of each
user) and #B (key identifying each book). Relations M and N have to
be simple. The operations defined thus far stay the same, provided #B
replaces Book and #U replaces User — advantages of a polymorphic
notation. New operations can be added for

• acquiring new books — will change relation M only;

• registering new users — will change relation N only;

• cancelling users’ registrations — will change relation N only.

There is, however, something that has not been considered: think of
a starting state where M = ⊥ and N = ⊥, that is, the library has no
users, no books yet. Then necessarily R = ⊥. In general, users cannot
borrow books that don’t exist,

δ R ⊆ δ M

and not-registered users cannot borrow books at all:

ρ R ⊆ δ N

7.3 M O B I L E P H O N E E X A M P L E 252

Invariants of this kind capture so-called referential integrity constraints.
They can be written with less symbols, cf.

R ⊆ > ·M

and

R ⊆ N◦ · >

respectively. Using the “thumb” rules as above, it is clear that, with
respect to referential integrity:

• returning books is no problem, because R is only on the lower
side of both inclusions;

• borrowing books calls for new contracts — R is on the lower side
and it increases!

• registering new users and buying new books are no problem,
because M and N are on the upper side only;

• unregistering users calls for a contract because N is on the upper
side and decreases — users must return all books before unreg-
istering!

7.3 M O B I L E P H O N E E X A M P L E

In this example we go back to the store operation on a mobile phone list
of calls specified by (5.2). Of the three invariants we select (b), the one
requiring no duplicate calls in the list. Recall, in Haskell, the function
(!!) :: [a] → Z → a. This tells how a finite list s is converted into a
partial function (s!!) of type Z → a. In fact, the partiality extends
to the negative numbers4 and so we should regard (s!!) as a simple
relation5 even if restricted to the type a←N0, as we shall do below.

The no-duplicates requirement requests (s!!) to be injective: in case
s !! i and s !! j are defined, i 6= j ⇒ s !! i 6= s !! j. Let L = (s!!). Then we
can re-specify the operations of store in terms of L, as follows:6

inv L = id 6 L
filter (c 6=) L = L− c
c : L = [c , L] · in◦

where in = [0, succ] — the Peano algebra which builds up natural
numbers.7 By (5.121) the definition of c : L can also be written c · 0◦ ∪

4 Try [2, 3, 3] !! (−1), for instance.
5 Partial functions are simple relations, as we know.
6 Knowing that take 10 will always yield its input or a smaller list, and that smaller than

injective is injective (5.82), we only need to focus on (c:) · filter (c 6=).
7 Recall section 3.1.

7.3 M O B I L E P H O N E E X A M P L E 253

L · succ◦, explicitly telling that c is placed in position 0 while L is shifted
one position up to make room for the new element. We calculate:

inv (c : (filter (c 6=) L)

≡ { inv L = id 6 L, using the injectivity preorder }
id 6 c : (filter (c 6=) L)

≡ { in-line definitions }
id 6 [c , L− c] · in◦

≡ { Galois connection (5.233) }
in 6 [c , L− c]

≡ { (5.235) ; in is as injective as id }
id 6 c ∧ id 6 L− c ∧ c◦ · (L− c) ⊆ ⊥

⇐ { constant functions are injective; L ⊆ > }
id 6 L− c ∧ c◦ · (>− c) ⊆ ⊥

⇐ { smaller than injective is injective ; c · (>− c) = ⊥ (5.155) }
id 6 L

2

Having given two examples of contract checking in two quite differ-
ent domains, let us prepare for checking that of the Alcuin puzzle. By
exercise 5.20 we already know that any of the starting states w = Le f t
or w = Right satisfy the invariant:

starving w = w · CanEat ⊆ w · Farmer.

The only operation defined is

carry who where = (∈ who)→ cross · where , where

Clearly, calculating the weakest precondition for this operation to pre-
serve starving is expected to be far more complex than in the previ-
ous examples, since where is everywhere in the invariant. Can this be
made simpler?

The answer is positive provided we understand a technique to be
adopted, called abstract interpretation. So we postpone the topic of this
paragraph to section 7.5, where abstract interpretation will be intro-
duced. In between, we shall study a number of rules that can be used
to address contracts in a structured way.

