
6
T H E O R E M S F O R F R E E — B Y C A L C U L AT I O N

6.1 I N T R O D U C T I O N

As already stressed in previous chapters, type polymorphism remains
one of the most useful and interesting ingredients of functional pro-
gramming. For example, the two functions

countBits : B∗ →N0

countBits [ ] = 0
countBits (b : bs) = 1 + countBits bs

and

countNats : N0
∗ →N0

countNats [ ] = 0
countNats (b : bs) = 1 + countNats bs

are both subsumed by a single, generic (that is, parametric) program:

count : (∀ A) A∗ →N0

count [ ] = 0
count (a : as) = 1 + count as

Written as a catamorphism

(|inN0 · (id + π2)|)

and thus even dispensing with a name, it becomes clear why this func-
tion is generic: nothing in

inN0 · (id + π2)

is susceptible to the type of the elements that are being counted up!
This form of polymorphism, known as parametric polymorphism, is

attractive because

• one writes less code (specific solution = generic solution + cus-
tomization);

• it is intellectually rewarding, as it brings elegance and economy
in programming;

232
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• and, last but not least1,

“(...) from the type of a polymorphic function we can derive
a theorem that it satisfies. (...) How useful are the theorems
so generated? Only time and experience will tell (...)”

Recall that section 2.12 already addresses these theorems, also called
natural properties. However, the full spread of naturality is not ex-
plored there. In particular, it does not address higher-order (exponen-
tial) types.

It turns out that the “free theorems” involving such types are easy
to derive in relation algebra. The current chapter is devoted to such a
generic derivation and includes a number of examples showing how
vast the application of free theorems is.

6.2 P O LY M O R P H I C T Y P E S I G N AT U R E S

In any typed functional language, when declaring a polymorphic func-
tion one is bound to use the same generic format,

f : t

known as the function’s signature: f is the name of the function and t
is a functional type written according to the following “grammar” of
types:

t ::= t′ → t′′

t ::= F(t1, . . . , tn) F is a type constructor

t ::= v a type variable, source of polymorphism.

What does it mean for f : t to be parametrically polymorphic? We shall
see shortly that what :w matters in this respect is the formal structure
of type t. Let

• V be the set of type variables involved in type expression t;

• {Rv}v∈V be a V-indexed family of relations ( fv in case Rv is a
function);

• Rt be a relation defined inductively as follows:

Rt:=v = Rv (6.1)

Rt:=F(t1,...,tn) = F(Rt1 , . . . , Rtn) (6.2)

Rt:=t′→t′′ = Rt′ → Rt′′ (6.3)

Two questions arise: what does F in the right handside of (6.2) mean?
What kind of relation is Rt′ → Rt′′ in (6.3)?

First of all, and to answer the first question, we need the concept
of relator, which extends that of a functor (introduced in section 3.8) to
relations.

1 Quoting Theorems for free!, by Philip Wadler [58].
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6.3 R E L AT O R S

A functor G is said to be a relator wherever, given a relation R from A
to B, G R extends R to G-structures: it is a relation from G A to G B

A

R
��

G A

G R
��

B G B

(6.4)

which obeys the properties of a functor,

G id = id (6.5)

G (R · S) = (G R) · (G S) (6.6)

— recall (3.55) and (3.56) — plus the properties:

R ⊆ S ⇒ G R ⊆ G S (6.7)

G (R◦) = (G R)◦ (6.8)

That is, a relator is a functor that is monotonic and commutes with con-
verse. For instance, the “Maybe” functor G X = 1 + X is an example
of relator:

A

R
��

G A = 1 + A

G R=id+R
��

B G B = 1 + B

It is monotonic since G R = id + R only involves monotonic operators
and commutes with converse via (5.123). Let us unfold G R = id + R:

y(id + R)x

≡ { unfolding the sum, cf. id + R = [i1 · id , i2 · R] (5.119) }
y(i1 · i◦1 ∪ i2 · R · i◦2)x

≡ { relational union (5.57); image }
y(img i1)x ∨ y(i2 · R · i◦2)x

≡ { let NIL denote the sole inhabitant of the singleton type }
y = x = i1NIL ∨ 〈∃ b, a : y = i2 b ∧ x = i2 a : b R a〉

In words: two “pointer-values” x and y are G R-related iff they are
both null or they are both defined and hold R-related data.

