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5
W H E R E E V E RY T H I N G B E C O M E S A R E L AT I O N

In the previous chapters, (recursive) functions were taken as a basis
for expressing computations, exhibiting powerful laws for calculating
programs in a functional programming style.

When writing such programs one of course follows some line of
thought concerning what the programs should do. What the program
should do is usually understood as the specification of the problem that
motivates writing the program in the first place. Specifications can
be quite complex in real life situations. In other situations, the com-
plexity of the program that one writes is in strong contrast with the
simplicity of the specification. Take the example of sorting, which can
be specified as simply as:

Yield an ordered permutation of the input.

Where do you find, in this specification, the orientation (or inspiration)
that will guide a programmer towards writing a bi-recursive program
like quicksort?

The question is, then: are functions enough for one to calculate func-
tional programs from given specifications? It is the experience in other
fields of mathematics that sometimes it is easier to solve a problem of
domain D if one generalizes from D to some wider domain D’. In the
field of real numbers, for instance, most of trigonometric identities are
easily derived (and memorized) from Euler’s formula involving com-
plex exponentials: ei x = cos x + i (sin x).

Similarly, it turns out that functional programs often become easier
to calculate if one handles them in the wider mathematical domain of
binary relations. At school one gets accustomed to the sentence every
function is a special case of a relation. This chapter puts the usefulness of
such a piece of common knowledge into practice.

5.1 F U N C T I O N S A R E N O T E N O U G H

Consider the following fragment of a requirement posed by a (fic-
tional) telecommunication company:

(...) For each list of calls stored in the mobile phone (eg. numbers
dialed, SMS messages, lost calls), the store operation should work in a
way such that (a) the more recently a call is made the more accessible
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it is; (b) no number appears twice in a list; (c) only the last 10 entries
in each list are stored.

A tentative, first implementation of the store operation could be

store : Call→ Call∗ → Call∗

store c l = c : l

However, such a version of function store fails to preserve the properties
required in the fragment above in case length l = 10, or c ∈ elems l,
where elems yields the set of all elements of a finite list,

elems = (|[empty , join]|) (5.1)

for empty = { } and join (a, s) = {a} ∪ s.
Clearly, the designer would have to restrict the application of store

to input values c, l such that the given properties are preserved. This
could be achieved by adding a so-called “pre-condition”:

store : Call→ Call∗ → Call∗

store c l = c : l
pre length l < 10 ∧ ¬ (c ∈ elems l)

Such a pre-condition is a predicate telling the range of acceptable in-
put values, to be read as a warning provided by the designer that the
function will not meet the requirements outside such a range of input
values.

Thus store becomes a partial function, that is, a function defined only
for some of its inputs. Although this partiality can be regarded as a
symptom that the requirements have been partly misunderstood, it
turns out that partial functions are the rule rather than the exception
in mathematics and computing. For example, in the numeric field, we
know what 1/2 means; what about 1/0? Ruling out this case means
that division is a partial function. In list processing, given a sequence
s, what does s !! i mean in case i > length s? — list indexing is another
partial operation (as are head, tail and so on).

Partial functions are not new to readers of this text: in section 4.1, the
Maybe monad was used to “totalize” partial functions. In this chapter
we shall adopt another strategy to cope with partiality, and one that
has extra merits: it will also cope with computational nondeterminacy
and vagueness of software requirements.

It can be shown that the following evolution of store,

store c = (take 10) · (c:) · filter (c 6=) (5.2)

meets all requirements above with no need for preconditions, the ex-
tra components take 10 and filter (c 6=) being added to comply with
requirements (c) and (b), respectively.

Implementation (5.2) alone should be regarded as example of how
functional programs can be built compositionally in a requirement-
driven fashion. It does not, however, give any guarantees that the
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requirements are indeed met. How can we ensure this in the compo-
sitional way advocated in this book since its beginning? The main
purpose of this chapter is to answer such a question.

5.2 F R O M F U N C T I O N S T O R E L AT I O N S

The way functions are handled and expressed in standard maths books,
e.g. in analysis and calculus,

y = f (x)

is indicative that, more important that the reactive behaviour of f ,

f- -x ∈ A (f x) ∈ B

which was the starting point of section 2.1, mathematicians are more
interested in expressing the input/output relationship of f , that is, the
set of all pairs (y, x) such that y = f x. Such a set of pairs is often re-
ferred to as the “graph” of f , which can be plotted two-dimensionally
in case types A and B are linearly ordered. (As is the standard case in
which A=B=R, the real numbers.)

It turns out that such a graph can be regarded as a special case of a
binary relation. Take for instance the following functional declaration

{
succ : N0 →N0

succ x = x + 1

which expresses the computation rule of the successor function. Writ-
ing y = succ n establishes the binary relation y = x + 1. This binary
relation “coincides” with succ in the sense that writing

{
succ : N0 →N0

y succ x ⇔ y = x + 1

means the same as the original definition, while making the i/o rela-
tionship explicit. Because there is only one y such that y = x+ 1 we can
safely drop both ys from y succ x ⇔ y = x + 1, obtaining the original
succ x = x + 1.

The new style is, however, more expressive, in the sense that it en-
ables us to declare genuine binary relations, for instance

{
R : N0 →N0

y R x ⇔ y > x + 1
(5.3)

In this case, not only x and y such that y = x + 1 are admissible, but
also y = x + 2, y = x + 3 and so on. It also enables us to express
the converse of any function — an operation hitherto the privilege of
isomorphisms only (2.16):

y f x ⇔ x f ◦ y (5.4)
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Converses of functions are very useful in problem solving, as we shall

soon see. For instance, N0 N0
succ◦oo denotes the predecessor relation

in N0. It is not a function because no y such that y succ◦ 0 exists — try
and solve 0 = y + 1 in N0.

The intuitions above should suffice for us to start generalizing what
we know about functions, from the preceding chapters, to binary rela-
tions. First of all, such relations are denoted by arrows exactly in the
same way functions are. So,

we shall write R : B← A, R : A→ B, B ARoo or A R // B
to indicate that relation R relates B-values to A-values.

That is, relations are typed in the same way as functions.
Given binary relation R : B← A, writing b R a (read: “b is related to

a by R”) means the same as a R◦ b, where R◦ is said to be the converse of
R. In terms of grammar, R◦ corresponds to the passive voice — compare
e.g.

John︸︷︷︸
b

loves︸︷︷︸
R

Mary︸ ︷︷ ︸
a

with

Mary is loved by︸ ︷︷ ︸
R◦

John

That is, (loves)◦ = (is loved by). Another example:

Catherine eats the apple

— R = (eats), active voice — compared with

the apple is eaten by Catherine

— R◦ = (is eaten by), passive voice.
Following a widespread convention, functions are denoted by low-

ercase characters (eg. f , g, φ) or identifiers starting with a lowercase
characters, while uppercase letters are reserved to arbitrary relations.
In the case of functions (R := f ), b f a means exaclty b = f a. This is be-
cause functions are univocal, that is, no two different b and b′ are such
that b f a ∧ b′ f a. In fact, the following facts hold about any function
f :

• Univocality (or “left” uniqueness) —

b f a ∧ b′ f a ⇒ b = b′ (5.5)

• Leibniz principle —

a = a′ ⇒ f a = f a′ (5.6)
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Clearly, not every relation obeys (5.5), for instance

2 < 3∧ 1 < 3 6⇒ 2 = 1

Relations obeying (5.5) will be referred to as simple, according to a ter-
minology to follow shortly.

Implication (5.6) expresses the (philosophically) interesting fact that
no function (observation) can be found able to distinguish between
two equal objects. This is another fact true about functions which does
not generalize to binary relations, as we shall see when we come back
to this later.

Recapitulating: we regard function f : A −→ B as the binary relation
which relates b to a iff b = f a. So,

b f a literally means b = f a (5.7)

The purpose of this chapter is to generalize from

B A
foo

b = f a
to B ARoo

b R a

5.3 P R E / P O S T C O N D I T I O N S

It should be noted that relations are used in virtually every body of sci-
ence and it is hard to think of another way to express human knowl-
edge in philosophy, epistemology and common life, as suggestively
illustrated in figure 5.1. This figure is also illustrative of another pop-
ular ingredient when using relations — the arrows drawn to denote
relationships.1

In real life, “everything appears to be a relation”. This has lead
software theorists to invent linguistic layouts for relational specifica-
tion, leading to so-called specification languages. One such language, to-
day historically relevant, is the language of the Vienna Development
Method (VDM). In this notation, the relation described in (5.3) will be
written:

R (x : N0) y : N0

post y > x + 1

where the clause prefixed by post is said to be a post-condition. The
format also includes pre-conditions, if necessary. Such is the case of
the following pre / post -styled specification of the operation that ex-
tracts an arbitrary element from a set:

Pick (x : PA) (r : A, y : PA)

pre x 6= { }
post r ∈ x ∧ y = x− {r}

(5.8)

1 Our extensive of arrows to denote relations in the sequel is therefore rooted on com-
mon, informal practice. Unfortunately, mathematicians do not follow such practice
and insist on regarding relations just as sets of pairs.
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Figure 5.1.: Personal relationships in Pride and Prejudice, by Jane Austin, 1813.
(Source: Wikipedia)

Here PA = {X | X ⊆ A} is the set of all subsets of A. Mapping this
back to the relational format of (5.3), Pick is the relation defined by:

{
Pick : PA→ (A× PA)

(r, y) Pick x ⇔ x 6= { } ∧ r ∈ x ∧ y = b− {r}
Note how (r, y) Pick { } ⇔ False for whatever r, y. Here follows the
specification of sorting written in the pre / post -style,

Sort (x : A∗) y : A∗

post (ord y) ∧ bag y = bag x
(5.9)

where ord is the predicate defined in section 3.16 and bag is the func-
tion that extracts the multiset of elements of a finite list.2 Note how
Sort defines sorting independently of giving an explicit algorithm. In
fact, the pre / post -style provides a way of hiding the algorithmic
details that any particular functional implementation is bound to in-
clude.

Wherever a post-condition is intended to specify a function f , one
refers to such a condition as an implicit specification of f . Examples:
explicit definition of the abs function

abs : Z→ Z

abs i = if i < 0 then− i else i

followed by an implicit specification of the same function:

abs (i : Z) r : Z

post r > 0 ∧ (r = i ∨ r = − i)

2 Recall that ord assumes an ordering on type A. For further developments on this
specification see exercise 5.17 later on.
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Explicit definition of max function:

max : Z×Z→ Z

max (i, j) = if i 6 j then j else i

Its implicit specification:

max (i : Z, j : Z) r : Z

post r ∈ { i, j} ∧ i 6 r ∧ j 6 r

Of a different nature is the following pre/post-pair:

Sqrt : (i : R) r : R

post r2 = i

Here the specifier is telling the implementer that either solution r = +
√

i
or r = −

√
i will do.3 Indeed, square root is not a function, it is the

binary relation:

r Sqrt i ⇔ r2 = i (5.10)

We proceed with a thorough study of the concept of a binary rela-
tion, by analogy with a similar study carried out about functions in
chapter 2.

5.4 R E L AT I O N A L C O M P O S I T I O N A N D C O N V E R S E

Such as functions, relations can be combined via composition (R · S),
defined as follows:

B ARoo CSoo

R·S
ee b(R · S)c ≡ 〈∃ a : b R a : a S c〉 (5.11)

Example: Uncle = Brother · Parent, expanding to

u Uncle c ≡ 〈∃ p :: u Brother p ∧ p Parent c〉

An explanation on the ∃-notation is on demand: ∃ is an instance of
a so-called quantifier, a main ingredient of formal logic. In this book
we follow the so-called Eindhoven quantifier notation, whereby expres-
sions of the form

〈∀ x : P : Q〉

mean

“for all x in the range P, Q holds”

where P and Q are logical expressions involving x; and expressions of
the form

〈∃ x : P : Q〉
3 This aspect of formal specification is called vagueness.
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mean

“for some x in the range P, Q holds”.

Note how the symbols ∃ and ∀ “twist” letters E (exists) and A (all),
respectively. P is known as the range of the quantification and Q as
the quantified term.4 This logical notation enjoys a well-known set of
properties, some of which are given in appendix A.2. As an example,
by application of the ∃-trading rule (A.2), predicate 〈∃ a :: b R a ∧
a S c〉 in (5.11) can be written 〈∃ a : b R a : a S c〉.

Note how (5.11) removes ∃ and bound variable a when applied from
right to left. This is an example of conversion from pointwise to point-
free notation, since “point” a also disappears. Indeed, we shall try and
avoid lengthy, complex ∀, ∃-formulae by converting them to pointfree
notation, as is the case in (5.11) once relational composition is used.

A simple calculation shows (5.11) to instantiate to (2.6) for the spe-
cial case where R and S are functions, R, S := f , g:

b( f · g)c ≡ 〈∃ a :: b f a ∧ a g c〉
≡ { functions are univocal (simple) relations }
〈∃ a :: b = f a ∧ a = g c〉

≡ { ∃-trading rule (A.2) }
〈∃ a : a = g c : b = f a〉

≡ { ∃-“one-point” rule (A.6) }
b = f (g c)

2

Like its functional version (2.8), relation composition is associative:

R · (S · P) = (R · S) · P (5.12)

Everywhere T = R · S holds, the replacement of T by R · S will be
referred to as a “factorization” and that of R · S by T as “fusion”. Every

relation B ARoo admits two trivial factorizations,
{

R = R · idA
R = idB · R

(5.13)

where, for every X, idX is the identity relation relating every element
of X with itself (2.9). In other words: the identity (equality) relation
coincides with the identity function.

