
Assignment 1: Crossing the river – in mCRL2
José Proença

Arquitectura e Cálculo – 2016/2017

To do: Write a report using LaTeX including the answers to the exercises below.

To submit: The report in PDF by email.

Deadline: 23 March 2017 @ 14h (Thursday)

Modelling the wolf-sheep-cabbage problem
Exercise 1. Recall last semester’s specification of the wolf-sheep-cabbage problem using SMV.

%%%% SMV specification. %%%%

VAR
barqueiro : boolean;
lobo : boolean;
ovelha : boolean;
couve : boolean;

IVAR
thing : {n,l,o,c};

ASSIGN
init(barqueiro) := FALSE;
init(lobo) := FALSE;
init(ovelha) := FALSE;
init(couve) := FALSE;
next(barqueiro) := !barqueiro;
next(lobo) := thing = l & barqueiro = lobo ? !lobo : lobo;
next(ovelha) := thing = o & barqueiro = ovelha ? !ovelha : ovelha;
next(couve) := thing = c & barqueiro = couve ? !couve : couve;

DEFINE
bad := (lobo = ovelha & lobo != barqueiro) | (ovelha = couve & couve != barqueiro);

INVAR
!bad

TRANS
thing = l → lobo = barqueiro &
thing = o → ovelha = barqueiro &
thing = c → couve = barqueiro

We will encode the same problem using mCRL2’s process algebra. This algebra focus on actions
rather than state, making it less optimal for this particular problem. However, it will help clarifying the
key differences between a state-based approach and an action-based approach to model. We start with
a simplified (but incomplete) version barqueiro1.mcrl2 below.

1

%% file: barqueiro1.mcrl2

act
ld,le,od,oe,cd,ce, % acções pelos passageiros

bld,bod,bcd,barqd,ble,boe,bce,barqe, % acções pelo barqueiro

lobod,loboe,oveld,ovele,couvd,couve, % acções pelo sistema

winl,wino,winc,win; % acções para detectar vitória

proc
Lobo = ld.(le+winl).Lobo ;
Ovel = od.(oe+wino).Ovel ;
Couv = cd.(ce+winc).Couv ;
Barq = (bld+bod+bcd+barqd).(ble+boe+bce+barqe).Barq ;

init
allow(

{ lobod,loboe,oveld,ovele,couvd,couve,barqe,barqd,win },
comm(

{ ld|bld → lobod, le|ble → loboe,
od|bod → oveld, oe|boe → ovele,
cd|bcd → couvd, ce|bce → couve,
winl|wino|winc|barqe → win

},
Lobo || Ovel || Couv || Barq

));

The specification is split into three sections: act, a declaration of 24 actions, proc, the definition of
4 processes, and init, the initialisation of the system.

1.1. Produce the labelled transition system (LTS) of this mCRL2 specification using (1) mcrl22lps to
linearise the system and (2) lps2lts to produce the final LTS. Finally, visualise the resulting LTS with
ltsgraph and show a screenshot of the LTS (make sure it is understandable).

1.2. This specification is not complete yet, i.e., it does not fully model the original SMV specification.
Explain informally why this specification is not complete, by explaining what is being modelled and
what is still missing.

1.3. By omitting the restrictions allow and comm would you obtain more or less states than with the
original specification? Why?

Exercise 2. We now present a new specification for the same problem consisting of a single process
Estado that keeps the state information. This new specification includes more advanced features of
mCRL2, including: a data structure, actions with data parameters, processes have parameters, and user
defined functions inv and ok.