Finite lists also form a relator, G X = X∗. Given B ARoo , relator

B? A?R?
oo is the relation

s′(R?)s ⇔ length s′ = length s∧ (6.9)

〈∀ i : 0 6 i < length s : (s′ !! i) R (s !! i)〉

Exercise 6.1. Check properties (6.7) and (6.8) for the list relator defined above.
2
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6.4 A R E L AT I O N O N F U N C T I O N S

The next step needed to postulate free theorems requires a formal un-
dertanding of the arrow operator written on the right handside of
(6.3).

This is achieved by defining the so-called “Reynolds arrow” rela-
tional operator, which establishes a relation on two functions f and g
parametric on two other arbitrary relations R and S:

f (R← S)g ≡ f · S ⊆ R · g A

f

��

BSoo

g

��

⊆

C D
R

oo

(6.10)

The typing rule is:

A BSoo

C DRoo

CA DBR←Soo

This is a powerful operator that satisfies many properties, for in-
stance:

id← id = id (6.11)

(R← S)◦ = R◦ ← S◦ (6.12)

R← S ⊆ V ← U ⇐ R ⊆ V ∧U ⊆ S (6.13)

(R← V) · (S← U) ⊆ (R · S)← (V ·U) (6.14)

( f ← g◦)h = f · h · g (6.15)

k( f ← g)h ≡ k · g = f · h (6.16)

From property (6.13) we learn that the combinator is monotonic on the
left hand side — and thus facts

S← R ⊆ (S ∪V)← R (6.17)

> ← S = > (6.18)

hold 2 — and anti-monotonic on the right hand side — and thus prop-
erty

R← ⊥ = > (6.19)

and the two distributive laws which follow:

S← (R1 ∪ R2) = (S← R1) ∩ (S← R2) (6.20)

(S1 ∩ S2)← R = (S1 ← R) ∩ (S2 ← R) (6.21)

It should be stressed that (6.14) expresses fusion only, not fission.

2 Cf. f · S · g◦ ⊆ > ⇔ TRUE concerning (6.18).
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S U P R E M A A N D I N F I M A Suppose relation R in (6.10) is a complete
partial order 6, that is, it has suprema and infima. What kind of rela-
tionship is established between two functions f and g such that

f ((6)← S) g

holds? We reason:

f ((6)← S) g

≡ { (6.10) }
f · S ⊆ (6) · g

≡ { shunting (5.46) }
S ⊆ f ◦ · (6) · g

≡ { go pointwise — (5.17), etc }
〈∀ a, b : a S b : f a 6 g b〉

≡ { introduce supremum, for all b }

g b = 〈
∨

a : a S b : f a〉

In summary:3

f ((6)← S) g ≡ g b = 〈
∨

a : a S b : f a〉 (6.22)

In words: g b is the largest of all (f a) such that a S b holds.
Pattern (6)← . . . turns up quite often in relation algebra. Consider,

for instance, a Galois connection α ` γ (5.132), that is,

α◦ · (v) = (6) · γ
≡ { ping pong }

α◦ · (v) ⊆ (6) · γ ∧ γ◦ · (>) ⊆ (w) · α

Following the same strategy as just above, we obtain pointwise defini-
tions for the two adjoints of the connection:

γ x = 〈
∨

y : α y v x : y〉 (6.23)

α y = 〈
l

x : y 6 γ x : x〉 (6.24)

6.5 F R E E T H E O R E M O F T Y P E t

We are now ready to establish the free theorem (FT) of type t, which is
the following remarkably simple result:4

3 Similarly, introducing infimum, for all a: f a = 〈∧ b : a S b : g b〉.
4 This result is due to J. Reynolds [54], advertised by P. Wadler [58] and re-written by

Backhouse [2] in the pointfree style adopted in this book.
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Given any function θ : t, and V as above, then

θ Rt θ

holds, for any relational instantiation of type variables in V.
2

Note that this theorem

• is a result about t;

• holds independently of the actual definition of θ.

So, it holds about any polymorphic function of type t.

6.6 E X A M P L E S

Let us see the simplest of all examples, where the target function is the
identity:

θ = id : a← a

We first calculate Rt=a←a:

Ra←a

≡ { rule Rt=t′←t′′ = Rt′ ← Rt′′ }
Ra← Ra

Then we derive the free theorem itself (Ra is abbreviated to R):

id(R← R)id

≡ { (6.10) }
id · R ⊆ R · id

In case R is a function f , the FT theorem boils down to id’s natural
property, id · f = f · id — recall (2.10) — that can be read alternatively
as stating that id is the unit of composition.

As a second example, consider θ = reverse : a?← a?, and first calcu-
late Rt=a?←a? :

Ra?←a?

≡ { rule Rt=t′←t′′ = Rt′ ← Rt′′ }
Ra?← Ra?