In section 2.7 we introduced a very special case of function f — iso-
morphism — which has a converse f ◦ such that (2.16) holds. A major
advantage of generalizing functions to relations is that every relation

A R // B has a converse A BR◦oo defined by

b R a ⇔ a R◦ b (5.14)

4 In particular, Q or P can be universally False or True. Assertions of the form 〈∀ x :
True : Q〉 or 〈∃ x : True : Q〉 are abbreviated to 〈∀ x :: Q〉 or 〈∃ x :: Q〉, respectively.
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— the passive voice written relationally, as already mentioned. Two im-
portant properties of converse follow: it is an involution

(R◦)◦ = R (5.15)

and it commutes with composition in a contravariant way:

(R · S)◦ = S◦ · R◦ (5.16)

Converses of functions enjoy a number of properties from which the
following is singled out as a way to introduce / remove them from
logical expressions:

b( f ◦ · R · g)a ≡ ( f b)R(g a) (5.17)

For instance, the consequent of implication (5.6) could have been writ-
ten a( f ◦ · id · f )a′, or even simpler as a( f ◦ · f )a′, as it takes very little
effort to show:

a( f ◦ · id · f )a′

≡ { (5.17) }
( f a)id( f a′)

≡ { b f a ≡ b = f a }
( f a) = id( f a′)

≡ { (2.9) }
f a = f a′

2

Exercise 5.1. Let sq x = x2 be the function that computes the square of a real
number. Use (5.17) to show that (5.10) reduces to

Sqrt = sq◦

in relational pointfree notation.
2

Exercise 5.2. Give an implicit definition of function f x = x2 − 1 in the form of a
post-condition not involving subtraction. Then re-write it without variables using
(5.17).
2
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5.5 R E L AT I O N A L E Q U A L I T Y

Recall that function equality (2.5) is established by extensionality:

f = g iff 〈∀ a : a ∈ A : f a = g a〉

Also recall that f = g only makes sense iff both functions have the
same type, say A → B. Can we do the same for relations? The rela-
tional generalization of (2.5) will be

R = S iff 〈∀ a, b : a ∈ A ∧ b ∈ B : b R a ⇔ b S a〉 (5.18)

Since ⇔ is bi-implication, we can replace the term of the quantifica-
tion by

(b R a ⇒ b S a) ∧ (b S a⇒ b R a)

Now, what does b R a ⇒ b S a mean? It simply captures relational
inclusion,

R ⊆ S iff 〈∀ a, b :: b R a ⇒ b S a〉 (5.19)

whose righthand side can also be written

〈∀ a, b : b R a : b S a〉

by ∀-trading (A.1). Note the same pointwise-pointfree move when
one reads (5.19) from right to left: ∀, a and b disappear.

Altogether, (5.18) can be written in less symbols as follows:

R = S ≡ R ⊆ S ∧ S ⊆ R (5.20)

This way of establishing relational equality is usually referred to as
circular inclusion. Note that relational inclusion (5.19) is a partial order:
it is reflexive, since

R ⊆ R (5.21)

holds for every R; it is transitive, since for all R, S, T

R ⊆ S ∧ S ⊆ T ⇒ R ⊆ T (5.22)

holds; and it is antisymmetric, as established by circular-inclusion (5.20)
itself. Circular-inclusion is also jocosely known as the “ping-pong”
method for establishing R = S: first calculate R ⊆ S (“ping”) and then
S ⊆ R (“pong”). This can be performed in one go by adopting the
following calculation layout:

R ⊆ . . .

⊆ S

⊆ . . .

⊆ R

2
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This has the advantage of making apparent that not only R and S are
the same, but also that every two steps in the circular reasoning are so
(just choose a different start and stop point in the “circle”).

Circular inclusion (5.20) is not the only way to establish relational
equality. A less obvious, but very useful way of calculating the equal-
ity of two relations is the method of indirect equality:

R = S ≡ 〈∀ X :: (X ⊆ R ⇔ X ⊆ S)〉 (5.23)

≡ 〈∀ X :: (R ⊆ X ⇔ S ⊆ X)〉 (5.24)

The reader unaware of this way of indirectly setting algebraic equal-
ities will recognize that the same pattern of indirection is used when
establishing set equality via the membership relation, cf.

A = B ≡ 〈∀ x :: x ∈ A ⇔ x ∈ B〉

The typical layout of using any of these rules is the following:




X ⊆ R
≡ { ... }

X ⊆ . . .
≡ { ... }

X ⊆ S
:: { indirect equality (5.23) }

R = S
2

This proof method is very powerful and we shall make extensive use
of it in the sequel. (The curious reader can have a quick look at section
5.9 for a simple illustration.)

R E L AT I O N A L T Y P E S . From this point onwards we shall regard
the type B← A as including not only all functions f : A → B but also
all relations of the same type, R : A→ B. This is far more than we had
before! In particular, type A→ B includes:

• the bottom relation B A⊥oo , which is such that, for all b, a,

b⊥a ≡ FALSE

• the topmost relation B A>oo , which is such that, for all b, a,

b⊥a ≡ TRUE

The former is referred to as the void, or empty relation. The latter is
known as the universal, or coexistence relation. Clearly, for every R,

⊥ ⊆ R ⊆ > (5.25)
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and

R · ⊥ = ⊥ · R = ⊥ (5.26)

hold. By (5.25) and (5.20), writing R = ⊥ (respectively, R = >) is the
same as writing R ⊆ ⊥ (respectively, > ⊆ R).

A relation B AVoo is said to be a vector if either A or B are the

singleton type 1. Relation 1 AXoo is said to be a row-vector; clearly,

X ⊆ !. Relation B 1Zoo is said to be a column-vector; clearly, Z ⊆ !◦.
5 A relation of type 1 1Soo is called a scalar.

Last but not least, note that in a relational setting types B ← A and
BA do not coincide — BA is the type of all functions from A to B, while
B← A is the type of all relations from A to B. Clearly, BA ⊆ B← A.

5.6 D I A G R A M S

As happens with functions, the arrow notation adopted for functions
makes it possible to express relational formulæ using diagrams. This
is a major ingredient of the relational method because it provides a
graphical way of picturing relation types and relational constraints.

Paths in diagrams are built by arrow chaining, which corresponds
to relational composition R · S (5.11), meaning “... is R of some S of ...”
in natural language.

Assertions of the form X ⊆ Y where X and Y are relation compo-
sitions can be represented graphically by rectangle-shaped diagrams,
as is the case in

Descriptor

path
��

HandleFToo

>
��

⊆
Path File

FS◦
oo

(5.27)

in the context of modelling a file-system. Relation FS models a file store
(a table mapping file system paths to the respective files), FT is the
open-file descriptor table (holding the information about the files that
are currently open6), function path yields the path of a file descriptor
and> is the largest possible relation between file-handles and files, as
seen above. The diagram depicts the constraint:

path · FT ⊆ FS◦ · > (5.28)

What does (5.28) mean, then, in predicate logic?

5 The column and row qualifiers have to do with an analogy with vectors in linear
algebra.

6 Open files are manipulated by the file system via open file descriptor data structures,
which hold various relevant metadata (e.g. current position within the file). Such de-
scriptors are identified by file handles which the file system provides to applications
that manipulate files. This indirection layer avoids unnecessary coupling between
applications and the details of the file system implementation.
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F R O M D I A G R A M S T O L O G I C . We reason:

path · FT ⊆ FS◦ · >
≡ { ‘at most’ ordering (5.19) }
〈∀ p, h : p(path · FT)h : p(FS◦ · >)h〉

≡ { composition (5.11) ; path is a function }
〈∀ p, h : 〈∃ d : p = path d : d FT h〉 : p(FS◦ · >)h〉

≡ { quantifier calculus — splitting rule (A.13) }
〈∀ d, h : d FT h : 〈∀ p : p = path d : p(FS◦ · >)h〉〉

≡ { quantifier calculus — ∀-one-point rule (A.5) }
〈∀ d, h : d FT h : (path d)(FS◦ · >)h〉

We still have to unfold term (path d)(FS◦ · >)h:

(path d)(FS◦ · >)h
≡ { composition (5.11) }
〈∃ x :: (path d)FS◦x ∧ x>h〉

≡ { converse ; x>h always holds }
〈∃ x :: x FS (path d)〉

In summary, path · FT ⊆ FS◦ · > unfolds into

〈∀ d, h : d FT h : 〈∃ x :: x FS (path d)〉〉 (5.29)

Literally:

If h is the handle of some open-file descriptor d, then this holds
the path of some existing file x.

In fewer words:

Non-existing files cannot be opened (referential integrity).

Thus we see how relation diagrams “hide” logically quantified for-
mulæ capturing properties of the systems one wishes to describe.

Compared with the commutative diagrams of previous chapters, a
diagram

A

R
��

B

P
��

Soo

⊆

C D
Q

oo
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is said to be semi-commutative because Q · P ⊆ R · S is not forced
to hold, only R · S ⊆ Q · P is. In case both hold, the ⊆ symbol is
dropped, cf. (5.20).

Exercise 5.3. Let a S n mean: “student a is assigned number n”. Using (5.11)
and (5.19), check that assertion

S ·> ⊆ > · S depicted by diagram

N0

S

��

N0

S

��

>oo

⊆

A A>
oo

means that numbers are assigned to students in increasing order.
2

5.7 TA X O N O M Y O F B I N A R Y R E L AT I O N S

The Leibniz principle about functions (5.6) can now be simplified thanks
to equivalence (5.19), as shown next:

〈∀ a, a′ :: a = a′ ⇒ f a = f a′〉
≡ { introduction of id; consequent as calculated already }
〈∀ a, a′ : : a = id a′ ⇒ a( f ◦ · f )a′〉

≡ { b f a means the same as b = f a }
〈∀ a, a′ : : a id a′ ⇒ a( f ◦ · f )a′〉

≡ { (5.19) }
id ⊆ f ◦ · f (5.30)

A similar calculation will reduce univocality (5.5) to

f · f ◦ ⊆ id (5.31)

Thus a function f is characterized by comparing f ◦ · f and f · f ◦ with
the identity.7

The exact characterization of functions as special cases of relations
is achieved in terms of converse, which is in fact of paramount impor-
tance in establishing the whole taxonomy of binary relations depicted
in figure 5.2. First, we need to define two important notions: given a

relation B ARoo , the kernel of R is the relation A Aker Roo defined
by:

ker R = R◦ · R (5.32)

7 As we shall see in section 5.13, relations larger than the identity (id ⊆ R) are said
to be reflexive and relations at most the identity (R ⊆ id) are said to be coreflexive or
partial identities.
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binary relation

injective entire simple surjective

representation function abstraction

injection surjection

bijection (isomorphism)

Figure 5.2.: Binary relation taxonomy

Clearly, a′ ker R a holds between any two sources a and a′ which have
(at least) a common target c such that c R a′ and c R a. We can also

define its dual, B B
img Roo , called the image of R, defined by:8

img R def
= R · R◦ (5.33)

From (5.15, 5.16) one immediately draws:

ker (R◦) = img R (5.34)

img (R◦) = ker R (5.35)

Kernel and image lead to the four top criteria of the taxonomy of
figure 5.2:

Reflexive Coreflexive
ker R entire R injective R
img R surjective R simple R

(5.36)

In words: a relation R is said to be entire (or total) iff its kernel is reflex-
ive and to be simple (or functional) iff its image is coreflexive. Dually,
R is surjective iff R◦ is entire, and R is injective iff R◦ is simple.

Representing binary relations by Boolean matrices gives us a sim-
ple, graphical way of detecting properties such as simplicity, surjec-
tiveness, and so on. Let the enumerated types A = {a1, a2, a3, a4, a5}
and B = {b1, b2, b3, b4, b5} be given. Two examples of relations of type
A→ B are given in figure 5.3 — the leftmost and the rightmost, which
we shall refer to as R and S, respectively.9 The matrix representing R
is:

a1 a2 a3 a4 a5

b1 0 1 0 0 0
b2 1 0 0 0 0
b3 0 0 1 1 0
b4 0 0 0 0 1
b5 0 0 0 0 0

(5.37)

8 These operators are relational extensions of two concepts familiar from set theory: the
image of a function f , which corresponds to the set of all y such that 〈∃ x :: y = f x〉,
and the kernel of f , which is the equivalence relation b ker f a ⇔ (f b) = (f a). (See
exercise 5.8 later on.)

9 Credits: http://www.matematikaria.com/unit/injective-surjective-bijective.html. Note that
we enumerate a1, a2, ... from the top to the bottom.
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The 1 addressed by b2 and a1 means that b2 R a1 holds, that between
b1 and a2 means b1 R a2, and so on and so forth. Then, R is:

• simple because there is at most one 1 in every column

• entire because there is at least one 1 in every column

• not injective because there is more than one 1 in some row

• not surjective because some row (the last) has no 1s.

So this relation is a function that is neither an injection nor a surjection.
Let us now have a look at the matrix that represents S : A→ B:

a1 a2 a3 a4 a5

b1 0 1 0 0 0
b2 1 0 0 0 0
b3 0 0 0 1 0
b4 0 0 0 0 1
b5 0 0 1 0 0

Now every row and every column has exactly one 1 — this tells us that
S is not only a function but in fact a bijection. Looking at the matrix
that represents S◦ : A← B,

b1 b2 b3 b4 b5

a1 0 1 0 0 0
a2 1 0 0 0 0
a3 0 0 0 0 1
a4 0 0 1 0 0
a5 0 0 0 1 0

we realize that it also is a function, in fact another bijection. This gives
us a rule of thumb for (constructively) checking for bijections (isomor-
phisms):

A relation f is a bijection iff its converse f ◦ is a function g (5.38)

Then g is also a bijection since f ◦ = g ⇔ f = g◦. Recall how some
definitions of isomorphisms given before, e.g. (2.92), are nothing but
applications of this rule f ◦ = g, once written pointwise with the help
of (5.17):

f b = a ⇔ b = g a

Bijections (isomorphisms) are reversible functions — they don’t lose
any information. By contrast, ! :A → 1 (2.58) and indeed all constant
functions c : A → C (2.12) lose all the information contained in their
inputs, recall (2.14). This property is actually more general,

c · R ⊆ c (5.39)

for all suitably typed R.



5.7 TA X O N O M Y O F B I N A R Y R E L AT I O N S 176

Figure 5.3.: Four binary relations.

In the same way ! :A → 1 is always a constant function — in fact
the unique possible function of its type, f : 1 → A is bound to be a
constant function too, for any choice of a target value in non-empty A.
Because there are as many such functions as elements if A, functions
a : 1 → A are referred to as points. These two situations correspond to
isomorphisms 1A ∼= 1 (2.97) and A1 ∼= A (2.98), respectively. Two
short-hands are introduced for the constant functions

true = True (5.40)

false = False (5.41)

Exercise 5.4. Prove (5.38) by completing:

f and f ◦ are functions

≡ { ... }
(id ⊆ ker f ∧ img f ⊆ id) ∧ (id ⊆ ker ( f ◦) ∧ img ( f ◦) ⊆ id)

≡ { ... }
...