Exercise 7.3. Consider the voting system described by the relations of the diagram
below,

C p
//

dC !!

V′

''P

Di
��

V
// E

dE}}
D

7.4 A C A L C U L U S O F F U N C T I O N A L C O N T R A C T S 254

where electors can vote in political parties or nominally in members of such parties.
In detail: (a) p c denotes the party of candidate c; (b) dC c denotes the district of
candidate c; (c) dE e denotes the district of elector e; (d) d Di p records that party p
has a list of candidates in district d; (e) e V p indicates that elector e voted in party
p; (f) e V′ c indicates that elector e voted nominally in candidate c.

There are several invariants to take into account in this model, namely:

inv1 (V, V′) = V : E← P and V′ : E← C are injective (7.13)

inv2 (V, V′) = V◦ ·V′ = ⊥ (7.14)

since an elector cannot vote in more than one candidate or party;

inv3 (V, V′) = dE · [V , V′] ⊆ [Di , dC] (7.15)

since each elector is registered in one district and can only vote in candidates of that
district.

When the elections take place, relations p, dC, dE and Di are static, since all lists
and candidates are fixed before people can vote. Once it is over, the scrutinity of the
votes is carried out function

batch (V, V′, X) = . . .

where X : E→ (P + C) is a batch of votes to be loaded into the system.
Complete the definition of batch and discharge the proof obligations of the contacts

that this function must satisfy.
2

7.4 A C A L C U L U S O F F U N C T I O N A L C O N T R A C T S

The number and complexity of invariants in real life problems invites
us to develop divide & conquer rules alleviating the proof obligations
that have to be discharged wherever contracts are needed. All such
rules have definition (7.2) as starting point. Let us see, for instance,
what happens wherever the input predicate in (7.3) is a disjunction:

Φq Φp1 ∪Φp2

foo

≡ { (7.2) }
f · (Φp1 ∪Φp2) ⊆ Φq · f

≡ { distribution of (f ·) by ∪ (5.60) }
f ·Φp1 ∪ f ·Φp2 ⊆ Φq · f

≡ { ∪-universal (5.59) }
f ·Φp1 ⊆ Φq · f ∧ f ·Φp2 ⊆ Φq · f

≡ { (7.2) twice }

Φq Φp1

foo ∧ Φq Φp2

foo

7.4 A C A L C U L U S O F F U N C T I O N A L C O N T R A C T S 255

Recall that the disjunction p ∨ q of two predicates is such that Φp∨q =

Φp ∪Φq holds. Se we can write the result above in the simpler notation
(7.3) as the contract decomposition rule:

q p ∨ r
foo ≡ q p

foo ∧ q r
foo (7.16)

The dual rule,

Φq ·Φr Φp
foo ≡ Φq Φp

foo ∧ Φq2 Φp
foo

is calculated in the same way and written

q ∧ r p
foo ≡ q p

foo ∧ r p
foo (7.17)

in the same notation, since Φp∧q = Φp ∩ Φq. The fact that contracts
compose sequentially (exercise 7.1) enables the corresponding decom-
position, once a suitable middle predicate r is found:

q p
g·hoo ⇐ q r

goo ∧ r phoo (7.18)

This follows straight from (7.3, 7.2), as does the obvious rule concern-
ing identity

q pidoo ≡ q⇐ p (7.19)

since p⇒ q ⇔ Φp ⊆ Φq. The expected

p pidoo

immediately follows from (7.19).

Now suppose that we have contracts q p
foo and r p

goo . What
kind of contract can we infer for 〈f , g〉? We calculate:

Φq Φp
foo ∧ Φr Φp

goo

≡ { (7.3,7.2) twice }
f ·Φp ⊆ Φq · f ∧ g ·Φp ⊆ Φr · g

≡ { cancellations (2.22) }
π1 · 〈 f , g〉 ·Φp ⊆ Φq · f ∧ π2 · 〈 f , g〉 ·Φp ⊆ Φr · g

