
Assignment 2: Modelling communication within the Kobuki Robot
José Proença

Arquitectura e Cálculo – 2016/2017

To do: Develop Uppaal models and Reo connectors as requested, and
write a report using LaTeX. This report should include screenshots of the
requested time automata, diagrams (hand-made or with the Reo tools) with
the requested Reo connectors, and properties that you verify.
To submit: The report in PDF, and the developed Uppaal models (for
Ex. 2). Send by email a unique zip file “ac2-UPP-N.zip” (Ex. 1) and another
“ac2-Reo-N.zip” (Ex. 2) to jose@proenca.org, where N is your group number.
Demo: Explained in Exercise 3.
Deadline Exercise 1: 27 Apr 2017 @ 14h (Thursday)
Deadline Exercise 2: 31 May 2017 @ 23h59 (Wednesday)

Real-time modelling
Exercise 1. In this exercise you will model a part of the software running in the Kuboki robot (http:
//kobuki.yujinrobot.com/), focusing on time aspects, and using a simplified version of a recent
publication (http://jose.proenca.org/papers/ros-formalise17.pdf).

The overall architecture is depicted below. A sensor component detects obstacles, and sends a
stop message whenever that happens. Concurrently, a remote component sends movement messages to
control the robot. These two messages are forward by a multiplexer component to the motors, giving
higher priority to the sensor messages.

Sensor

Remote

Queue-1

Queue-2

Multiplexer Queue-3
Motor

1.1. Model this architecture using 7 timed automata, one for each component and queue, taking into
account the following restrictions.

• Both the sensor and the remote have a parameter Rate indicating the exact frequency at which
they produce messages.

• Each queue i has a parameter Sizei that describes the maximum size of the queue.

1

• Trying to enqueue a value on a full queue is allowed, resulting in an overflow (the data is lost).

• The multiplexer has a Lock integer parameter, and handles priority as follows.

– The sensor messages have higher priority remote messages.
– After any sensor message is received, the multiplexer will discard any remote message received

in the next Lock time units.
– Received messages that are not discarded are forward immediately to the motor component.

1.2. Suggest a small modification to your model with a timelock, and another modification with zeno
behaviour. Explain why these are undesirable models.

1.3. Express three properties using UPPAAL’s CTL, one for each of the following items.

• φ1 – the queue of the first publisher cannot overflow ;

• φ2 – the queue of the subscriber cannot overflow ;

• φ3 – every message sent by the 2nd publisher must be received within N time units.

1.4. Find, for each property, a combination of parameters RateSensor, RateRemote, Sizei, and Lock that
satisfies them. Similarly find, for each property, a combination of parameters that rejects them.

Coordination with Reo
Exercise 2. You will now model the same architectural scenario as above using Reo connectors, and
abstracting away from time. For that, assume that the sensor, the remote, and the motor are components
that are always ready to send or to receive data, and the rest will be encoded as a Reo connector.

2.1. Model the connector between the sensor, the remote, and the motor. For simplicity, assume the
queues have exactly size one (can store at most one value), and use the Lossy-fifo channel defined below
(depicted on the left and defined as an automata on the right). Draw the resulting connector.

Lossy-fifo
a b

e f

a

b a

2.2. Build a variation of this connector, replacing the Lossy-fifo () by the composed con-
nector , and using a sensor and remote component definitions that produce only 2 data
values each. Using this variation and with the help of the Eclipse plug-in, build the mCRL2 specification
of this connector and visualise the resulting LTS. Make sure you include in the LTS the actions regarding
data being send and received from/to the components. Show the mCRL2 specification and the LTS.

2.3. Write 2 desired properties in mCRL2 that hold in the connector modelled in mCRL2.

2.4. Try to understand why replacing the Lossy-fifo by the new composed connector can produce
undesired behaviour. Write 1 property (or more) that shows a desired property that captures this
undesired behaviour, i.e., which will not hold in the variation built in Exercise 2.2 but would make sense
to hold in the connector you proposed before in Exercise 2.1.

2

Demo
Exercise 3. Present your UPPAAL and Reo models, discuss your design choices, and show desired
properties that hold and properties that do not hold. If possible, show variations of your models and
explain advantages and disadvantages.

3