≡ { ... }
f is a bijection

2

Exercise 5.5. Compute, for the relations in figure 5.3, the kernel and the image of
each relation. Why are all these relations functions? (NB: note that the types are
not all the same.)
2

Exercise 5.6. Recall the definition of a constant function (2.12),

k : A→ K
k a = k
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where K is assumed to be non-empty. Show that ker k = > and compute which
relations are defined by the expressions

b · c◦, img k (5.42)

Finally, show that (5.39) holds.
2

Exercise 5.7. Resort to (5.34,5.35) and (5.36) to prove the following rules of thumb:

- converse of injective is simple (and vice-versa) (5.43)

- converse of entire is surjective (and vice-versa) (5.44)

2

Exercise 5.8. Given a function B A
foo , calculate the pointwise version

b(ker f )a ≡ f b = f a (5.45)

of ker f . What is the outcome of the same exercise for img f ?
2

E N T I T Y- R E L AT I O N S H I P D I A G R A M S In the tradition of relational
databases, so-called entity-relationship (ER) diagrams have become pop-
ular as an informal means for capturing the properties of the relation-
ships involved in a particular database design.

Consider the following example of one such diagram:10

In the case of relation

Teacher Student
is mentor ofoo

10 Credits: https://dba.stackexchange.com/questions.
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the drawing tells not only that some teacher may mentor more than
one student, but also that a given student has exactly one mentor. So
is mentor of is a simple relation (figure 5.2).

The possibility n = 0 allows for students with no mentor. Should
this possibility be ruled out (n > 1), the relation would become also
entire, i.e. a function. Then

t is mentor of s

could be written

t = is mentor of s

— recall (5.7)— meaning:

t is the mentor of student s.

That is, is mentor of would become an attribute of Student. Note how
definite article “the” captures the presence of functions in normal speech.
“The” means not only determinism (one and only one output) but
also definedness (there is always one such output). In the case of
is mentor of being simple but not entire, we have to say:

t is the mentor of student s, if any.

Exercise 5.9. Complete the exercise of declaring in A R // B notation the other
relations of the ER-diagram above and telling which properties in Figure 5.2 are re-
quired for such relations.
2

5.8 F U N C T I O N S , R E L AT I O N A L LY

Among all binary relations, functions play a central role in relation
algebra — as can be seen in figure 5.2. Recapitulating, a function f is a
binary relation such that

Pointwise Pointfree
“Left” Uniqueness

b f a ∧ b′ f a ⇒ b = b′ img f ⊆ id ( f is simple)
Leibniz principle

a = a′ ⇒ f a = f a′ id ⊆ ker f ( f is entire)

It turns out that any function f enjoys the following properties, known
as shunting rules:

f · R ⊆ S ≡ R ⊆ f ◦ · S (5.46)

R · f ◦ ⊆ S ≡ R ⊆ S · f (5.47)
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These will prove extremely useful in the sequel. Another very useful
fact is the function equality rule:

f ⊆ g ≡ f = g ≡ f ⊇ g (5.48)

Rule (5.48) follows immediately from (5.46,5.47) by “cyclic inclusion”
(5.20):

f ⊆ g

≡ { natural-id (2.10) }
f · id ⊆ g

≡ { shunting on f (5.46) }
id ⊆ f ◦ · g

≡ { shunting on g (5.47) }
id · g◦ ⊆ f ◦

≡ { converses; identity }
g ⊆ f

Then:

f = g

≡ { cyclic inclusion (5.20) }
f ⊆ g ∧ g ⊆ f

≡ { above }
f ⊆ g

≡ { above }
g ⊆ f

2

Exercise 5.10. Infer id ⊆ ker f ( f is entire) and img f ⊆ id ( f is simple) from
shunting rules (5.46) and (5.47).
2

Exercise 5.11. For R := f , the property (5.39) “immediately” coincides with (2.14).
Why?
2
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F U N C T I O N D I V I S I O N . Given two functions B
g // C A

foo , we
can compose f with the converse of g. This turns out to be a very fre-
quent pattern in relation algebra, known as the division of f by g:

f
g

= g◦ · f c f .
B

g
��

A

f��

f
goo

C

(5.49)

That is,

b
f
g

a ⇔ g b = f a

Think of the sentence:

Mary lives where John was born.

This can be expressed by a division:

Mary
birthplace
residence

John ⇔ residence Mary = birthplace John

Thus R = birthplace
residence is the relation ”... resides in the birthplace of ...”. In

general,

b f
g a means “the g of b is the f of a”.

This combinator enjoys a number of interesting properties, for in-
stance:

f
id

= f (5.50)
(

f
g

)◦
=

g
f

(5.51)

f · h
g · k = k◦ · f

g
· h (5.52)

f
f

= ker f (5.53)

a 6= b ⇔ a
b

= ⊥ (5.54)

Function division is a special case of the more general, and important,
concept of relational division, a topic that shall be addressed in section
5.19.

Exercise 5.12. The teams (T) of a football league play games (G) at home or away,
and every game takes place in some date:

T Ghomeoo away //

date
��

T

D
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Moreover, (a) No team can play two games on the same date; (b) All teams play
against each other but not against themselves; (c) For each home game there is an-
other game away involving the same two teams. Show that

id ⊆ away
home

· away
home

(5.55)

captures one of the requirements above — which?
2

Exercise 5.13. Check the properties of function division given above.
2

5.9 M E E T A N D J O I N

Like sets, two relations of the same type, say B A
R,Soo , can be inter-

sected or joined in the obvious way:

b (R ∩ S) a ≡ b R a ∧ b S a (5.56)

b (R ∪ S) a ≡ b R a ∨ b S a (5.57)

R∩S is usually called meet (intersection) and R∪S is called join (union).
They lift pointwise conjunction and disjunction, respectively, to the
pointfree level. Their meaning is nicely captured by the following uni-
versal properties:11

X ⊆ R ∩ S ≡ X ⊆ R ∧ X ⊆ S (5.58)

R ∪ S ⊆ X ≡ R ⊆ X ∧ S ⊆ X (5.59)

Meet and join have the expected properties, e.g. associativity

(R ∩ S) ∩ T = R ∩ (S ∩ T)

proved next by indirect equality (5.23):

X ⊆ (R ∩ S) ∩ T

≡ { ∩-universal (5.58) twice }
(X ⊆ R ∧ X ⊆ S) ∧ X ⊆ T

≡ { ∧ is associative }
X ⊆ R ∧ (X ⊆ S ∧ X ⊆ T)

≡ { ∩-universal (5.58) twice }
X ⊆ R ∩ (S ∩ T)

:: { indirection (5.23) }
(R ∩ S) ∩ T = R ∩ (S ∩ T)

2

11 Recall the generic notions of greatest lower bound and least upper bound, respectively.
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In summary, type B← A forms a lattice:

> “top”

R ∪ S join, lub (“least upper bound”)

R S

R ∩ S meet, glb (“greatest lower bound”)

⊥ “bottom”

D I S T R I B U T I V E P R O P E RT I E S . As it will be proved later, composi-
tion distributes over union

R · (S ∪ T) = (R · S) ∪ (R · T) (5.60)

(S ∪ T) · R = (S · R) ∪ (T · R) (5.61)

while distributivity over intersection is side-conditioned:

(S ∩Q) · R = (S · R) ∩ (Q · R) ⇐





Q · img R ⊆ Q
∨

S · img R ⊆ S
(5.62)

R · (Q ∩ S) = (R ·Q) ∩ (R · S) ⇐





(ker R) ·Q ⊆ Q
∨

(ker R) · S ⊆ S
(5.63)

Properties (5.60,5.61) express the bilinearity of relation composition with
respect to relational join. These, and properties such as e.g.

(R ∩ S)◦ = R◦ ∩ S◦ (5.64)

(R ∪ S)◦ = R◦ ∪ S◦ (5.65)

will be shown to derive from a general construction that will be ex-
plained in section 5.18.

Exercise 5.14. Show that

R∩⊥ = ⊥ (5.66)

R∩> = R (5.67)

R∪> = > (5.68)

R∪⊥ = R (5.69)

using neither (5.56) nor (5.57).
2
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Exercise 5.15. Prove the union simplicity rule:

M ∪ N is simple ≡ M, N are simple and M · N◦ ⊆ id (5.70)

Using converses, derive from (5.70) the corresponding rule for injective relations.
2

Exercise 5.16. Prove the distributive property:

g◦ · (R∩ S) · f = g◦ · R · f ∩ g◦ · S · f (5.71)

2

Exercise 5.17. Let bag : A∗ → N0
A be the function that, given a finite sequence

(list), indicates the number of occurrences of its elements, for instance,

bag [a, b, a, c ] a = 2

bag [a, b, a, c ] b = 1

bag [a, b, a, c ] c = 1

Let ord : A∗ → B be the obvious predicate assuming a total order predefined in A.
Finally, let true = True (5.40). Having defined

S =
bag
bag
∩ true

ord
(5.72)

identify the type of S and, going pointwise and simplifying, tell which operation is
specified by S.
2

Exercise 5.18. Derive the distributive properties:

f ∪ g
k

=
f
k
∪ g

k
,

f ∩ g
k

=
f
k
∩ g

k
(5.73)

2

5.10 R E L AT I O N A L T H I N K I N G

Binary relations provide a natural way of describing real life situations.
Relation algebra can be used to reason about such formal descriptions.
This can be achieved using suitable relational combinators (and their
laws), in the pointfree style.
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Let us see a simple example of such a relational thinking taking one of
the PROPOSITIONES AD ACUENDOS IUUENES (“Problems to Sharpen
the Young”) proposed by abbot Alcuin of York († 804) as case study.
Alcuin states his puzzle in the following way, in Latin:

XVIII. PROPOSITIO DE HOMINE ET CAPRA ET LVPO. Homo quidam
debebat ultra fluuium transferre lupum, capram, et fasciculum cauli.
Et non potuit aliam nauem inuenire, nisi quae duos tantum ex ipsis
ferre ualebat. Praeceptum itaque ei fuerat, ut omnia haec ultra illaesa
omnino transferret. Dicat, qui potest, quomodo eis illaesis transire po-
tuit?

Our starting point will be the following (rather free) translation of the
above to English:

XVIII. FOX, GOOSE AND BAG OF BEANS PUZZLE. A farmer goes
to market and purchases a fox, a goose, and a bag of beans. On his way
home, the farmer comes to a river bank and hires a boat. But in crossing
the river by boat, the farmer could carry only himself and a single one
of his purchases - the fox, the goose or the bag of beans. (If left alone,
the fox would eat the goose, and the goose would eat the beans.) Can
the farmer carry himself and his purchases to the far bank of the river,
leaving each purchase intact?

We wish to describe the essence of this famous puzzle, which is the
guarantee that

under no circumstances does the fox eat the goose or the goose
eat the beans.

Clearly, we need two data types:

Being = {Farmer, Fox, Goose, Beans}
Bank = {Le f t, Right}

Then we identify a number of relations involving such data:

Being Eats // Being

where
��

Bank cross // Bank

(5.74)

Clearly, cross Le f t = Right and cross Right = Le f t. So cross is its own
inverse and therefore a bijection (5.38). Relation Eats can be described
by the Boolean matrix:

Eats =

Fox Goose Beans Farmer
Fox 0 1 0 0

Goose 0 0 1 0
Beans 0 0 0 0

Farmer 0 0 0 0

(5.75)

Relation where : Being→ Bank is necessarily a function because:
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- everyone is somewhere in a bank (where is entire)
- no one can be in both banks at the same time (where is simple)

Note that there are only two constant functions of type Being→ Bank,
Right and Le f t. The puzzle consists in changing from the state where =
Right to the state where = Le f t, for instance, without violating the
property that nobody eats anybody. How does one record such a prop-
erty? We need two auxiliary relations capturing, respectively:

• Being at the same bank:

SameBank = ker where

• Risk of somebody eating somebody else:

CanEat = SameBank ∩ Eats

Then “starvation” is ensured by the Farmer’s presence at the same
bank:

CanEat ⊆ SameBank · Farmer (5.76)

By (5.46), this “starvation” property (5.76) converts to:

where · CanEat ⊆ where · Farmer

In this version, (5.76) can be depicted as a diagram

Being

where
��

BeingCanEatoo

Farmer
��

⊆
Bank Being

where
oo

(5.77)

which “reads” in a nice way:

where (somebody)CanEat (somebody else) (that’s) where
(the) Farmer (is).

Diagram (5.27) given earlier can now be identified as another exam-
ple of assertion expressed relationally. Diagrams of this kind capture
properties of data models that one wishes to hold at any time during
the lifetime of the system being described. Such properties are com-
monly referred to as invariants and their preservation by calculation
will be the main aim of chapter 7.

Exercise 5.19. Calculate the following pointwise version of the “starvation” prop-
erty (5.77) by introducing quantifiers and simplifying:

〈∀ b′, b : b′ Eat b : where b′ = where b⇒ where b′ = where Farmer〉
2
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Exercise 5.20. Recalling property (5.39), show that the “starvation” property (5.77)
is satisfied by any of the two constant functions that model the start or end states of
the Alcuin puzzle.
2

5.11 M O N O T O N I C I T Y

As expected, relational composition is monotonic:

R ⊆ S
T ⊆ U

(R · T) ⊆ (S ·U)

(5.78)

Indeed, all relational combinators studied so far are also monotonic,
namely

R ⊆ S ⇒ R◦ ⊆ S◦ (5.79)

R ⊆ S ∧U ⊆ V ⇒ R ∩U ⊆ S ∩V (5.80)

R ⊆ S ∧U ⊆ V ⇒ R ∪U ⊆ S ∪V (5.81)

hold.
Monotonicity and transitivity (5.22) are important properties for rea-

soning about a given relational inclusion R ⊆ S. In particular, the
following rules are of help by relying on a “mid-point” relation M,
R ⊆ M ⊆ S (analogy with interval arithmetics).

• Rule A — lowering the upper side:

R ⊆ S

⇐ { M ⊆ S is known ; transitivity of ⊆ (5.22) }
R ⊆ M

Then proceed with R ⊆ M.