≡ { universal property (5.103) }
〈 f , g〉 ·Φp ⊆ 〈Φq · f , Φr · g〉

≡ { absorption (5.106) }
〈 f , g〉 ·Φp ⊆ (Φq ×Φr) · 〈 f , g〉

≡ { (7.3,7.2) }

Φq ×Φr Φp
〈 f ,g〉oo

7.4 A C A L C U L U S O F F U N C T I O N A L C O N T R A C T S 256

Defining p � q such that Φp�q = Φp × Φq we obtain the contract de-
composition rule:

q � r p
〈 f ,g〉oo ≡ q p

foo ∧ r p
goo (7.20)

which justifies the existence of arrow 〈 f , g〉 in the diagram

q q � r
π1oo π2 // r

p
f

ee

〈 f ,g〉
OO

g

99 (7.21)

where predicates (coreflexives) are promoted to objects (nodes in dia-
grams).

Exercise 7.4. Check the contracts q q� r
π1oo and q� r

π2 // r of diagram
(7.21).
2

Let us finally see how to handle conditional expressions of the form
i f (c x) then (f x) else (g x) which, by (5.213), transform into

c→ f , g = f ·Φc ∪ g ·Φ¬c (7.22)

In this case, (7.4) offers a better standpoint for calculation than (7.2), as
the reader may check in calculating the following rule for conditionals:

Φq Φp
c→ f , goo ≡

Φq Φp ·Φc
foo

Φq Φp ·Φ¬ c
goo

(7.23)

This is because it is hard to handle c→ f , g on the upper side,> being more
convenient.

Further contract rules can calculated on the same basis, either elabo-
rating on the predicate structure or on the combinator structure. How-
ever, all the cases above involve functions only and the semantics of
computations are, in general, relations. So our strategy is to generalize
definition (7.2) from functions to arbitrary relations.

R E L AT I O N A L C O N T R A C T S Note that S = R ·Φp means

b S a ⇔ p a ∧ b R a

—- that is, S is R pre-conditioned by p. Dually, Φq ·R is the largest part
of R which yields outputs satisfying q — R post-conditioned by q. By
writing

R ·Φp ⊆ Φq · R (7.24)

— which is equivalent to

R ·Φp ⊆ Φq · > (7.25)

7.5 A B S T R A C T I N T E R P R E TAT I O N 257

by (5.207) and even equivalent to

Φp ⊆ R \ (Φq · >) (7.26)

by (5.159) — we express a very important fact about R regarded as
a (possibly non-deterministic, undefined) program R: condition p on
the inputs is sufficient for condition q to hold on the outputs:

〈∀ a : p a : 〈∀ b : b R a : q b〉〉

Thus we generalize functional contracts (7.2) to arbitrary relations,

p R // q ≡ R ·Φp ⊆ Φq · R (7.27)

a definition equivalent to

p R // q ≡ R ·Φp ⊆ Φq · > (7.28)

as seen above.

7.5 A B S T R A C T I N T E R P R E TAT I O N

The proofs involved in verifying contracts may be hard to perform
due to the intricacies of real-life sized software specifications, which
may involve hundreds of invariants of arbitrary complexity. Such sit-
uations can only be tackled with the support of a theorem prover, and
in many situations even this is not enough to accomplish the task. This
problem has made software theorists to think of strategies helping de-
signers to simplify their proofs. One such strategy is abstract interpre-
tation.

It is often the case that the proof of a given contract does not require
the whole model because the contract is only concerned with a par-
ticular view of the whole thing. As a very simple example, think of
a model that is made of two independent parts A × B and of an in-
variant that constrains part A only. Then one may safely ignore B in
the proofs. This is equivalent to applying projection π1 : A× B → A
(2.21) to the original model. Note that π1 is an abstraction, since it is a
surjective function (recall figure 5.3).

In general, software models are not as “separable” as A× B is, but
abstraction functions exist that yield much simpler models where the
proofs can be made easier. Different abstractions help in different
proofs — a kind of “on demand” abstraction making a model more
abstract with respect to the specific property one wishes to check. In
general, techniques of this kind are known as abstract interpretation
techniques and play a major role in program analysis, for instance. To
explain abstract interpretation we need to introduce the notion of a
relational type.