≡ { rule Rt=F(t1,...,tn) = F(Rt1 , . . . , Rtn) }
Ra

?← Ra
?

where s R?s′ is given by (6.9). Next we calculate the FT itself (Ra ab-
breviated to R):

reverse(R?← R?)reverse

≡ { definition f (R← S)g ≡ f · S ⊆ R · g }
reverse · R? ⊆ R? · reverse
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In case R is a function r, this FT theorem boils down to reverse’s natural
property,

reverse · r? = r? · reverse

that is, reverse [ r a | a← l ] = [ r b | b← reverse l ]. For the general case,
we obtain:

reverse · R? ⊆ R? · reverse

≡ { shunting rule (5.46) }
R? ⊆ reverse◦ · R? · reverse

≡ { going pointwise (5.19, 5.17) }
〈∀ s, r :: s R?r⇒ (reverse s)R?(reverse r)〉

An instance of this pointwise version of reverse-FT will state that, for
example, reverse will respect element-wise orderings (R :=<):5

length s = length r ∧ 〈∀ i : i ∈ inds s : (s !! i) < (r !! i)〉
⇓

length(reverse s) = length(reverse r)

∧
〈∀ j : j ∈ inds s : (reverse s !! j)< (reverse r !! j)〉

(Guess other instances.)
As a third example, also involving finite lists, let us calculate the FT

of

sort : a?← a?← (Bool← (a× a))

where the first parameter stands for the chosen ordering relation, ex-
pressed by a binary predicate:

sort(R(a?←a?)←(Bool←(a×a)))sort

≡ { (6.2, 6.1, 6.3); abbreviate Ra := R }
sort((R?← R?)← (RBool← (R× R)))sort

≡ { Rt:=Bool = id (constant relator) — cf. exercise 6.11 }
sort((R?← R?)← (id← (R× R)))sort

≡ { (6.10) }
sort · (id← (R× R)) ⊆ (R?← R?) · sort

≡ { shunting (5.46) }
(id← (R× R)) ⊆ sort◦ · (R?← R?) · sort

≡ { introduce variables f and g (5.19, 5.17) }
f (id← (R× R))g ⇒ (sort f )(R?← R?)(sort g)

5 Let inds s denote the set {0, . . . , length s− 1}.
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≡ { (6.10) twice }
f · (R× R) ⊆ g ⇒ (sort f ) · R? ⊆ R? · (sort g)

Case R := r:

f · (r× r) = g ⇒ (sort f ) · r? = r? · (sort g)

≡ { introduce variables }
〈 ∀ a, b ::

f (r a, r b) = g(a, b)

〉
⇒

〈 ∀ l ::
(sort f )(r? l) = r?(sort g l)

〉

Denoting predicates f , g by infix orderings 6,�:
〈 ∀ a, b ::

r a 6 r b ≡ a � b

〉
⇒

〈 ∀ l ::
sort (6)(r? l) = r?(sort (�) l)

〉

That is, for r monotonic and injective,

sort (6) [ r a | a← l ]

is always the same list as

[ r a | a← sort (�) l ]

Exercise 6.2. Let C be a nonempty data domain and let and c ∈ C. Let c be the
“everywhere c” function c : A→ C (2.12). Show that the free theorem of c reduces
to

〈∀ R :: R ⊆ >〉 (6.25)

2

Exercise 6.3. Calculate the free theorem associated with the projections

A A× B
π1oo π2 // B

and instantiate it to (a) functions; (b) coreflexives. Introduce variables and derive
the corresponding pointwise expressions.
2

Exercise 6.4. As follow-up to exercise 6.2, consider higher order function ( ) : a→
b→ a such that, given any x of type a, produces the constant function x. Show that
the equalities

f x = f · x (6.26)

x · f = x (6.27)

x◦ · x = > (6.28)
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arise as corollaries of the free theorem of ( ).6

2

Exercise 6.5. The following is a well-known Haskell function

filter :: ∀ a · (a→ B)→ [a ]→ [a ]

Calculate the free theorem associated with its type

f ilter : a?← a?← (B← a)

and instantiate it to the case where all relations are functions.
2

Exercise 6.6. In many sorting problems, data are sorted according to a given rank-
ing function which computes each datum’s numeric rank (eg. students marks, cred-
its, etc). In this context one may parameterize sorting with an extra parameter f
ranking data into a fixed numeric datatype, eg. the integers: serial : (a → N0) →
a? → a?. Calculate the FT of serial.
2