• Rule B — raising the lower side:

R ⊆ S

⇐ { R ⊆ M is known; transitivity of ⊆ }
M ⊆ S

Then proceed with M ⊆ S.
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The following proof of shunting property (5.46) combines these rules
with monotonicity and circular implication:

R ⊆ f ◦ · S
⇐ { id ⊆ f ◦ · f ; raising the lower-side }

f ◦ · f · R ⊆ f ◦ · S
⇐ { monotonicity of ( f ◦·) }

f · R ⊆ S

⇐ { f · f ◦ ⊆ id ; lowering the upper-side }
f · R ⊆ f · f ◦ · S

⇐ { monotonicity of ( f ·) }
R ⊆ f ◦ · S

Thus the equivalence in (5.46) is established by circular implication.
Rules A and B should be used only where other proof techniques

(notably indirect equality) fail. They assume judicious choice of the
mid-point relation M, at each step. The choice of an useless M can
drive the proof nowhere.

Exercise 5.21. Unconditional distribution laws

(P ∩Q) · S = (P · S) ∩ (Q · S)
R · (P ∩Q) = (R · P) ∩ (R ·Q)

will hold provide one of R or S is simple and the other injective. Tell which, justify-
ing.
2

Exercise 5.22. Prove that relational composition preserves all relational classes in
the taxonomy of figure 5.2.
2

5.12 R U L E S O F T H U M B

Quite often, involved reasoning in logic arguments can be replaced by
simple and elegant calculations in relation algebra that arise thanks to
smart“rules of thumb”. We have already seen two such rules, (5.43)
and (5.44). Two others are:

- smaller than injective (simple) is injective (simple) (5.82)

- larger than entire (surjective) is entire (surjective) (5.83)
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Let us see these rules in action in trying to infer what can be said of
two functions f and r such that

f · r = id

holds. On the one hand,

f · r = id

≡ { equality of functions }
f · r ⊆ id

≡ { shunting }
r ⊆ f ◦

Since f is simple, f ◦ is injective and so is r because “smaller than injec-
tive is injective”. On the other hand,

f · r = id

≡ { equality of functions }
id ⊆ f · r

≡ { shunting }
r◦ ⊆ f

Since r is entire, r◦ is surjective and so is f because “larger that surjec-
tive is surjective”. We conclude that f is surjective and r is injective
wherever f · r = id holds. Since both are functions, we furthermore
conclude that

f is an abstraction and r is a representation

— cf. Figure 5.2.
The reason for this terminology can now be explained. Given f :

A ← C and g : C ← A such that f · r = id, that is, for all a ∈ A,
f (r a) = a, think of C as a domain of concrete objects and of A as a
domain of abstract data. For instance, let A = B and C = N0. Then
define

{
r : B→N0

r b = if b then k else 0

(where k is any natural number different from 0) and
{

f : B←N0

f n = if n = 0 then False else True

Clearly, by the definitions of f and r:

f (r b) = if (if b then k else 0) = 0 then False else True

≡ { conditional-fusion rule (2.71) }
f (r b) = if (if b then k = 0 else True) then False else True
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≡ { k = 0 is always false }
f (r b) = if (if b then False else True) then False else True

≡ { pointwise definition of ¬ b }
f (r b) = if ¬ b then False else True

≡ { trivial }
b

That is, r represents the Booleans True and False by natural numbers
while f abstracts from such real numbers back to Booleans. r being
injective means r False 6= r True, that is, the Boolean information is not
lost in the representation.12 f being surjective means that any Boolean
is representable. Note that r · f = id does not hold: r (f 1) = r True = k
and k 6= 1 in general.

The abstraction/representation pair (f , r) just above underlies the
way Booleans are handled in programming languages such as C, for
instance. Experienced programmers will surely agree that often what
is going on in the code they write are processes of representing in-
formation using primitive data structures available from the adopted
programming language. For instance, representing finite sets by finite
lists corresponds to the abstraction given by elems (5.1).

Exercise 5.23. Recalling exercise 5.17, complete the definition of

bag [ ] a = 0
bag (h : t) a = let b = bag t in if . . .

Is this function an abstraction or a representation? Justify your answer informally.
2

Exercise 5.24.Show that:

• R ∩ S is injective (simple) provided one of R or S is so

• R ∪ S is entire (surjective) provided one of R or S is so.

2

5.13 E N D O - R E L AT I O N S

Relations in general are of type A → B, for some A and B. In the
special case that A = B holds, a relation R : A → A is said to be an
endo-relation, or a graph. The A = B coincidence gives room for some

12 That is, r causes no confusion in the representation process.
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Figure 5.4.: Taxonomy of endorelations.

extra terminology, extending some already given. Besides an endo-

relation A ARoo being

reflexive: iff id ⊆ R (5.84)

coreflexive: iff R ⊆ id (5.85)

it can also be:

transitive: iff R · R ⊆ R (5.86)

symmetric: iff R ⊆ R◦(≡ R = R◦) (5.87)

anti-symmetric: iff R ∩ R◦ ⊆ id (5.88)

irreflexive: iff R∩ id = ⊥ (5.89)

connected: iff R ∪ R◦ = > (5.90)

By combining these criteria, endo-relations A ARoo can further
be classified as in figure 5.4. In summary:

• Preorders are reflexive and transitive orders.
Example: age y 6 age x.

• Partial orders are anti-symmetric preorders
Example: y ⊆ x where x and y are sets.

• Linear orders are connected partial orders
Example: y 6 x in N0

• Equivalences are symmetric preorders
Example: age y = age x. 13

• Pers are partial equivalences
Example: y IsBrotherO f x.

Preorders are normally denoted by asymmetric symbols such as e.g.
y v x, y 6 x. In case of a function f such that

f · (v) ⊆ (6) · f (5.91)

13 Kernels of functions are always equivalence relations, see exercise 5.25.
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we say that f is monotonic. Indeed, this is equivalent to

a v b⇒ (f a) 6 (f b)

once shunting (5.46) takes place, and variables are added and handled
via (5.17). Another frequent situation is that of two functions f and g
such that

f ⊆ (6) · g (5.92)

This converts to the pointwise

〈∀ a :: f a 6 g a〉

that is, f is always at most g for all possible inputs. The following abbre-
viation is often used to capture this ordering on functions induced by
a pre-order (6) on their outputs:

f
.
6 g iff f ⊆ (6) · g (5.93)

For instance, f
.
6 id means f a 6 a for all inputs a.

C L O S U R E O P E R AT O R S Given a partial order (6), a function f is
said to be a closure operator iff

(6) · f = f ◦ · (6) · f (5.94)

holds. The same with points — via (5.17) —, for all x, y:

y 6 f x ⇔ f x 6 f y (5.95)

Clearly, for (>) = (6)◦, (5.94) can also be written

f ◦ · (>) = f ◦ · (>) · f

Any of these alternatives is an elegant way of defining a closure oper-
ator f , in so far it can be shown to be equivalent to the conjunction of
three facts about f : (a) f is monotonic; (b) id

.
6 f and (c) f = f · f .

As an example, consider the function that closes a finite set of natu-
ral numbers by filling in the intermediate numbers, e.g. f {4, 2, 6} =
{2, 3, 4, 5, 6}. Clearly, x ⊆ f x. If you apply f again, you get

f {2, 3, 4, 5, 6} = {2, 3, 4, 5, 6}

This happens because f is a closure operator.

Exercise 5.25. Knowing that property

f · f ◦ · f = f (5.96)

holds for every function f , prove that ker f = f
f (5.53) is an equivalence relation.

2
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Exercise 5.26. From ker ! = > and (5.96) infer

> · R ⊆ > · S ⇔ R ⊆ > · S (5.97)

Conclude that (>·) is a closure operator.
2

Exercise 5.27. Generalizing the previous exercise, show that pre/post-composition
with functional kernels are closure operations:

S · ker f ⊆ R · ker f ≡ S ⊆ R · ker f (5.98)

ker f · S ⊆ ker f · R ≡ S ⊆ ker f · R (5.99)

2

Exercise 5.28. Consider the relation

b R a ⇔ team b is playing against team a

Is this relation: reflexive? irreflexive? transitive? anti-symmetric? symmetric? con-
nected?
2

Exercise 5.29. Expand criteria (5.86) to (5.90) to pointwise notation.
2

Exercise 5.30. A relation R is said to be co-transitive or dense iff the following holds:

〈∀ b, a : b R a : 〈∃ c : b R c : c R a〉〉 (5.100)

Write the formula above in PF notation. Find a relation (eg. over numbers) which is
co-transitive and another which is not.
2

Exercise 5.31. Check which of the following properties,

transitive, symmetric, anti-symmetric, connected
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hold for the relation Eats (5.75) of the Alcuin puzzle.
2

Exercise 5.32. Show that (5.55) of exercise 5.12 amounts to forcing relation home ·
away◦ to be symmetric.
2

5.14 R E L AT I O N A L PA I R I N G

Recall from sections 2.8 and 2.9 that functions can be composed in par-
allel and in alternation, giving rise to so-called products and coproducts.
Does a diagram like (2.23),

A A× B
π1oo π2 // B

C
f

cc

〈 f ,g〉
OO

g

<<

make sense when f e g are generalized to relations R and S? We start
from definition (2.20),

〈 f , g〉 c def
= ( f c, g c)

and try to see what such a generalization could mean. The relational
expression of function 〈f , g〉 is y = 〈f , g〉 c, which can be rephrased to
(a, b) = 〈f , g〉 c knowing that 〈f , g〉 is of type C → A× B in (2.23). We
reason:

(a, b) = 〈f , g〉 c

≡ { 〈f , g〉 c = (f c, g c); equality of pairs }
{

a = f c
b = g c

≡ { y = f x ⇔ y f x }
{

a f c
b g c

2

By in-lining the conjunction expressed by the braces just above, one
gets

(a, b) 〈f , g〉 c ⇔ a f c ∧ b g c

which proposes the generalization:

(a, b) 〈R, S〉 c ⇔ a R c ∧ b S c (5.101)
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Recalling the projections π1 (a, b) = a and π2 (a, b) = b, we shall
try and remove variables a, b and c from the above, towards a closed
definition of 〈R, S〉:

(a, b) 〈R, S〉 c ⇔ a R c ∧ b S c

≡ { π1 (a, b) = a and π2 (a, b) = b }
(a, b) 〈R, S〉 c ⇔ π1 (a, b) R c ∧ π2 (a, b) S c

≡ { (5.17) twice }
(a, b) 〈R, S〉 c ⇔ (a, b) (π◦1 · R) c ∧ (a, b) (π◦2 · S) c

≡ { (5.56) }
(a, b) 〈R, S〉 c ⇔ (a, b) (π◦1 · R∩ π◦2 · S) c

≡ { (5.19) }
〈R, S〉 = π◦1 · R∩ π◦2 · S (5.102)

Next, we investigate which kind of universal property 〈R, S〉 defined
by π◦1 · R∩ π◦2 · S satisfies. The strategy is to use indirect equality:

X ⊆ 〈R, S〉
≡ { (5.102) }

X ⊆ π◦1 · R∩ π◦2 · S
≡ { (5.58) }

{
X ⊆ π◦1 · R
X ⊆ π◦2 · S

≡ { shunting }
{

π1 ·X ⊆ R
π2 ·X ⊆ S

In summary, the universal property of 〈R, S〉 is:

X ⊆ 〈R, S〉 ⇔
{

π1 ·X ⊆ R
π2 ·X ⊆ S

(5.103)

For functions, X, R.S := k, f , g it can be observed that (5.103) coincides
with (2.63). But otherwise, the corollaries derived from (5.103) are dif-
ferent from those that emerge from (2.63). For instance, cancellation
becomes:

{
π1 · 〈R, S〉 ⊆ R
π2 · 〈R, S〉 ⊆ S

This tells us that pairing R with S has the (side) effect of deleting from
R all those inputs for which S is undefined (and vice-versa), since out-
put pairs require that both relations respond to the input. Thus, for
relations, laws such as the ×-fusion rule (2.26) call for a side-condition:

〈R, S〉 · T = 〈R · T, S · T〉
⇐ R · (img T) ⊆ R ∨ S · (img T) ⊆ S

(5.104)
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Clearly,

〈R, S〉 · f = 〈R · f , S · f 〉 (5.105)

holds, since img f ⊆ id. Moreover, the absorption law (2.27) remains
unchanged,

(R× S) · 〈P, Q〉 = 〈R · P, S ·Q〉 (5.106)

where R× S is defined in the same way as for functions:

R× S = 〈R · π1, S · π2〉 (5.107)

As generalization of (5.105) and also immediate by monotonicity, 〈R, S〉 ·
T = 〈R · T, S · T〉 holds for T simple.

Because (5.103) is not the universal property of a product, we tend
to avoid talking about relational products and talk about relational pair-
ing instead.14 In spite of the weaker properties, relational pairing has
interesting laws, namely:

〈R, S〉◦ · 〈X, Y〉 = (R◦ · X) ∩ (S◦ ·Y) (5.108)

Exercise 5.33. Derive from (5.108) the following properties:

f
g
∩ h

k
=

f O h
g O k

(5.109)

(5.110)

ker 〈R, S〉 = ker R ∩ ker S (5.111)

〈R, id〉 is always injective, for whatever R

2

Exercise 5.34. Recalling (5.38), prove that swap = 〈π2, π1〉 (2.32) is its own con-
verse and therefore a bijection.
2

Exercise 5.35. Derive from the laws studied thus far the following facts about rela-
tional pairing:

id× id = id (5.112)

(R× S) · (P×Q) = (R · P)× (S ·Q) (5.113)

2

14 Relational products do exist but are not obtained by 〈R, S〉. For more about this see
section 5.23 later on.



5.15 R E L AT I O N A L C O P R O D U C T S 196

5.15 R E L AT I O N A L C O P R O D U C T S

Let us now show that, in contrast with products, coproducts extend
perfectly from functions to relations, that is, universal property (2.65)
extends to

X = [R , S] ⇔
{

X · i1 = R
X · i2 = S

(5.114)

where X : A + B → C, R : A → C and S : B → C are binary relations.
First of all, we need to understand what [R , S] means. Our starting
point is +-cancellation, recall (2.40):

{
[g , h] · i1 = g
[g , h] · i2 = h

≡ { equality of functions }
{

g ⊆ [g , h] · i1
h ⊆ [g , h] · i2

≡ { shunting followed by (5.57) }
g · i◦1 ∪ h · i◦2 ⊆ [g , h]

On the other hand:
{

[g , h] · i1 = g
[g , h] · i2 = h

≡ { equality of functions }
{

[g , h] · i1 ⊆ g
[g , h] · i2 ⊆ h

⇒ { monotonicity }
{

[g , h] · i1 · i◦1 ⊆ g · i◦1
[g , h] · i2 · i◦2 ⊆ h · i◦2

⇒ { monotonicity (5.81) and distribution (5.60) }
[g , h] · (i1 · i◦1 ∪ i2 · i◦2) ⊆ g · i◦1 ∪ h · i◦2

≡ { img i1 ∪ img i2 = id, more about this below }
[g , h] ⊆ g · i◦1 ∪ h · i◦2

Altogether, we obtain:

[g , h] = g · i◦1 ∪ h · i◦2
Note how this matches with (2.37), once variables are introduced:

c [g , h] x ⇔ 〈∃ a : x = i1 a : c = g a〉 ∨ 〈∃ b : x = i2 b : c = h b〉

Fact

img i1 ∪ img i2 = id (5.115)
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assumed above is a property stemming from the construction of co-
products,

A + B def
= { i1 a | a ∈ A} ∪ { i2 b | b ∈ B}

since i1 and i2 are the only constructors of data of type A + B. Another
property implicit in this construction is:

i◦1 · i2 = ⊥ (5.116)

equivalent to its converse i◦2 · i1 = ⊥. It spells out that, for any a ∈ A
and b ∈ B, i1 a = i2 b is impossible.15 In other words, the union is a
disjoint one.

