
— Software Architecture —

Software Components as
Monadic Mealy machines (MMM)

J.N. Oliveira

MFES/Software Architecture Course 2016/17

INESC TEC & University of Minho

Motivation Background Monads Mealy machines Components Faulty components References

Motivation

Motivation Background Monads Mealy machines Components Faulty components References

Software architecture

CBS —
component-oriented
software design.

Analogy and inspiration
comes from hardware and
general engineering
practice.

Questions: What is a software component? How do we connect
components together? Can we calculate the behaviour of CBS
systems from that of their components?

Motivation Background Monads Mealy machines Components Faulty components References

Certification

Overall concern for safety and certification

Opportunities for Formal Methods in standard RTCA DO 178C
for certifying airborne software.

Warning:

(...) the use of formal methods to be ”at least as good
as” a conventional approach that does not use formal
methods. (Joyce, 2011)

See also: Software Considerations in Airborne Systems and
Equipment Certification by RTCA SC-205, EUROCAE WG-12 1

1RTCA = Radio Technical Commission for Aeronautics; EUROCAE =
European Organisation for Civil Aviation Equipment

Motivation Background Monads Mealy machines Components Faulty components References

Dependable software systems

Quoting Daniel Jackson (2009):

A dependable system is one (..) in which you can place
your reliance or trust. A rational person or organization
only does this with evidence that the system’s benefits
outweigh its risks.

In formula

dependable system = benefit + risk

one finds:

• benefit = qualitative

• risk = quantitative.

What about evidence?

Motivation Background Monads Mealy machines Components Faulty components References

Safety cases

MOD Defence Standard 00-56:

9.1 The Contractor shall produce a Safety Case for the
system [which] shall [provide] a compelling,
comprehensible and valid case that a system is safe for
a given application in a given environment.

DS 00-56 (contd.):

10.5.4 All assumptions, data, judgements and
calculations underpinning the Risk Estimation shall be
recorded in the Safety Case, such that the risk
estimates can be reviewed and reconstructed.

Risk estimation? Calculations? How, when and where is this
performed in a FM life-cycle?

Motivation Background Monads Mealy machines Components Faulty components References

P(robabilistic)R(isk)A(nalysis)

NASA/SP-2011-3421 (Stamatelatos and Dezfuli, 2011):

1.2.2 A PRA characterizes risk in terms of three basic
questions: (1) What can go wrong? (2) How likely is
it? and (3) What are the consequences?

The PRA process

answers these questions by systematically (...)
identifying, modeling, and quantifying scenarios that
can lead to undesired consequences

Moreover,

1.2.3 (...) The total probability from the set of
scenarios modeled may also be non-negligible even
though the probability of each scenario is small.

Motivation Background Monads Mealy machines Components Faulty components References

Need for probabilism

As program semantics are usually qualitative — e.g. relational —
how does one quantify risk?

PRA performed a posteriori — Hmmm... we’ve seen this mistake
before, eg. in program correctness.

Need for a change:

Programming should incorporate risk as the rule rather
than the exception (absence of risk = ideal case).

Need for combinators expressing risk of failure, eg. probabilistic
choice between expected behaviour and misbehaviour (McIver
and Morgan, 2005).

Motivation Background Monads Mealy machines Components Faulty components References

Need for probabilism

Think of things that can go wrong:

bad ∪ good

How likely? Try

bad p� good (1)

where

bad p� good = p × bad + (1− p)× good

for some probability p of bad behaviour, eg. the imperfect action

top (10−7)� pop

leaving a stack unchanged with 10−7 probability.

Motivation Background Monads Mealy machines Components Faulty components References

Probabilistic truth tables

Probabilistic negation id (0.01)� neg :

id (0.01)� neg

= 0.01×

 F
a

ls
e

T
ru

e

False 1 0
True 0 1

+ 0.99×

 F
a

ls
e

T
ru

e

False 0 1
True 1 0



=

 F
a

ls
e

T
ru

e
False 0.01 0
True 0 0.01

+

 F
a

ls
e

T
ru

e

False 0 0.99
True 0.99 0



= F
a

ls
e

T
ru

e

False 0.01 0.99
True 0.99 0.01

Motivation Background Monads Mealy machines Components Faulty components References

In this module

Our approach will be a coalgebraic semantics for software
components modeled as monadic Mealy machines (Oliveira and
Miraldo, 2016).

We shall be interested in reasoning about the risk of faults
propagating in component-based software (CBS) systems.