7.5 A B S T R A C T I N T E R P R E TAT I O N 258

R E L AT I O N S A S T Y P E S A function h is said to have relation type

R→ S, written R h // S if

h · R ⊆ S · h
B

h
��

BRoo

h
��

A ASoo

(7.29)

holds. Note that (7.29) could be written h (S← R) h in the notation of
(6.10). In case h : B→ A is surjective, i.e. h is an abstraction function, we

also say that A ASoo is an abstract simulation of B BRoo through
h.

A special case of relational type defines so-called invariant functions.

A function of relation type R h // id is said to be R-invariant, in the
sense that

〈∀ b, a : b R a : h b = h a〉 (7.30)

holds. When h is R-invariant, observations by h are not affected by R-
transitions. In pointfree notation, an R-invariant function h is always
such that:

R ⊆ h
h

(7.31)

For instance, a binary operation θ is commutative iff θ is swap-invariant,
that is

swap ⊆ θ

θ
(7.32)

holds.

Exercise 7.5. What does (7.29) mean in case R and S are partial orders?
2

Exercise 7.6. Show that relational types compose, that is Q Skoo and S Rhoo

entail Q Rk·hoo .
2

Exercise 7.7. Sow that an alternative way of stating (7.27) is

p R // q ≡ R ·Φp ⊆ Φq · > (7.33)

2

7.5 A B S T R A C T I N T E R P R E TAT I O N 259

Exercise 7.8. Recalling exercise 5.12, let the following relation specify that two dates
are at least one week apart in time:

d Ok d′ ⇔ | d− d′ | >1 week

Looking at the type diagram below, say in your own words the meaning of the invari-
ant specified by the relational type (7.29) statement below, on the left:

ker (home ∪ away)− id date // Ok

G
home∪away //

date
��

T

D G

home∪away

OO

date
oo

2

A B S T R A C T I N T E R P R E TAT I O N Suppose that one wishes to show

that q : B → B is an invariant of some operation B R // B , i.e. that

q R // q holds and you know that q = p · h, for some h : B → A, as
shown in the diagram. Then one can factor the proof in two steps:

• show that there is an abstract simula-
tion S such that R h // S ;

• prove p S // p , that is, that p is an
(abstract) invariant of (abstract) S.

B A
poo ASoo

Bq

RR

h

OO

BRoo

h

OO

This strategy is captured by the following calculation:

R ·Φq ⊆ Φq · >
≡ { q = p · h }

R ·Φ(p·h) ⊆ Φ(p·h) · >
≡ { (5.205) etc }

R ·Φ(p·h) ⊆ h◦ ·Φp · >
≡ { shunting }

h · R ·Φ(p·h) ⊆ Φp · >

⇐ { R h // S }
S · h ·Φ(p·h) ⊆ Φp · >

⇐ { Φ(p·h) ⊆ h◦ ·Φp · h (5.210) }
S · h · h◦ ·Φp · h ⊆ Φp · >

7.6 S A F E T Y A N D L I V E N E S S P R O P E R T I E S 260

⇐ { > = > · h (cancel h); img h ⊆ id }
S ·Φp ⊆ Φp · >

2

Abstract interpretation techniques usually assume that h is an adjoint
of a Galois connection. Our first examples below do not assume this,
for an easy start.

7.6 S A F E T Y A N D L I V E N E S S P R O P E R T I E S

Before showing examples of abstract interpretation, let us be more spe-

cific about what was meant by “some operation B R // B ” above. In
section 4.9 a monad was studied called the state monad. This monad is
inhabited by state-transitions encoding state-based automata known
as Mealy machines.

With relations one may be more relaxed on how to characterize state
automata. In general, functional models generalize to so called state-
based relational models in which there is

• a set Σ of states

• a subset I ⊆ Σ of initial states

• a step relation Σ R // Σ which expresses transition of states.

We define:

• R0 = id — no action or transition takes place

• Ri+1 = R · Ri — all ”paths” made of i + 1 R-transitions

• R∗ =
⋃

i>0 Ri — the set of all possible R-paths.

We represent the set I of initial states by the coreflexive Σ
Φ(∈ I) // Σ ,

simplified to Σ I // Σ to avoid symbol cluttering.