Let us now generalize the above to relations instead of functions,

[R , S] = R · i◦1 ∪ S · i◦2 (5.117)

and show that (5.114) holds. First of all,

X = R · i◦1 ∪ S · i◦2
⇒ { compose both sides with i1 and simplify; similarly for i2 }

X · i1 = R ∧ X · i2 = S

The simplifications arise from i1 and i2 being injections, so their ker-
nels are identities. On the other hand, i◦1 · i2 = ⊥ and i◦2 · i1 = ⊥, as
seen above. The converse implication (⇐) holds:

X = R · i◦1 ∪ S · i◦2
≡ { (5.115) }

X · (img i1 ∪ img i2) = R · i◦1 ∪ S · i◦2
≡ { distribution }

X · img i1 ∪X · img i2 = R · i◦1 ∪ S · i◦2
⇐ { Leibniz }

X · i1 · i◦1 = R · i◦1 ∧ X · i2 · i◦2 = S · i◦2
⇐ { monotonicity }

X · i1 = R ∧ X · i2 = S

2

Thus (5.114) holds in general, for relations:

(B + C)→ A

[ , ]◦

,,∼= (B→ A)× (C→ A)

[ , ]

ll
(5.118)

15 Note that in (2.36) this is ensured by always choosing two different tags t1 6= t2.
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A most useful consequence of this is that all results known for coprod-
ucts of functions are valid for relational coproducts. In particular, rela-
tional direct sum

R + S = [i1 · R , i2 · S] (5.119)

can be defined satisfying (2.43), (2.44) etc with relations replacing func-
tions. Moreover, the McCarthy conditional (2.70) can be extended to
relations in the expected way:

p→ R, S def
= [R , S] · p? (5.120)

The property for sums (coproducts) corresponding to (5.108) for
products is:

[R , S] · [T , U]◦ = (R · T◦) ∪ (S ·U◦) (5.121)

This divide-and-conquer rule is essential to parallelizing relation compo-
sition by so-called block decomposition.

Finally, the exchange law (2.49) extends to relations,

[〈R, S〉 , 〈T, V〉] = 〈[R , T], [S , V]〉 (5.122)

cf.

A
i1 //

R
�� S

))

A + B B
T

uu

V
��

i2oo

C C× D
π1

oo
π2

// D

For the proof see the following exercise.

Exercise 5.36. Relying on both (5.114) and (5.105) prove (5.122). Moreover, prove

(R + S)◦ = R◦ + S◦ (5.123)

2

Exercise 5.37. From (5.117) prove (5.121). Then show that

img [R , S] = img R ∪ img S (5.124)

follows immediately from (5.121).
2

Exercise 5.38. Prove that the coproduct [R , S] is injective iff both R, S are injective
and R◦ · S = ⊥.
2
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Exercise 5.39. Prove:

f
g
× h

k
=

f × h
g× k

(5.125)

f
g
+

h
k
=

f + h
g + k

(5.126)

2

5.16 O N K E Y- VA L U E D ATA M O D E L S

Simple relations abstract what is currently known as the key-value-pair
data model in modern databases.16 In this setting, given a simple rela-

tion K S // V , K is regarded as a type of data keys and V as a type of
data values.

By pairing (5.102) such key-value-pairs one obtains more elaborate
stores. Conversely, one may use projections to select particular key-
attribute relationships from key-value stores. Note that keys and val-
ues can be anything (that is, of any type) and, in particular, they can be
compound, for instance

PartitionKey× SortKey︸ ︷︷ ︸
K

→ Type× . . .︸ ︷︷ ︸
V

in the following example:17

16 For example, Hbase, Amazon DynamoDB, and so on, are examples of database sys-
tems that use the key-value pair data model.

17 Credits: https://aws.amazon.com/nosql/key-value/.



5.17 W H AT A B O U T R E L AT I O N A L “ C U R R Y I N G ” ? 200

The example furthermore shows how keys and values can structure
themselves even further. In particular, “schema is defined per item” in-
dicates that the values may be of coproduct types, something like
Title× (1 + Author× (1 + Date× . . .)), for instance. Although the sim-
plicity of the columnar model suggested by the key-value principle is
somewhat sacrificed in the example, this shows how expressive simple
relations involving product and coproduct types are.

One of the standard variations of the key-value model is to equip
keys with time-stamps indicating when the pair was inserted or modi-
fied in the store, for instance

Student× Course× Time→ Result (5.127)

telling the possibly different results of students in exams of a partic-
ular course. This combination of the key-value model with that of
temporal (also called historical) databases is very powerful.

The relational combinators studied in this book apply naturally to
key-value-pair storage processing and offer themselves as a power-
ful, pointfree high-level language for handling such data in a “noSQL”
style.

5.17 W H AT A B O U T R E L AT I O N A L “ C U R R Y I N G ” ?

Recall isomorphism (2.93),

(CB)A

uncurry
**∼= CA×B

curry

jj

that is at the core of the way binary functions are handled in func-
tional programming. Does this isomorphism hold when functions are
generalized to relations, something like...

A× B→ C ∼= A→ . . .?

Knowing that the type A × B → C of relations is far larger than
CA×B, it can be anticipated that the isomorphism will not extend to re-
lations in the same way. In fact, a rather simpler one happens instead,
among relations:

A× B→ C

trans
++∼= A→ C× B

untrans

kk (5.128)

This tells us that (obvious, but very useful fact) that relations involv-
ing product types can be reshaped in any way we like, leftwards or
rightwards.
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It is quite convenient to overload the notation used for functions
and write R to denote trans R and R̂ to denote untrans R. Then the
isomorphism above is captured by universal property,18

C× B (C× B)× B ε // C

A

R

OO

A× B

R×id

OO

R

99

where

R = 〈R, π2〉 · π◦1

C× B

A
π◦1

//

R

OO

A× B

〈R,π2〉
dd

(5.129)

that is

(c, b) R a ≡ c R (a, b)

Moral: every n-ary relation can be expressed as a binary relation; more-
over, where each particular attribute is placed (input/output) is irrel-
evant.

By converse duality, (Ŝ)◦ = (S◦), we obtain the definition of rela-
tional “uncurrying”:

Ŝ = π1 · 〈S◦, π2〉◦

Then

ε = îd = π1 · 〈id, π2〉◦.

With points:

c2 ε ((c1, b1), b2) ≡ c2 = c1 ∧ b1 = b2

T H E “ PA I R I N G W H E E L” R U L E The flexibility offered by (5.128)
means that, in relation algebra, the information altogether captured
by the three relations M, P and Q in

B

A

M

OO

P

��

Q

��
C D

(5.130)

can be aggregated in several ways, namely

18 Compare with (2.84).
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B
〈P,Q〉·M◦ // D× C

D
〈Q,M〉·P◦ // C× B

C
〈M,P〉·Q◦ // B× C

all isomorphic to each other:

B→ D× C
α

��
C→ B×D

α

99

D→ C× B

α

^^

The rotation among relations and types justifies the name “pairing
wheel” given to (5.130). Isomorphism α holds in the sense that ev-
ery entry of one of the aggregates is uniquely represented by another
entry in any other aggregate, for instance:

(d, c) (〈P, Q〉 ·M◦) b

= { composition ; pairing }
〈∃ a : d P a ∧ c Q a : a M◦ b〉

= { converse; ∧ is associative and commutative }
〈∃ a :: (c Q a ∧ b M a) ∧ a P◦ d〉

= { composition ; pairing }
(c, b) (〈Q, M〉 · P◦) d

Thus: α (〈P, Q〉 ·M◦) = (〈Q, M〉) · P◦.

Exercise 5.40. Express α in terms of trans (5.128) and its converse (5.129).
2

5.18 G A L O I S C O N N E C T I O N S

Recall from section 5.13 that a preorder is a reflexive and transitive
relation. Given two preorders 6 and v, one may relate arguments
and results of pairs of suitably typed functions f and g in a particular
way,

f ◦· v = 6 · g (5.131)

as in the diagram:

A

f ◦

��

A

g

��

voo

=

B B6
oo
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Figure 5.5.: Graphical interpretation of equation (5.131): (a) relation

B A
(6)·goo is the “area” below function g wrt. 6; (b) relation

B
f ◦ ·(v) // A is the “area” above function f wrt. v, to the right

(oriented 90o); (c) f and g are such that these areas are the same.

In this very special situation, f , g are said to be Galois connected. We
write

f ` g (5.132)

as abbreviation of (5.131) when the two preorders v,6 are implicit
from the context. Another way to represent this is:

(A,v)
g

**
(B,6)

f

jj

Function f (resp. g) is referred to as the lower (resp. upper) adjoint of
the connection. By introducing variables in both sides of (5.131) via
(5.17), we obtain, for all x and y

( f x) v y ≡ x 6 (g y) (5.133)

In particular, the two preorders in (5.131) can be the identity id, in
which case (5.131) reduces to f ◦ = g, that is, f and g are each-other in-
verses — i.e., isomorphisms. Therefore, the Galois connection concept
is a generalization of the concept of isomorphism.

Quite often, the two adjoints are sections of binary operators. Recall
that, given a binary operator a θ b, its two sections (aθ) and (θb) are
unary functions f and g such that, respectively:

f = (aθ) ≡ f b = a θ b (5.134)

g = (θb) ≡ g a = a θ b (5.135)

Galois connections in which the two preorders are relation inclusion
(6,v := ⊆,⊆) and whose adjoints are sections of relational combina-
tors are particularly interesting because they express universal prop-
erties about such combinators. Table 3 lists some connections that are
relevant for this book.
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( f X) ⊆ Y ≡ X ⊆ (g Y)

Description f g Obs.

converse ( )◦ ( )◦

shunting rule (h·) (h◦·) h is a function

“converse” shunting rule (·h◦) (·h) h is a function

difference ( − R) (R ∪ )

implication (R∩ ) (R⇒ )

Table 3.: Sample of Galois connections in the relational calculus. The general for-
mula given on top is a logical equivalence universally quantified on S and
R. It has a left part involving lower adjoint f and a right part involving
upper adjoint g.

It is remarkably easy to recover known properties of the relation
calculus from table 3. For instance, the first row yields

X◦ ⊆ Y ≡ X ⊆ Y◦ (5.136)

since f = g = ( )◦ in this case. Thus converse is its own self adjoint.
From this we derive

R ⊆ S ≡ R◦ ⊆ S◦ (5.137)

by making X, Y := R, S◦ and simplifying by involution (5.15). More-
over, the entry marked “shunting rule” in the table leads to

h · X ⊆ Y ≡ X ⊆ h◦ ·Y

for all h, X and Y. By taking converses, one gets another entry in table
3, namely

X · h◦ ⊆ Y ≡ X ⊆ Y · h

These are the equivalences (5.46) and (5.47) that we have already met,
popularly known as “shunting rules”.

The fourth and fifth rows in the table are Galois connections that
respectively introduce two new relational operators — relational dif-
ference S− R and relational implication R ⇒ S — as a lower adjoint and
an upper adjoint, respectively:

X− R ⊆ Y ≡ X ⊆ Y ∪ R (5.138)

R∩X ⊆ Y ≡ X ⊆ R⇒ Y (5.139)

There are many advantages in describing the meaning of relational
operators by Galois connections. Further to the systematic tabulation
of operators (of which table 3 is just a sample), the concept of a Ga-
lois connection is a generic one, which offers a rich algebra of generic
properties, namely:

• both adjoints f and g in a Galois connection are monotonic;
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Figure 5.6.: Lower-perfect Galois connection f ` g involving two lattices S
and R.

• lower adjoint f distributes with join and upper-adjoint g dis-
tributes with meet, wherever these exist:

f (b t b′) = ( f b) ∨ ( f b′) (5.140)

g(a ∧ a′) = (g a) u (g a′) (5.141)

• lower adjoint f preserves infima and upper-adjoint g preserves
suprema, wherever these exist:19

f ⊥ = ⊥ (5.142)

g > = > (5.143)

• two cancellation laws hold,

( f · g)a 6 a and b v (g · f )b (5.144)

respectively known as lower-cancellation and upper-cancellation.

• Semi-inverse properties:

f = f · g · f (5.145)

g = g · f · g (5.146)

It may happen that a cancellation law holds up to equality, for instance
f (g a) = a, in which case the connection is said to be perfect on the
particular side. The picture of a lower-perfect Galois connection f ` g
is given in figure 5.6.20

19 In these case both orders will form a so-called lattice structure.
20 Adapted from [5].
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Let us take for instance Galois connection (5.138) as example. Fol-
lowing the general rules above, we get for free: the monotonicity of
( − R),

X ⊆ Z ⇒ X− R ⊆ Z− R

the monotonicity of ( ∪ R),

X ⊆ Z ⇒ X ∪ R ⊆ Z∪ R

the distribution of ( − R) over join,

(X ∪ Y)− R = (X− R) ∪ (Y− R)

the distribution of ( ∪ R) over meet,

(X ∩ Y) ∪ R = (X ∪ R) ∩ (Y ∪ R)

the preservation of infima by ( − R),

⊥− R = ⊥

the preservation of suprema by ( ∪ R),

>∪ R = >

lower-cancellation (Y := X− R),

X ⊆ (X− R) ∪ R

upper-cancellation (X := Y ∪ R),

(Y ∪ R− R) ⊆ Y

and finally the semi-inverse properties:

X− ((X− R) ∪ R) = X− R

((X ∪ R)− R) ∪ R = X ∪ R

The reader is invited to extract similar properties from the other con-
nections listed in table 3. Altogether, we get 50 properties out of this
table! Such is the power of generic concepts in mathematics.