This is central to software certification and to safe software
architectures.

Traditional CBS risk analysis relies on semantically weak CBS
models, e.g. component call-graphs (Cortellessa and Grassi,
2007).

Motivation Background Monads Mealy machines Components Faulty components References

Module overview

Foundations:

• Functors, algebras and coalgebras

• Monads

• Interaction with relation algebra

• Kleisli composition

• (Components as) coalgebras

• Distributive laws

Applications:

• Simulation and animation in Haskell

Background:

• Items in boldface have been studied in previous courses.

Motivation Background Monads Mealy machines Components Faulty components References

Background

Motivation Background Monads Mealy machines Components Faulty components References

Power transpose

Let A
R // B be a relation. Define the function

ΛR : A→ P B
ΛR a = {b | b R a}

such that:

ΛR = f ⇔ 〈∀ b, a :: b R a⇔ b ∈ f a〉

That is:

A→ P B

(∈·)
**∼= A→ B

Λ

jj f = ΛR ⇔ ∈ · f = R (2)

In words: relations can be represented by set-valued functions.

Motivation Background Monads Mealy machines Components Faulty components References

“Maybe” transpose

Let A
S // B be a simple relation. Define the function

ΓS : A→ B + 1

such that:

ΓS = f ⇔ 〈∀ b, a :: b S a⇔ (i1 b) = f a〉

That is:

A→ B + 1

(∈·)
**∼= A→ B

Γ

jj f = ΓS ⇔ S = i◦1 · f (3)

In words: simple relations can be represented by “pointer”-valued
functions.

Motivation Background Monads Mealy machines Components Faulty components References

Distribution transpose

A distribution is a function µ : X → [0, 1] such that (a) the set
{x ∈ X | µ x > 0} is finite; (b) 〈

∑
x : x ∈ X : µ x〉 = 1.

µ x denotes the probability of event x taking place.

Denote by D B the set of all distributions on B.

Recall

A× B → C
++∼= A→ CB

̂kk f = g ⇔ f̂ = g (4)

Curry / uncurrying — a very important device.

Motivation Background Monads Mealy machines Components Faulty components References

Distribution transpose

Let a matrix be denoted by a function m : A× B → R such that m (a, b)
yields the contents of the cell addressed by column index a and row
index b.

A matrix is said to be column-stochastic (CS) wherever m a is a
distribution, for all a ∈ A.

Then:

A→ D B

̂
++

∼= A× B → [0, 1]jj f = m⇔ f̂ = m (5)

In words: CS matrices can be represented by “distribution”-valued
functions.

Motivation Background Monads Mealy machines Components Faulty components References

Monads

Motivation Background Monads Mealy machines Components Faulty components References

Monads

All functors above — powerset P, maybe M and distribution D are
monads.

Recalling monads:

X
ηF // F X F2 X

µFoo

satisfying the equalities
captured by the following
commutative diagrams:

F X

id ##

ηF //

F ηF
��

F2 X

µF
��

F3 X

F µF
��

µFoo

F2 X µF
// F X F2 X

µFoo

X
ηF //

f
��

F X

F f
��

F2 X

F2 f
��

µFoo

Y
ηF // F Y F2 Y

µToo

Motivation Background Monads Mealy machines Components Faulty components References

Kleisli composition

Kleisli composition for monad F :

F (F C)

µF
��

F B
F foo A

goo

f •g

ggF C B
foo

Properties:

f • (g • h) = (f • g) • h

f • ηF = f = ηF • f

Conceptually, it is as if one (typewise) drops the F ’s from f and g
in the diagram above.

Motivation Background Monads Mealy machines Components Faulty components References

Monads pointwise

In the same way pointwise composition is defined by

(f · g) a = let b = g a in f b

there is a similar notation for pointwise Kleisli composition (the
so-called do-notation):

(f • g) a = do {b ← g a; f b} (6)

This extends to multiple bindings, as e.g. in monadic pairing
(splits):

(f O g) x = do {a← f x ; b ← g x ; η (a, b)} (7)

Motivation Background Monads Mealy machines Components Faulty components References

Example in D
Probability of the sum of two dice:

do {x ← uniform [1 . . 6]; y ← uniform [1 . . 6]; η (x + y)}

Using the Haskell PFP library by Erwig and Kollmannsberger
(2006):

*Main> do { x <- uniform [1..6] ;

y <- uniform [1..6] ; return(x+y) }

7 16.7%

6 13.9%

8 13.9%

5 11.1%

9 11.1%

4 8.3%

10 8.3%

3 5.6%

11 5.6%

2 2.8%

12 2.8%

The most likely sum is 7, with
16.7% probability.