Given Σ
R,I // Σ (i.e. a nondeterministic automaton, model) there

are two kinds of property that one may wish to prove — safety and
liveness properties. Safety properties are of the form R∗ · I ⊆ S, that is,

〈∀ n : n > 0 : Rn · I ⊆ S〉 (7.34)

for some safety relation S : Σ → Σ, meaning: All paths in the model
originating from its initial states are bounded by S. In the particular case
S = true

p
8

〈∀ n : n > 0 : Rn · I ⊆ true
p
〉 (7.35)

8 Recall that true
p = Φp · > (5.205).

7.7 E X A M P L E S 261

meaning that formula p holds for every state reachable by R from an
initial state. Invariant preservation is an example of a safety prop-
erty: if starting from a “good” state, the automaton only visits “good”
(valid) states.

In contrast to safety properties, the so-called liveness properties are
of the form

〈∃ n : n > 0 : Q ⊆ Rn · I〉 (7.36)

for some target relation Q : Σ → Σ, meaning: the target relation Q is
eventually realizable, after n steps starting from an initial state. In the
particular case Q = true

p we have

〈∃ n : n > 0 :
true

p
⊆ Rn · I〉 (7.37)

meaning that, for a sufficiently large n, formula p will eventually hold.

7.7 E X A M P L E S

The Alcuin puzzle is an example of a problem that is characterized by
a liveness and safety property:

• From initial state where = Le f t, state where = Right is eventually
reachable — a liveness property.

• Initial state where = Le f t is valid and no step of the automaton
leads to invalid where states — a safety property.

The first difficulty in ensuring properties such as (7.35) e (7.37) is the
quantification on the number of path steps. In the case of (7.37) one
can try and find a particular path using a model checker. In both cases,
the complexity /size of the state space may offer some impedance to
proving / model checking. Below we show how to circumvent such
difficulties by use of abstract interpretation.

T H E H E AV Y A R M C H A I R P R O B L E M Let us show a simple, but
effective example of abstract interpretation applied to a well-known
problem — the heavy armchair problem.9 Consider the following pic-
ture:

9 Credits: this version of the problem and the pictures shown are taken from [6].

7.7 E X A M P L E S 262

We wish to move the armchair to an adjacent square, horizontally or
vertically. However, because the armchair is too heavy, it can only be
rotated over one of its four legs, as shown in the picture.

The standard model for this problem is a pair (p, o) where p = (y, x)
captures the square where the armchair is positioned and o is one
of the complex numbers { i,−i, 1,−1} indicating the orientation of
the armchair (that is, it can face N,S,E,W). Let the following the step-
relation be proposed,

R = P×Q

where P captures the adjacency of two squares and Q captures 90◦ ro-
tations. A rotation multiplies an orientation o by ± i, depending on
choosing a clockwise (−i) or anti-clockwise (i) rotation. Altogether:

((y′, x′), d′) R ((y, x), d) ⇔{
y′ = y ± 1 ∧ x′ = x ∨ y′ = y ∧ x′ = x ± 1
d′ = (± i) d

We want to check the liveness property:

For some n, ((y, x + 1), d) Rn ((y, x), d) holds. (7.38)

That is, we wish to move the armchair to the adjacent square on its
right, keeping the armchair’s orientation. This is exactly what the
pointfree version of (7.38) tells:

〈∃ n :: (id× (1+))× id ⊆ Rn〉

In other words: there is a path with n steps that realizes the function
move = (id× (1+))× id.

Note that the state of this problem is arbitrarily large. (The squared
area is unbounded.) Moreover, the specification of the problem is non-
deterministic. (For each state, there are four possible successor states.)
We resort to abstract interpretation to obtain a bounded, deterministic
(functional) model: the floor is coloured as a chess board and the arm-
chair behaviour is abstracted by function h = col× dir which tells the
colour of the square where the armchair is and the direction of its cur-
rent orientation:

Since there are two colours (black, white) and two directions (horizon-
tal, vertical), both can be modelled by Booleans. Then the action of

7.7 E X A M P L E S 263

moving to any adjacent square abstracts to color negation and any 90◦

rotation abstracts to direction negation:

P col // (¬) (7.39)

Q dir // (¬) (7.40)