Two such connections were deliberately left out from table 3, which
play a central role in relation algebra and will deserve a section of their
own — section 5.19.

Exercise 5.41. Show that R− S ⊆ R, R−⊥ = R and R− R = ⊥ hold.
2

Exercise 5.42. Infer

b(R⇒ S)a ≡ (b R a)⇒ (b S a) (5.147)
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from the Galois connection

R ∩ X ⊆ Y ≡ X ⊆ (R⇒Y) (5.148)

Suggestion: note that b (R ⇒ S) a can be written id ⊆ b◦ · (R⇒ S) · a (check
this!). Then proceed with (5.148) and simplify.
2

Exercise 5.43. (Lexicographic orders) The lexicographic chaining of two relations
R and S is defined by:

R ; S = R ∩ (R◦⇒ S) (5.149)

Show that (5.149) is the same as stating the universal property:

X ⊆ (R; S) ≡ X ⊆ R ∧ X ∩ R◦ ⊆ S
2

Exercise 5.44. Let students in a course have two numeric marks,

N0 Studentmark1oo mark2 // N0

and define the preorders:

6mark1 = mark1◦ ·6 ·mark1

6mark2 = mark2◦ ·6 ·mark2

Spell out in pointwise notation the meaning of lexicographic ordering

6mark1 ;6mark2

2

N E G AT I O N We define ¬R = R ⇒ ⊥ since b (¬R) a ⇔ ¬ (b R a).
Clearly, ¬> = ⊥. It can also be shown that

R∪ ¬R = > (5.150)

holds and therefore:

>− R ⊆ R⇒ ⊥ (5.151)

From the Galois connection of R ⇒ S and through the usual rule of
indirect equality, one immediately infers the so-called de Morgan law,

¬(R∪ S) = (¬R) ∩ (¬S) (5.152)

and other expected properties analogous to logic negation. One of
the most famous rules for handing negated relations is the so-called
Schröder’s rule:

¬Q · S◦ ⊆ ¬R ⇔ R◦ · ¬Q ⊆ ¬S (5.153)
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Exercise 5.45. Assuming

f ◦ · (R⇒ S) · g = ( f ◦ · R · g)⇒ ( f ◦ · S · g) (5.154)

and (5.151), prove:

c◦ · (>− c) = ⊥ (5.155)

2

5.19 R E L AT I O N D I V I S I O N

However intimidating it may sound, structuring a calculus in terms
of Galois connections turns out to be a great simplification, leading
to rules that make the reasoning closer to school algebra. Think for
instance the rule used at school to reason about whole division of two
natural numbers x and y,

z× y 6 x ≡ z 6 x÷ y (y > 0) (5.156)

assumed universally quantified in all its variables. Pragmatically, it ex-
presses a “shunting” rule which enables one to trade between a whole
division in the upper side of an inequality and a multiplication in the
lower side. This rule is easily identified as the Galois connection

z (×y)︸ ︷︷ ︸
f

6 x ⇔ z 6 x (÷y)︸ ︷︷ ︸
g

.

where multiplication is the lower adjoint and division is the upper
adjoint: (×y) ` (÷y), for y 6= 0.21

As seen in the previous section, many properties of (×) and (÷) can
be inferred from (5.156), for instance the cancellation (x÷ y)× y 6 x
— just replace z by x÷ y and simplify, and so on.

A parallel with relation algebra could be made by trying a rule sim-
ilar to (5.156),

Z ·Y ⊆ X ≡ Z ⊆ X/Y (5.157)

which suggests that, like integer multiplication, relational composi-
tion has an upper adjoint, denoted X / Y. The question is: does such
a relation division operator actually exist? Proceeding with the parallel,
note that, in the same way

z× y 6 x ≡ z 6 x÷ y

means that x ÷ y is the largest number which multiplied by y approx-
imates x, (5.157) means that X/Y is the largest relation Z which, pre-
composed with Y, approximates X.

21 This connection is perfect on the lower side since (z× y)÷ y = z.
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Figure 5.7.: Picturing Galois connection (×2) ` (÷2) as in figure 5.5. f =
(×2) is the lower adjoint of g = (÷2). The area below g =
(÷2) is the same as the area above f = (×2). f = (×2) is not
surjective. g = (÷2) is not injective.

What is the pointwise meaning of X/Y? Let us first of all equip
(5.157) with a type diagram:

Z ·Y ⊆ X ≡ Z ⊆ X/Y A
X/Y

��
C B

Y

OO

X
oo

Then we calculate:22

c (X/Y) a

≡ { introduce points C 1
coo and A 1

aoo ; (5.17) }
x(c◦ · (X/Y) · a)x

≡ { ∀-one-point (A.5) }
x′ = x ⇒ x′(c◦ · (X/Y) · a)x

≡ { go pointfree (5.19) }
id ⊆ c◦ · (X/Y) · a

≡ { shunting rules }
c · a◦ ⊆ X/Y

≡ { universal property (5.157) }
c · a◦ ·Y ⊆ X

≡ { now shunt c back to the right }
a◦ ·Y ⊆ c◦ · X

≡ { back to points via (5.17) }
〈∀ b : a Y b : c X b〉

22 Following the strategy suggested in exercise 5.42.
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In summary:

c (X/Y) a ≡ 〈∀ b : a Y b : c X b〉 a@
X/Y

��
c b

_
Y

OO

�
X
oo

(5.158)

In words: in the same way relation composition hides an existential
quantifier (5.11), relation division (5.158) hides a universal one. Let us
feel what (5.158) means through an example: let

a Y b = passenger a choses flight b
c X b = company c operates flight b

Then (5.158) yields : whenever a choses a flight b it turns out that b is
operated by company c. So:

c (X/Y) a = company c is the only one trusted by passenger
a, that is, a only flies c.

Therefore, (5.157) captures, in a rather eloquent way, the duality be-
tween universal and existential quantification. It is no wonder, then,
that the relational equivalent to (x÷ y)× y 6 x above is

(X/S) · S ⊆ X

This cancellation rule, very often used in practice, unfolds to

〈∀ b : a S b : c X b〉 ∧ a S b′ ⇒ c X b′

i.e. to the well-known device in logic known as modus ponens: ((S →
X) ∧ S)→ X.

There is one important difference between (5.156) and (5.157): while
multiplication in (5.156) is commutative, and thus writing z × y or
y× z is the same, writing Z · Y or Y · Z makes a lot of difference be-
cause composition is not commutative in general. The dual division
operator is obtained by taking converses over (5.157):

Y · Z ⊆ X

≡ { converses }
Z◦ · Y◦ ⊆ X◦

≡ { division (5.157) }
Z◦ ⊆ X◦ / Y◦

≡ { converses }
Z ⊆ (X◦ / Y◦)◦︸ ︷︷ ︸

Y\X

In summary:

X · Z ⊆ Y ⇔ Z ⊆ X \ Y (5.159)
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Once variables are added to Y \X we get:

a(X \Y)c ≡ 〈∀ b : b X a : b Y c〉 (5.160)

Thus we are ready to add two more rows to table 3:

( f X) ⊆ Y ≡ X ⊆ (g Y)

Description f g Obs.

Left-division (R·) (R \ ) read “R under . . . ”

Right-division (·R) ( / R) read “. . . over R”

As example of left division consider the relation a ∈ x between a set
x and each of its elements a:

A PA∈oo (5.161)

Then inspect the meaning of relation PA PA
∈\∈oo using (5.160):

x1 (∈ \ ∈) x2 ⇔ 〈∀ a : a ∈ x1 : a ∈ x2〉

We conclude that quotient PA PA
∈\∈oo expresses the inclusion rela-

tion among sets.
Relation division gives rise to a number of combinators in relation

algebra that are very useful in problem specification. We review some
of these below.

Exercise 5.46. Prove the equalities

X · f = X/ f ◦ (5.162)

f \X = f ◦ ·X (5.163)

X/⊥ = > (5.164)

X/id = X (5.165)

R \ (f ◦ · S) = f · R \ S (5.166)

R \ > · S = ! ·R \ ! ·S (5.167)

R / (S∪ P) = R / S∩ R / P (5.168)

2

S Y M M E T R I C D I V I S I O N Given two arbitrary relations R and S typed
as in the diagram below, define the symmetric division S

R of S by R by:

b
S
R

c ≡ 〈∀ a :: a R b ⇔ a S c〉 B

R $$

C

Szz

S
Roo

A

(5.169)
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That is, b S
R c means that b and c are related to exactly the same outputs

(in A) by R and by S. Another way of writing (5.169) is b S
R c ≡ {a |

a R b} = {a | a S c} which is the same as

b
S
R

c ≡ ΛR b = ΛS c (5.170)

where Λ is the power transpose operator23 which maps a relation Q :
Y← X to the set valued function ΛQ : X→ P Y such that ΛQ x = {y |
y Q x}. Another way to define S

R is

S
R

= R \ S∩ R◦ / S◦ (5.171)

which factors symmetric division into the two asymmetric divisions
R \ S (5.159) and R / S (5.157) already studied above. Moreover, for
R, S := f , g, definition (5.171) instantiates to f

g as defined by (5.49). By
(5.159, 5.157), (5.171) is equivalent to the universal property:

X ⊆ S
R
≡ R ·X ⊆ S ∧ S ·X◦ ⊆ R (5.172)

From the definitions above a number of standard properties arise:
(

S
R

)◦
=

R
S

(5.173)

S
R
· Q

S
⊆ Q

R
(5.174)

f ◦ · S
R
· g =

S · g
R · f (5.175)

id ⊆ R
R

(5.176)

Thus R
R is always an equivalence relation, for any given R. Furthermore,

R =
R
R
≡ R is an equivalence relation (5.177)

holds.Also note that, even in the case of functions, (5.174) remains an
inclusion,

f
g
· h

f
⊆ h

g
(5.178)

since:

f
g
· h

f
⊆ h

g

⇐ { factor id
g out }

f · h
f
⊆ h

⇐ { factor h out }

23 See section 5.24 for more details about this operator.
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f · id
f
⊆ id

≡ { shunting rule (5.47) }
f ⊆ f

≡ { trivial }
true

2

From (5.178) it follows that f
f is always transitive. By (5.173) it is sym-

metric and by (5.30) it is reflexive. Thus f
f is an equivalence relation.

R E L AT I O N S H R I N K I N G Given relations R : A← B and S : A← A,
define R � S : A← B, pronounced “R shrunk by S”, by

X ⊆ R � S ≡ X ⊆ R ∧ X · R◦ ⊆ S (5.179)

cf. diagram:

B

R
��

R�S

��
A A

S
oo

This states that R � S is the largest part of R such that, if it yields an
output for an input x, it must be a maximum, with respect to S, among
all possible outputs of x by R. By indirect equality, (5.179) is equivalent
to the closed definition:

R � S = R ∩ S/R◦ (5.180)

(5.179) can be regarded as a Galois connection between the set of all
subrelations of R and the set of optimization criteria (S) on its outputs.

Combinator R � S also makes sense when R and S are finite, rela-
tional data structures (eg. tables in a database). Consider, for instance,
the following example of R � S in a data-processing context: given




Examiner Mark Student
Smith 10 John
Smith 11 Mary
Smith 15 Arthur
Wood 12 John
Wood 11 Mary
Wood 15 Arthur




and wishing to “choose the best mark” for each student, project over
Mark, Student and optimize over the > ordering on Mark:




Mark Student
10 John
11 Mary
12 John
15 Arthur



� > =




Mark Student
11 Mary
12 John
15 Arthur
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Relational shrinking can be used in many other contexts. Consider,

for instance, a sensor recording temperatures (T), T N0
Soo , where

data in N0 are “time stamps”. Suppose one wishes to filter out re-
peated temperatures, keeping the first occurrences only. This can be
specified by

T N0
nub Soo = (S◦ � 6)◦

a function that removes all duplicates while keeping the first instances.
Among the properties of shrinking [47] we single out the two fusion

rules:

(S · f ) �R = (S �R) · f (5.181)

( f · S) � R = f · (S � ( f ◦ · R · f )) (5.182)

Some more basic properties are: “chaotic optimization”,

R �> = R (5.183)

“impossible optimization”

R �⊥ = ⊥ (5.184)

and “brute force” determinization:

R � id = largest deterministic fragment of R (5.185)

R � id is the extreme case of the fact which follows:

R � S is simple ⇐ S is anti-symmetric (5.186)

Thus anti-symmetric criteria always lead to determinism, possibly at
the sacrifice of totality. Also, for R simple:

R � S = R ≡ img R ⊆ S (5.187)

Thus (functions):

f � S = f ⇐ S is reflexive (5.188)

The distribution of shrinking by join,

(R ∪ S) �Q = (R �Q) ∩Q/S◦ ∪ (S �Q) ∩Q/R◦ (5.189)

has a number of corollaries, namely a conditional rule,

(p→ R , T) � S = p→ (R � S) , (p � S) (5.190)

the distribution over alternatives (5.114),

[R , S] �U = [R �U , S �U] (5.191)

and the “function competition” rule:

( f ∪ g) � S = ( f ∩ S · g) ∪ (g ∩ S · f ) (5.192)
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(Recall that S/g◦ = S · g.)
Putting universal properties (5.172,5.179) together we get, by indi-

rect equality,

R
g
= g◦ · (R � id) (5.193)

f
R

= (R � id)◦ · f (5.194)

capturing a relationship between shrinking and symmetric division:
knowing that R � id is the deterministic fragment of R, we see how the
vagueness of arbitrary R replacing either f or g in f

g is forced to shrink.

Exercise 5.47. Use shrinking and other relational combinators to calculate, from a
relation of type (5.127), the relation of type Student× Course → Result that tells
the final results of all exams. (NB: assume Time = N0 ordered by (6).)
2

R E L AT I O N O V E R R I D I N G Another operator enabled by relation di-
vision is the relational overriding combinator,

R † S = S ∪ R ∩⊥/S◦ (5.195)

which yields the relation which contains the whole of S and that part
of R where S is undefined — read R † S as “R overridden by S”.