%% file: barqueiro2.mcrl2

sort
Posicao = struct esq | dir;

map
inv : Posicao → Posicao ;
ok : Posicao # Posicao # Posicao # Posicao → Bool ;

var
b,l,o,c: Posicao;

2

eqn
inv(esq) = dir ;
inv(dir) = esq ;
ok(b,l,o,c) = %% (1) %% ;

act
lobo,ovel,couv,barq : Posicao; % acções do sistema, parameterisadas na posição

win; % acção para detectar vitória

proc
Estado(b:Posicao,l:Posicao,o:Posicao,c:Posicao) = % (barqueiro,lobo,ovelha,couve)

((b==l && ok(inv(b),inv(l),o,c)) → lobo(inv(l)).Estado(inv(b),inv(l),o,c))
+ ((b==o && ok(inv(b),l,inv(o),c)) → ovel(inv(o)).Estado(inv(b),l,inv(o),c))
+ ((b==c && ok(inv(b),l,o,inv(c))) → couv(inv(c)).Estado(inv(b),l,o,inv(c)))
+ (ok(inv(b),l,o,c) → barq(inv(b)).Estado(inv(b),l,o,c))
+ ((b==dir && l==dir && o==dir && c==dir) → win.Estado(esq,esq,esq,esq));

init
Estado(esq,esq,esq,esq);

2.1. This new specification has a hole in the definition of ok, marked with %% (1) %%. Extend the given
mCRL2 definition by replacing this hole with the code that describes the desired state invariant and
save the resulting specification as barqueiro2.mcrl2. Show your new definition of the function ok.

2.2. Without modifying the process Estado, adapt the specification by adding a new process Contador(n:Nat)
that runs in parallel with Estado(esq,esq,esq,esq) and counts the number of traversals made by the
boat. Save the resulting specification as barqueiro3.mcrl2 and show your new specification. (hint:
it could be useful to use a bound for the Contador), i.e., do not allow n to be bigger than a certain
number.)

LTS Equivalence
Exercise 3. Recall the action-based barqueiro1.mcrl2 specification from Exercise 1 and the state-based
barqueiro2.mcrl2 specification from Exercise 2.

3.1. Modify the initial process (init) of both barqueiro1.mcrl2 and barqueiro2.mcrl2 to hide all allowed
actions except win (using hide), and save them as barqueiro1-tau.mcrl2 and barqueiro2-tau.mcrl2,
respectively. In barqueiro2-taus.mcrl2 redefine the function ok by setting it to true, i.e., define
ok(b,l,o,c)=true;. Show the resulting init block from each file.

3.2. Generate the .lts files corresponding to barqueiro1-tau.mcrl2 and barqueiro2-tau.mcrl2, and
compare them using strong bisimulation using the following command. What can you conclude?

$ ltscompare --equivalence=bisim barqueiro1-taus.lts barqueiro2-taus.lts

3.3. Using ltsconvert, minimise the LTS for barqueiro2-taus.mcrl2 with respect to branching bisimu-
lation, using the command below. Include a screenshot of the minimised LTS and describe what
can we conclude from this LTS.

$ ltsconvert --equivalence=branching-bisim barqueiro2-taus.lts

3

Verification of the wolf-sheep-cabbage problem
Exercise 4. Recall the LTSs from Exercise 1 and Exercise 2 (after completing Exercise 2.1. You will
now verify properties of these systems. In mCRL2, a property can be written in a text file prop.mcf, and
verified against a system system.mcrl2 using the following two commands.

$ mcrl22lps system.mcrl2 system.lps
$ lps2pbes system.lps -f prop.mcf system.pbes
$ pbes2bool system.pbes

4.1. What does the property “[true*]<ready>true” mean? Does it hold in any of these LTSs?

4.2. What does the property “[true*.lobo(dir).win]false” mean? Does it hold in barqueiro2.lts?

4.3. Recall that barqueiro1.lts is less complete than barqueiro2.lts, because it fails to include some
important invariants. Write a property that exemplifies an invariant that is fails in barqueiro1.lts but
succeeds in barqueiro2.lts. Verify it using the mCRL2 toolset.

4.4. Consider now the extended system barqueiro3.mcrl2 produced in Exercise 2.2. In this example
there is a an extra process called Contador(n:Nat). Using this extra process, define the following two
properties:

1. It is possible to win after exactly 7 moves.

2. It is not possible to win in less than 7 moves.

4