In detail:

col (y, x) = even (y + x)

dir x = x ∈ {1,−1}
For instance, col (0, 0) = True (black in the picture), col (1, 1) = True,
col (1, 2) = False and so on; dir 1 = True (horizontal orientation),
dir (−i) = False, and so on. Checking (7.40):

dir ((± i) x)

= { dir x = x ∈ {1,−1} }
(± i) x ∈ {1,−1}

= { multiply by (± i) within {1, i,−1,−i} }
x ∈ {−i, i}

= { the remainder of {−i, i} is {1,−1} }
¬ (x ∈ {1,−1})

= { dir x = x ∈ {1,−1} }
¬ (dir x)

2

Checking (7.39):

(¬) Pcoloo

≡ { (7.29) for functions }
col · P ⊆ ¬ · col

≡ { shunting ; go pointwise }
(y′, x′) P (y, x)⇒ even (y′ + x′) = ¬ even (y + x)

≡ { unfold }
{

y′ = y ± 1 ∧ x′ = x⇒ even (y′ + x′) = ¬ even (y + x)
y′ = y ∧ x′ = x ± 1⇒ even (y′ + x′) = ¬ even (y + x)

≡ { substitutions ; trivia }
{

even (y ± 1) = ¬ even y
even (x ± 1) = ¬ even x

≡ { trivia }
true

2

7.7 E X A M P L E S 264

Altogether:

R col×dir // (¬× ¬)

That is, step relation R is simulated by s = ¬× ¬, i.e. the function

s (c, d) = (¬ c,¬ d)

over a state space with 4 possibilities only: wherever the armchair
turns over one of its legs, whatever this is, it changes both the colour
of the square where it is, and its direction.

At this level, we note that observation function

f (c, d) = c ⊕ d (7.41)

is s-invariant (7.30), that is

f · s = f (7.42)

since ¬ c ⊕ ¬ d = c ⊕ d holds. By induction on n, f · sn = f holds
too.

Expressed under this abstraction, (7.38) is rephrased into: there is a
number of steps n such that sn (c, d) = (¬ c, d) holds. Let us check this
abstract version of the original property, assuming variable n existen-
tially quantified:

sn (c, d) = (¬ c, d)

⇒ { Leibniz }
f (sn (c, d)) = f (¬ c, d)

≡ { f is s-invariant }
f (c, d) = f (¬ c, d)

≡ { (7.41) }
c ⊕ d = ¬ c ⊕ d

≡ { 1 ⊕ d = ¬ d and 0 ⊕ d = d }
d = ¬ d

≡ { trivia }
false

Thus, for all paths of arbitrary length n, sn (c, d) 6= (¬ c, d). We con-
clude that the proposed liveness property does not at all hold!

A L C U I N P U Z Z L E E X A M P L E Abstract interpretation applies nicely
to this problem, thanks to its symmetries. On the one hand, one does
not need to work over the 16 functions in BankBeing, since starting from

7.7 E X A M P L E S 265

the left margin or from the right margin is irrelevant. Another symme-
try can be found in type Being, suggesting the following abstraction of
beings into three classes:

f : Being→ {α, β, γ}

f =

Goose // α

Fox // β

Beans

77

Farmer // γ

The abstraction consists in unifying , the maximum and minimum el-
ements of the “food chain”. In fact, the simultanous presence of one α

and one β is enough for defining the invariant — which specific being
eats the other is irrelevant detail. This double abstraction is captured
by

Bank Beingwoo

f ��
1

Le f t
OO

{α, β, γ}
V

oo

V = Le f t◦ ·w · f ◦

where the choice of Le f t as reference bank is arbitrary. Thus function
w is abstracted by the row vector relation V 10 such that:

V x = 〈∃ b : x = f b : w b = Le f t〉

Vector V tells whether at least one being of class x can be found in the
reference bank. Noting that there could be more than one β there, we
refine the abstraction a bit so that the number of beings of each class is
counted.11 This leads to the following state-abstraction (higher order)
function h based on f :

h : (Being→ Bank)→ {α, β, γ} → {0, 1, 2}
h w x = 〈∑ b : x = f b ∧ w b = Le f t : 1〉

For instance,

h Le f t = 121

h Right = 000

abbreviating by vector xyz the mapping {α 7→ x, β 7→ y, γ 7→ z}.12 To
obtain the other bank just compute: x = 121− x. Note that there are

10 A fragment of ! :{α, β, γ} → 1, recall section 5.5.
11 This suggests that linear algebra would be a good alternative to relation algebra here!
12 This version of the model is inspired in [6].