It is easy to show that ⊥ † S = S, R †⊥ = R and R † R = R hold.
From (5.195) we derive, by indirect equality, the universal property:

X ⊆ R † S ≡ X− S ⊆ R∧ (X− S) · S◦ = ⊥ (5.196)

The following property establishes a relationship between overriding
and the McCarthy conditional.

p→ g , f = f † (g ·Φp) (5.197)

Notation Φp is explained in the next section.

Exercise 5.48. Show that

R † f = f

holds, arising from (5.196,5.138) — where f is a function, of course.
2
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5.20 P R E D I C AT E S A L S O B E C O M E R E L AT I O N S

Recall from (5.49) the notation f
g = g◦ · f and define, given a predicate

p : A→ B, the relation Φp : A→ A such as:24

Φp = id ∩ true
p

(5.198)

By (5.49), Φp is the coreflexive relation which represents predicate p as
a binary relation,

y Φp x ⇔ y = x ∧ p x (5.199)

as can be easily checked. From (5.198) one gets the limit situations:25

Φtrue = id (5.200)

Φfalse = ⊥ (5.201)

Moreover,

Φp∧q = Φp ∩Φq (5.202)

Φp∨q = Φp ∪Φq (5.203)

Φ¬p = id−Φp (5.204)

follow immediately from (5.199) and from (5.39) one infers true
p · R ⊆

true
p for any R. In particular, true

p · > = true
p since true

p ⊆ true
p · > always

holds. Then, by distributive property (5.62):

Φp · > =
true

p
(5.205)

Moreover, the following two properties hold:

R ·Φp = R ∩> ·Φp (5.206)

Φq · R = R ∩Φq · > (5.207)

We check (5.207):26

Φq · R
= { (5.109) ; (5.198) }

id O true
id O p

· R

= { (5.104) }
(id O p)◦ · (R O true)

= { (5.108) }

24 Recall that true is the constant function yielding True for every argument (5.40).
25 Φfalse = ⊥ arises from (5.54) since True 6= False.
26 The other is obtained from (5.207) by taking converses.
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R∩ true
p

= { (5.205) }
R∩Φp · >

2

Note the meaning of (5.206) and (5.207):

b (R ·Φp) a ⇔ b R a ∧ (p a)

b (Φq · R) a ⇔ b R a ∧ (q b)

So (5.206) — resp. (5.207) — restricts R to inputs satisfying p — resp.
outputs satisfying q.

Below we show how to use relation restriction and overriding in
specifying the operation that, in the Alcuin puzzle — recall (5.74)

Being Eats // Being

where
��

Bank cross // Bank
— specifies the move of Beings to the other bank:

carry who where = where † (cross · where ·Φ∈ who)

By (5.197) this simplifies to a McCarthy conditional:

carry who where = (∈ who)→ cross · where , where (5.208)

In pointwise notation, carry is the function:

carry who where b =

if b ∈ who
then cross m else m

where m = where b

Note the type carry : PBeing→ BankBeing → BankBeing.
A notable property of coreflexive relations is that their composition

coincides with their meet:

Φq ·Φp = Φq ∩Φp (5.209)

In consequence, composing a coreflexive with itself yields that very
same coreflexive: Φp ·Φp = Φp. (5.209) follows from (5.206,5.207):

Φq ·Φp

= { R = R∩ R }
Φq ·Φp ∩Φq ·Φp

= { (5.206,5.207) }
Φq ∩> ·Φp ∩Φp ∩Φp · >

= { since Φp ⊆ > ·Φp and Φq ⊆ Φq · > }
Φq ∩Φp

2



5.21 G U A R D S , C O R E F L E X I V E S A N D T H E M C C A R T H Y C O N D I T I O N A L 218

E Q U A L I Z E R S The definition of Φp (5.187) can be regarded as a par-

ticular case of an equalizer: given two functions B A
f ,goo , the equal-

izer of f and g is the relation eq (f , g) = id ∩ f
g . By indirect equality,

X ⊆ eq (f , g) ⇔ X ⊆ id ∧ g ·X ⊆ f

That is, eq (f , g) is the largest coreflexive X that restricts g so that f and
g yield the same outputs.

Clearly, eq (f , f ) = id. Note that an equalizer can be empty, cf. e.g.
eq (true, false) = ⊥.

Exercise 5.49. Based on (5.71) show that

g◦ ·Φp · f =
f
g
∩ true

p · g (5.210)

holds.27

2

5.21 G U A R D S , C O R E F L E X I V E S A N D T H E M C C A R T H Y C O N D I -
T I O N A L

From the definition of a McCarthy conditional (2.70) we obtain p? =

p→ i1 , i2 and then p? = i2 † i1 ·Φp by (5.197). A third way to express
the guard p? is

p? = i1 ·Φp ∪ i2 ∩ (⊥ / (i1 ·Φp)
◦) (5.211)

by (5.195), which simplifies to:

p? = [Φp , Φ¬ p]
◦ (5.212)

To prove (5.212) note that ⊥ / (i1 · Φp)◦ = ⊥ / Φp, immediate by the
laws of S / R and shunting. Then, ⊥ / Φp = > ·Φ¬ p. Here one only
needs to check:

⊥ / Φp ⊆ > ·Φ¬ p

≡ { ¬·p
true = p

false }

⊥ / Φp ⊆
p

false

≡ { going pointwise }
〈∀ y, x : y (⊥ / Φp) x : p x = False〉

≡ { (5.159) ; (5.199) }
〈∀ y, x : p x⇒ False : p x = False〉

≡ { trivial }
true

2

27 Both sides of the equality mean g b = f a ∧ p (g b).
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Finally, back to (5.211):

p? = i1 ·Φp ∪ i2 ∩> ·Φ¬ p

≡ { (5.206) ; converses }
(p?)◦ = Φp · i◦1 ∪Φ¬ p · i◦2

≡ { (5.121) }
p? = [Φp , Φ¬ p]

◦

2

Exercise 5.50. From (5.211) infer

p→ R , S = R∩ p
true
∪ S∩ p

false
(5.213)

and therefore p → R , S ⊆ R ∪ S. Furthermore, derive (2.78) from (5.213) know-
ing that true∪ false = >.
2

D O M A I N A N D R A N G E Suppose one computes ker 〈R, id〉 instead
of ker R. Since ker 〈R, id〉 = ker R ∩ id (5.111), coreflexive relation is
obtained. This is called the domain of R, written:

δ R = ker 〈R, id〉 (5.214)

Since28

> · R∩ id = R◦ · R∩ id (5.215)

domain can be also defined by

δ R = > · R∩ id (5.216)

Dually, one can define the range of R as the domain of its converse:

ρ R = δ R◦ = img R∩ id (5.217)

For functions, range and image coincide, since img f ⊆ id for any f .
For injective relations, domain and kernel coincide, since ker R ⊆ id
in such situations. These two operators can be shown to be character-
ized by two Galois connections, as follows:

( f X) ⊆ Y ≡ X ⊆ (g Y)

Description f g Obs.

domain δ (>·) left ⊆ restricted to coreflexives

range ρ (·>) left ⊆ restricted to coreflexives

28 (5.215) follows from id ∩> · R ⊆ R◦ · R which can be easily checked pointwise.
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Let us show that indeed

δ X ⊆ Y ≡ X ⊆ > · Y (5.218)

ρ R ⊆ Y ≡ R ⊆ Y · > (5.219)

hold, where variable Y ranges over coreflexive relations only. We only
derive (5.218), from which (5.219) is obtained taking converses. We
rely on the definition just given and on previously defined connec-
tions:

δ X ⊆ Y

≡ { (5.216) }
> ·X ∩ id ⊆ Y

≡ { two Galois connections }
X ⊆ > \ (id⇒ Y)

≡ { > \ (id⇒ Y) = > · Y, see below }
X ⊆ > · Y

2

To justify the hint above, first note that > · Y ⊆ id ⇒ Y, for Y core-
flexive — recall (5.198) and (5.205). Then:

> \ (id⇒ Y) ⊆ > · Y
⇐ { monotonicity ; rule “raise-the-lower-side” }
> \ (> · Y) ⊆ > · Y

≡ { (5.167) ; f · f ◦ · f = f for f := ! (twice) }
! \ ! ·Y ⊆ > · Y

≡ { f \ R = f ◦ · R ; > = ker ! }
> · Y ⊆ > · Y

2

Note the left-cancellation rule of the δ connection:

R ⊆ > · δ R (5.220)

From this the following domain/range elimination rules follow:

> · δ R = > · R (5.221)

ρ R · > = R · > (5.222)

δ R ⊆ δ S ≡ R ⊆ > · S (5.223)

Proof of (5.221):

> · δ R = > · R
≡ { circular inclusion }



5.21 G U A R D S , C O R E F L E X I V E S A N D T H E M C C A R T H Y C O N D I T I O N A L 221

> · δ R ⊆ > · R ∧ > · R ⊆ > · δ R

≡ { (5.97) twice }
δ R ⊆ > · R ∧ R ⊆ > · δ R

≡ { cancelation (5.220) }
δ R ⊆ > · R

≡ { δ R = > · R∩ id (5.216) }
true

2

Rule (5.222) follows by dualization (converses) and (5.223) follows
from (5.218) and (5.221). More facts about domain and range:

δ (R · S) = δ (δ R · S) (5.224)

ρ (R · S) = ρ (R · ρ S) (5.225)

R = R · δ R (5.226)

R = ρ R · R (5.227)

Last but not least: given predicate q and function f ,

Φ(q·f ) = δ (Φq · f ) (5.228)

holds. Proof:

Φ(q·f )

= { (5.198) }

id ∩ true
q · f

= { since f
f is reflexive (5.30) }

id ∩ f
f
∩ true · f

q · f
= { (5.109) ; products }

id ∩ (id O true) · f
(id O q) · f

= { (5.49) ; (5.109) }

id ∩ f ◦ · (id ∩ true
q

) · f

= { (5.198) }
id ∩ f ◦ ·Φq · f

= { δ R = id ∩ R◦ · R }
δ (Φq · f )

2
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Exercise 5.51. Recalling (5.206), (5.207) and other properties of relation algebra,
show that: (a) (5.218) and (5.219) can be re-written with R replacing >; (b) Φ ⊆
Ψ ≡ ! ·Φ ⊆ ! ·Ψ holds.29

2

5.22 D I F U N C T I O N A L I T Y

A relation R is said to be difunctional or regular wherever R ·R◦ ·R = R
holds, which amounts to R · R◦ · R ⊆ R since the converse inclusion
always holds.

The class of difunctional relations is vast. > and ⊥ are difunctional,
and so are all coreflexive relations, as is easy to check. It also includes
all simple relations, since R · R◦ = img R ⊆ id wherever R is simple.
Moreover, divisions of functions are difunctional because every sym-
metric division is so, as is easy to check by application of laws (5.174)
and (5.173):

f
g
·
(

f
g

)◦
· f

g
⊆ f

g

⇐ { (5.51) ; (5.178) }
f
g
· f

f
⊆ f

g

⇐ { (5.178) }
f
g
⊆ f

g
2

For g = id above we get that any function f being difunctional can be
expressed by f · f

f = f .
Recall that an equivalence relation can always be represented by the

kernel of some function, typically by R = ΛR
ΛR . So equivalence relations

are difunctional. The following rule is of pratical relevance:

A difunctional relation that is reflexive and symmetric neces-
sarily is transitive, and therefore an equivalence relation.

Proof (of transitivity):

R · R ⊆ R

≡ { R is difunctional }
R · R ⊆ R · R◦ · R

≡ { R is symmetric }
R · R ⊆ R · R · R

29 Thus coreflexives can be represented by vectors and vice-versa.
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⇐ { monotonicity }
id ⊆ R

2

Difunctional relations are also called regular, rational or uniform. First,
some intuition about what “regularity” means: a regular (difunctional)
relation is such that, wherever two inputs have a common image, then
they have exactly the same set of images. In other words, the image sets
of two different inputs are either disjoint or the same. As a counterex-
ample, take the following relation, represented as a matrix with inputs
taken from set {a1, . . , a5} and outputs delivered into set {b1, . . , b5}:

R a1 a2 a3 a4 a5

b1 0 0 1 0 1
b2 0 0 0 0 0
b3 0 1 0 0 0
b4 0 1 0 1 0
b5 0 0 0 1 0

(5.229)

Concerning inputs a3 and a5, regularity holds; but sets {b3, b4} and
{b4, b5}— the images of a2 and a4, respectively — are neither disjoint
nor the same: so R isn’t regular. It would become so if e.g. b4 were
dropped from both image sets or one of b3 or b5 were replaced for the
other in the corresponding image set.

5.23 O T H E R O R D E R I N G S O N R E L AT I O N S

T H E I N J E C T I V I T Y P R E O R D E R The kernel relation ker R = R◦ · R
measures the level of injectivity of R according to the preorder

R 6 S ≡ ker S ⊆ ker R (5.230)

telling that R is less injective or more defined (entire) than S. For instance:

6

This ordering is surprisingly useful in formal specification because of
its properties. For instance, it is upper-bounded by relation pairing,
recall (5.103):

〈R, S〉 6 X ≡ R 6 X ∧ S 6 X (5.231)

Cancellation of (5.231) means that pairing always increases injectivity:

R 6 〈R, S〉 and S 6 〈R, S〉. (5.232)
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(5.232) unfolds to ker 〈R, S〉 ⊆ (ker R) ∩ (ker S), confirming (5.111).
The following injectivity shunting law arises as a Galois connection:

R · g 6 S ≡ R 6 S · g◦ (5.233)

Restricted to functions, (6) is universally bounded by

! 6 f 6 id

where (recall) 1 A!oo is the unique function of its type, where 1 is
the singleton type. Moreover,

• A function is injective iff id 6 f . Thus 〈f , id〉 is always injective
(5.232).

• Two functions f e g are said to be complementary wherever id 6
〈f , g〉.

• Any relation R can be factored into the composition f · g◦ of two
complementary functions f and g.30

For instance, the projections π1 (a, b = a) , π2 (a, b = b) are comple-
mentary since 〈π1, π2〉 = id (2.32).