Exercise 6.7. Consider the following function from Haskell’s Prelude:

findIndices :: (a→ B)→ [a ]→ [Z ]
findIndices p xs = [ i | (x, i)← zip xs [0 . . ], p x ]

which yields the indices of elements in a sequence xs which satisfy p.
For instance, findIndices (<0) [1,−2, 3, 0,−5 ] = [1, 4 ]. Calculate the FT of

this function.
2

Exercise 6.8. Wherever two equally typed functions f , g are such that f a 6 g a, for
all a, we say that f is pointwise at most g and write f

.
6 g,

f
.
6 g = f ⊆ (6) · g cf. diagram A

f

��

g

��
⊆

B B6
oo

recall (5.93). Show that implication

f
.
6 g ⇒ (map f )

.
6? (map g) (6.29)

6 Note that (6.27) is property (2.14) assumed in chapter 2.
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follows from the FT of the function map : (a→ b)→ a∗ → b∗.
2

Exercise 6.9. Infer the FT of the following function, written in Haskell syntax,

while :: (a→ B)→ (a→ a)→ (a→ b)→ a→ b
while p f g x = if ¬ (p x) then g x else while p f g (f x)

which implements a generic while-loop. Derive its corollary for functions.
2

6.7 C ATA M O R P H I S M L AW S A S F R E E T H E O R E M S

Recall from section 3.13 the concept of a catamorphism over a para-
metric type T a:

T a

(|g|)
��

B (a, T a)
inT aoo

B (id,(|g|))
��

b B (a, b)g
oo

So (| |) has generic type

(| |) : b← T a← (b← B (a, b))

where T a ∼= B (a, T a). Then the free theorem of (| |) is

(| |) · (Rb← B (Ra, Rb)) ⊆ (Rb← F Ra) · (| |)

This unfolds into (Ra, Rb abbreviated to R, S):

(| |) · (S← B (R, S)) ⊆ (S← T R) · (| |)
≡ { shunting (5.46) }

(S← B (R, S)) ⊆ (| |)◦(S← T R) · (| |)
≡ { introduce variables f and g (5.19, 5.17) }

f (S← B (R, S))g ⇒ (| f |)(S← T R)(|g|)
≡ { definition f (R← S)g ≡ f · S ⊆ R · g }

f · B (R, S) ⊆ S · g ⇒ (| f |) · T R ⊆ S · (|g|)

From the calculated free theorem of the catamorphism combinator,

f · B (R, S) ⊆ S · g ⇒ (| f |) · T R ⊆ S · (|g|)

we can infer:
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• (| |)-fusion (R, S := id, s):

f · B (id, s) = s · g ⇒ (| f |) = s · (|g|)

— recall (3.71), for F f = B (id, f );

• (| |)-absorption (R, S := r, id):

f · B (r, id) = g ⇒ (| f |) · T r = (|g|)

whereby, substituting g := f · B (r, id):

(| f |) · T r = (| f · B (r, id)|)

— recall (3.77).

Exercise 6.10. Let

iprod = (|[1 , (×)]|)

be the function that multiplies all natural numbers in a given list, and even be the
predicate which tests natural numbers for evenness. Finally, let

exists = (|[FALSE , (∨)]|)

be the function that implements existential quantification over a list of Booleans.
From (6.30) infer

even · iprod = exists · even?

meaning that the product n1 × n2 × . . .× nm is even if and only if some ni is so.
2

Exercise 6.11. Show that the identity relator Id, which is such that Id R = R
and the constant relator K (for a given data type K) which is such that K R = idK

are indeed relators.
2

Exercise 6.12.Show that product

A

R
��

C

S
��

G(A, C) = A× C

G(R,S)=R×S
��

B D G(B, D) = B× D

is a (binary) relator.
2



6.8 B I B L I O G R A P H Y N O T E S 243

6.8 B I B L I O G R A P H Y N O T E S

The free theorem of a polymorphic function is a result due to computer
scientist John Reynolds [54]. It became popular under the “theorems
for free” heading coined by Phil Wadler [58]. The original pointwise
setting of this result was re-written in the pointfree style in [2] thanks
to the relation on functions combinator (6.10) first introduced by Roland
Backhouse in [3].

More recently, Janis Voigtlaender devoted a whole research project
to free theorems, showing their usefulness in several areas of com-
puter science [38]. One outcome of this project was an automatic gen-
erator of free theorems for types written in Haskell syntax. This is
(was?) available from Janis Voigtlaender’s home page:

http://www-ps.iai.uni-bonn.de/ft

The relators used in the calculational style followed in this book are
implemented in this automatic generator by so-called structural func-
tor lifting.