7.7 E X A M P L E S 266

2× 3× 2 = 12 possible state vectors, 4 of which are invalid (these are
marked in red):

121

021 111 120

011 020 101 110

001 010 100

000

The ordering implicit in the lattice above is pointwise (6). This is
complemented by x = 121 − x, which gives the information of the
other bank.

The 8 valid states can be further abstracted to only 4 of them,

121

021 111

020 101

010 100

000

→

121

021

020

010

since, due to complementation (cf. the Left-Right margin symmetry),
we only need to reach state 010. Then we reverse the path through the
complements. In this setting, the automaton is deterministic, captured
by the abstract automaton:

121
−101

~~
021 hh

±001 ((

−011 22

020

010

Termination is ensured by disabling toggling between states 021 and
020:

121
−101

020
+001

021
−011

010

7.7 E X A M P L E S 267

We then take the complemented path 111→ 100→ 101→ 000. So the
abstract solution for the Alcuin puzzle is, finally:

121

−101

��
021 dd
±001$$

−011 22

111
−011

��
020 101

−101
��

dd
±001$$

010

+101

OO

100

000

121
−101

020
+001

021
−011

010
+101

111
−011

100
+001

101
−101

000

At this point note that, according to the principles of abstract inter-
pretation stated above, quite a few steps are pending in this exercise:
abstract the starving invariant to the vector level, find an abstract sim-
ulation of carry, and so on and so forth. But — why bother doing
all that? There no other operation in the problem, so the abstraction
found is, in a sense, universal: we should have started from the vector
model and not from the Being → Bank model, which is not sufficiently
abstract.

The current scientific basis of programming enables the calculation
of programs, following the scientific method. So, programming is
lesser and lesser an art. Where is creativity gone to? To the art of ab-
stract modelling and elegant proving — this is where it can be found
nowadays.

Exercise 7.9. Verification of code involves calculations of real numbers and is often
done on the basis of an abstract interpretation called sign analysis:

sign : R→ {−, 0,+}
sign 0 = 0
sign x = if x > 0 then + else −

Suppose there is evidence that the operation θ : {−, 0,+}2 → {−, 0,+} defined by

θ − 0 +
− + 0 −
0 0 0 0
+ − 0 +

(7.43)

is the abstract simulation induced by sign of a given concrete operation f : R×R→
R, that is, that

θ · (sign× sign) = sign · f (7.44)

7.8 “ F R E E C O N T R A C T S ” 268

holds. It is easy to see, by inspection of (7.43), that θ is a commutative operation,
recalling (7.32).

• Show that sign · f is necessarily commutative as well. (Hint: the free theorem
of swap can be useful here.)

• Does the previous question guarantee that the specific operation f is also com-
mutative? Answer informally.

2

7.8 “ F R E E C O N T R A C T S ”

In design by contract, many functional contracts arise naturally as corol-
laries of free theorems. This has the advantage of saving us from prov-
ing such contracts explicitly.

The following exercises provide ample evidence of this.

Exercise 7.10. The type of functional composition (·) is

(b→ c)→ (a→ b)→ a→ c

Show that contract composition (7.18) is a corollary of the free theorem (FT) of this
type.
2

Exercise 7.11. Show that contract q? p?
map foo holds provided contract q p

foo

holds.
2

Exercise 7.12. Suppose a functional programmer wishes to prove the following prop-
erty of lists:

〈∀ a, s : (p a) ∧ 〈∀ a′ : a′ ∈ elems s : p a′〉 : 〈∀ a′′ : a′′ ∈ elems (a : s) : p a′′〉〉

Show that this property is a contract arising (for free) from the polymorphic type of
the cons operation (:) on lists.
2

7.9 R E A S O N I N G B Y A P P R O X I M AT I O N

Currently in preparation

7.10 B I B L I O G R A P H Y N O T E S 269

7.10 B I B L I O G R A P H Y N O T E S

To be completed