As illustration of the use of this ordering in formal specification, sup-
pose one writes

room 6 〈lect, slot〉
in the context of the data model

Teacher Classlectoo room //

slot
��

Room

TD

where TD abbreviates time and date. What are we telling about this
model by writing room 6 〈lect, slot〉? We unfold this constraint in the
expected way:

room 6 〈lect, slot〉
≡ { (5.230) }

ker 〈lect, slot〉 ⊆ ker room

≡ { (5.111) ; (5.53) }
lect
lect
∩ slot

slot
⊆ room

room
≡ { going pointwise, for all c1, c2 ∈ Class }

(lect c1 = lect c2 ∧ slot c1 = slot c2)⇒ (room c1 = room c2)

This room 6 〈lect, slot〉 constrains the model in the sense of imposing
that a given lecturer cannot be in two different rooms at the same time.

30 This remarkable factorization is known as a tabulation of R [12].
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c1 and c2 are classes shared by different courses, possibly of different
degrees. In the standard terminology of database theory this is called
a functional dependency, see exercises 5.54 and 5.55 in the sequel.

Interestingly, the injectivity preorder not only has least upper bounds
but also greatest lower bounds,

〈R, S〉 “least upper bound”

R S

[R◦ , S◦]◦ “greatest lower bound”

that is,

X 6 [R◦ , S◦]◦ ⇔ X 6 R ∧ X 6 S (5.234)

as the calculation shows:

X 6 [R◦ , S◦]◦

≡ { injectivity preorder ; ker R◦ = img R }
img [R◦ , S◦] ⊆ ker X

≡ { (5.124) }
R◦ · R∪ S◦ · S ⊆ ker X

≡ { kernel; · ∪ ·-universal }
ker R ⊆ ker X ∧ ker S ⊆ ker X

≡ { injectivity preorder (twice) }
X 6 R ∧ X 6 S

2

Note the meaning of the glb of R and S,

x [R◦ , S◦]◦ a ⇔ 〈∃ b : x = i1 b : b R a〉 ∨ 〈∃ c : x = i2 c : c R a〉
since [R◦ , S◦]◦ = i1 · R ∪ i2 · S. This is the most injective relation that
is less injective than R and S because it just “collates” the outputs of
both relations without confusing them.31

Exercise 5.52. Show that R◦ · S = ⊥ is necessary for the coproduct of two injective
relations R and S to be injective:

id 6 [R , S] ⇔ id 6 R ∧ id 6 S ∧ R◦ · S = ⊥ (5.235)

31 It turns out that universal property X = [R◦ , S◦]◦ ⇔ i◦1 · X = R ∧ i◦2 · X = S holds,
as is easy to derive from (5.114). So [R◦ , S◦]◦ is the categorial product for relations:

A→ (B + C)
,,

∼= (A→ B)× (A→ C)kk

That is, among relations, the product is obtained as the converse dual of the coprod-
uct. This is called a biproduct [38].
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2

Exercise 5.53. The Peano algebra N0 1 + N0
inoo = [0, succ] is an isomor-

phism32, and therefore injective. Check what (5.235) means in this case.
2

Exercise 5.54. An SQL-like relational operator is projection,

πg, f R def
= g · R · f ◦ B

g
��

ARoo

f
��

C D
πg, f R
oo

(5.236)

whose set-theoretic meaning is33

πg, f R = {(g b, f a) | b ∈ B ∧ a ∈ A ∧ b R a} (5.237)

Functions f and g are often referred to as attributes of R. Derive (5.237) from
(5.236).
2

Exercise 5.55. A relation R is said to satisfy functional dependency (FD) g→ f ,

written g R // // f wherever projection π f ,gR (5.236) is simple.

1. Recalling (5.230), prove the equivalence:

g R // // f ≡ f 6 g · R◦ (5.238)

2. Show that g R // // f trivially holds wherever g is injective and R is simple,
for all (suitably typed) f .

3. Prove the composition rule of FDs:

h gS·Roooo ⇐ h fSoooo ∧ f gRoooo (5.239)

2

32 Recall section 3.1.
33 Note that any relation R : B ← A defines the set of pairs {(b, a) | b R a}. Predicate

b R a describes R intensionally. The set {(b, a) | b R a} is the extension of R.
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Exercise 5.56. Let R and S be the two relations depicted as follows:

C WRoo S // N0

"Armstrong" � //(
ss

9

’A’ "Albert" � //�oo 6

’M’ "Minho" � //�oo 5

’B’ "Braga"
(

33

�oo

Check the assertions:

1. R 6 S

2. S 6 R

3. Both hold

4. None holds.

2

Exercise 5.57. As follow up to exercise 5.9,

• specify the relation R between students and teachers such that t R s means: t
is the mentor of s and also teaches one of her/his courses.

• Specify the property: mentors of students necessarily are among their
teachers.

2

T H E D E F I N I T I O N P R E O R D E R The injectivity preorder works per-
fectly for functions, which are entire relations. For non-entire R it be-
haves in a mixed way, measuring not only injectivity but also defini-
tion (entireness). It is useful to order relations with respect to how
defined they are:

R � S ≡ δ R ⊆ δ S (5.240)

From> = ker ! one draws another version of (5.240), R � S ≡ ! · R ⊆
! · S. The following Galois connections

R ∪ S � T ≡ R � T ∧ S � T (5.241)

R · f ◦ � S ≡ R � S · f (5.242)

are easy to prove. Recalling (5.223), (5.240) can also be written

δ R ⊆ δ S ≡ R ⊆ > · S (5.243)



5.23 O T H E R O R D E R I N G S O N R E L AT I O N S 228

T H E R E F I N E M E N T O R D E R Standard programming theory relies
on a notion of program refinement. As a rule, the starting point in
any software design is a so-called specification, which indicates the ex-
pected behaviour of the program to be developed with no indication
of how outputs are computed from the inputs. So, “vagueness” is a
chief ingredient of a good specification, giving freedom to the pro-
grammer to choose a particular algorithmic solution.

Relation algebra captures this by ordering relations with respect to
the degree in which they are closer to implementations:

S ` R ≡ δ S ⊆ δ R ∧ R · δ S ⊆ S (5.244)

cf.

A

R ��

Aδ Soo

S��
B

S ` R is read: “S is refined by R”. In the limit situation, R is a function
f , and then

S ` f ⇔ δ S ⊆ f ◦ · S (5.245)

by shunting (5.46). This is a limit in the sense that f can be neither
more defined nor more deterministic.

As maxima of the refinement ordering, functions are regarded as im-
plementations “par excellence”. Note how (5.245) captures implicit spec-
ification S being refined by some function f — recall section 5.3. Back
to points and thanks to (5.17) we obtain, in classical “VDM-speak”:

∀a. pre-S(a)⇒ post-S( f a, a)

In case S is entire, (5.245) simplifies to S ` f ⇔ f ⊆ S. As example
of this particular case we go back to section 5.3 and prove that abs,
explicitly defined by abs i = if i < 0 then− i else i, meets the implicit
specification given there, here encoded by S = true

geq0 ∩ (id ∪ sym) where
geq0 x = x > 0 and sym x = −x. The explicit version below uses a
McCarthy conditional, for lt0 x = x< 0. By exercise 5.50 term id∪ sym
in S can be ignored:

lt0→ sym , id ⊆ true
geq0

≡ { shunting (5.46) }
geq0 · (lt0→ sym , id) ⊆ true

≡ { fusion (2.71) }
lt0→ geq0 · sym , geq0 ⊆ true

≡ { −x > 0 ⇔ x 6 0 = leq0 x }
lt0→ leq0 , geq0 ⊆ true
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≡ { x < 0⇒ x 6 0 and ¬ (x < 0) ⇔ x > 0 }
lt0→ true , true ⊆ true

≡ { p→ f , f = f (exercise 5.50) }
true

2

Finally note that an equivalent way of stating (5.244) without using
the domain operator is:

S ` R ≡ > · S∩> · R∩ (R∪ S) = R (5.246)

Exercise 5.58. Prove (5.246.
2

5.24 B A C K T O F U N C T I O N S

In this chapter we have argued that one needs relations in order to
reason about functions. The inverse perspective — that relations can
be represented as functions — also makes sense and it is, in many
places, the approach that is followed.

Indeed, relations can be transposed back to functions without losing
information. There are two transposes of interest. One is complete in
the sense that it allows us to see any relation as a function. The other
is specific, in the sense that it only applies to (the very important class
of) simple relations (vulg. partial functions).

P O W E R T R A N S P O S E Let A R // B be a relation and define the
function

ΛR : A→ P B
ΛR a = {b | b R a}

which is such that:

ΛR = f ≡ 〈∀ b, a :: b R a ⇔ b ∈ f a〉 (5.247)

That is:

f = ΛR ⇔ ∈ · f = R (5.248)

cf.

A→ P B

(∈·)
**∼= A→ B

Λ

jj
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In words: any relation can be faithfully represented by set-valued func-
tion.

Moving the variables of (5.170) outwards by use of (5.17), we obtain
the following power transpose cancellation rule:34

ΛS
ΛR

=
S
R

(5.249)

Read from right to left, this shows a way of converting arbitrary sym-
metric divisions into function divisions.

“ M AY B E ” T R A N S P O S E Let A S // B be a simple relation. Define
the function

ΓS : A→ B + 1

such that:

ΓS = f ⇔ 〈∀ b, a :: b S a ⇔ (i1 b) = f a〉

That is:

f = ΓS ⇔ S = i◦1 · f (5.250)

cf.

A→ B + 1

(i◦1 ·)
**∼= A→ B

Γ

jj

In words: simple relations can always be represented by “Maybe”,
or “pointer”-valued functions. Recall section 4.1, where the Maybe
monad was used to “totalize” partial functions. Isomorphism (5.250)
explains why such a totalization maske sense. For finite relations, and
assuming these represented extensionally as lists of pairs, the func-
tion lookup :: Eq a ⇒ a → [ (a, b) ] → Maybe b in Haskell implements
the “Maybe”-transpose.

5.25 B I B L I O G R A P H Y N O T E S

Chronologically, relational notation emerged — earlier than predicate
logic itself — in the work of Augustus De Morgan (1806-71) on binary
relations [40]. Later, Peirce (1839-1914) invented quantifier notation to
explain De Morgan’s algebra of relations (see eg. [40] for details). De
Morgan’s pioneering work was ill fated: the language35 invented to
explain his calculus of relations became eventually more popular than
the calculus itself. Alfred Tarski (1901-83), who had a life-long struggle
with quantified notation [16, 23], revived relation algebra. Together

34 This rule is nothing but another way of stating exercise 4.48 proposed in [12]. Note
that ΛR is always a function.

35 Meanwhile named FOL, first order logic.
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with Steve Givant he wrote a book (published posthumously) on set
theory without variables [67].

Meanwhile, category theory was born, stressing the role of arrows
and diagrams and on the arrow language of diagrams, which is inher-
ently pointfree. The category of sets and functions immediately pro-
vided a basis for pointfree functional reasoning, but this was by and
large ignored by John Backus (1924-2007) in his FP algebra of pro-
grams [7] which is APL-flavoured. (But there is far more in it than
such a flavour, of course!) Anyway, Backus’ landmark FP paper was
among the first to show how relevant such reasoning style is to com-
puting.

A bridge between the two pointfree schools, the relational and the
categorial, was eventually established by Freyd and Ščedrov [19] in
their proposal of the concept of an allegory. This gave birth to typed
relation algebra and relation diagrams like those adopted in the cur-
rent book for relational thinking. The pointfree algebra of programming
(AoP) as it is understood today, which has reached higher education
thanks to textbook [12] written by Bird and Moor, stems directly from
[19].

In his book on relational mathematics [66], Gunther Schmidt makes
extensive use of matrix displays, notation, concepts and operations in
relation algebra. Winter [71] generalizes relation algebra to so-called
Goguen categories.

In the early 1990s, the Groningen-Eindhoven MPC group led by
Backhouse [1, 5] contributed decisively to the AoP by structuring re-
lation algebra in terms of Galois connections. This elegant approach
has been very influential in the way (typed) relation algebra was faced
afterwards, for instance in the way relation shrinking was introduced
in the algebra [47, 59]. Most of the current chapter was inspired by [5].



A
B A C K G R O U N D — E I N D H O V E N Q U A N T I F I E R
C A L C U L U S

This appendix is a summary of section 4.3 of reference [5].

A.1 N O TAT I O N C O N V E N T I O N S

The Eindhoven quantifier calculus adopts the following notation:

• 〈∀ x : R : T〉means: “for all x in the range R, term T holds”, where
R and T are logical expressions involving x.

• 〈∃ x : R : T〉means: “for some x in the range R, term T holds”

A.2 R U L E S

The main rules of the Eindhoven quantifier calculus are listed below:

Trading:

〈∀ k : R ∧ S : T〉 = 〈∀ k : R : S⇒ T〉 (A.1)

〈∃ k : R ∧ S : T〉 = 〈∃ k : R : S ∧ T〉 (A.2)

de Morgan:

¬〈∀ k : R : T〉 = 〈∃ k : R : ¬T〉 (A.3)

¬〈∃ k : R : T〉 = 〈∀ k : R : ¬T〉 (A.4)

One-point:

〈∀ k : k = e : T〉 = T[k := e] (A.5)

〈∃ k : k = e : T〉 = T[k := e] (A.6)

Nesting:

〈∀ a, b : R ∧ S : T〉 = 〈∀ a : R : 〈∀ b : S : T〉〉 (A.7)

〈∃ a, b : R ∧ S : T〉 = 〈∃ a : R : 〈∃ b : S : T〉〉 (A.8)

Rearranging-∀:

〈∀ k : R ∨ S : T〉 = 〈∀ k : R : T〉 ∧ 〈∀ k : S : T〉 (A.9)

〈∀ k : R : T ∧ S〉 = 〈∀ k : R : T〉 ∧ 〈∀ k : R : S〉 (A.10)

273
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Rearranging-∃:

〈∃ k : R : T ∨ S〉 = 〈∃ k : R : T〉 ∨ 〈∃ k : R : S〉 (A.11)

〈∃ k : R ∨ S : T〉 = 〈∃ k : R : T〉 ∨ 〈∃ k : S : T〉 (A.12)

Splitting:

〈∀ j : R : 〈∀ k : S : T〉〉 = 〈∀ k : 〈∃ j : R : S〉 : T〉 (A.13)

〈∃ j : R : 〈∃ k : S : T〉〉 = 〈∃ k : 〈∃ j : R : S〉 : T〉 (A.14)