Motivation Background Monads Mealy machines Components Faulty components References

Genericity of the monad concept

The same code runs for different monads, e.g.

do {x ← Just 3; y ← Nothing ; η (x + y)}

yielding Nothing, while

do {x ← {1, 2}; y ← {−1, 0}; η (x + y)}

yielding 0, 1, 2 and so on.

Note how post-composition with η converts any function into a
monadic function, e.g. η · add above, for add (x , y) = x + y .

Motivation Background Monads Mealy machines Components Faulty components References

Still the D monad

We can now explain the

bad p� good

notation given earlier (1).

Given f : A→ D B and g : A→ D B, we define

f p� g = p ∗ f + (1− p) ∗ g

where, in general,

(p ∗ f) x = p ∗ (f x)
(f + g) x = (f x) + (g x)

Motivation Background Monads Mealy machines Components Faulty components References

Recalling from above

id (0.01)� neg :

id (0.01)� neg

= 0.01×

 F
a

ls
e

T
ru

e

False 1 0
True 0 1

+ 0.99×

 F
a

ls
e

T
ru

e

False 0 1
True 1 0



=

 F
a

ls
e

T
ru

e
False 0.01 0
True 0 0.01

+

 F
a

ls
e

T
ru

e

False 0 0.99
True 0.99 0



= F
a

ls
e

T
ru

e

False 0.01 0.99
True 0.99 0.01

Motivation Background Monads Mealy machines Components Faulty components References

In Haskell

PFP library by Erwig and Kollmansberger Erwig and
Kollmannsberger (2006):

schoice (0.01) id not True

False 99.0%

True 1.0%

schoice (0.01) id not False

True 99.0%

False 1.0%

where schoice p f g is the concrete syntax for f p� g .

Motivation Background Monads Mealy machines Components Faulty components References

Exercises

Exercise 1: A way to totalize simple relations (partial functions) in
Haskell is to use the M monad, by adding a pre-condition as another
input: the totalized function will deliver Nothing wherever the
pre-condition fails.
Write a pointwise and a pointfree definition of such a totalizer, with type

· ⇐ · ::(b → a)→ (b → B)→ b →M a

and evaluate tail ⇐ (¬ · empty) [] and (/2) ⇐ (>0) 3, where
empty = (=[]).

The concrete syntax for f ⇐ p should be tot f p. �

Motivation Background Monads Mealy machines Components Faulty components References

Exercises

Exercise 2: Specify a D-monadic function f n that yields n + 1 with

99% probability and n with 1% probability. �

Exercise 3: Write the Haskell code for a monadic for-loop combinator

of type

mfor ::(Integral n,Monad m)⇒ (a→ m a)→ m a→ n→ m a

Then calculate the output distribution given by

mfor f (η 0) 10

where f was defined in the previous exercise. �

Motivation Background Monads Mealy machines Components Faulty components References

Mealy machines

Motivation Background Monads Mealy machines Components Faulty components References

State monad

Given any function of type S × I → S × O, it can be converted
into a function of type I → S O where

S X = (S × X)S (8)

S is another monad, and a very important one — the state
monad.

Elements of S X describe actions over a state S with outputs in X .

Note that any h ∈ S X is always of the form h = 〈f , g〉, where
f : S → S updates the state and g : S → O yields an output.

Example: take push (s, i) = (i : s,Ok); clearly,

push i = h where h = 〈(i :),Ok〉

Motivation Background Monads Mealy machines Components Faulty components References

Some generic actions

Get the value of the state

get = 〈id , id〉

Modify the state:

modify f = 〈f , !〉

Put a value in the state:

put s = modify s

Query the state:

query f = 〈id , f 〉

A simple transation:

trans g f = do {modify g ; query f }

Motivation Background Monads Mealy machines Components Faulty components References

Mealy machines

A function m : S × I → S × O is called a (deterministic) Mealy
machine.

Mealy machines, in practice, need to be more elaborate because of
either partial behaviour (functions undefined for some inputs),
non-determinism (vague operations) or probabilistic behaviour (e.g.
probability of faults).

Thus a monad is required in the type definition:

m : S × I → D (S × O)

For F := P, m = ΛR where R is a relational (non-deterministic)
machine.

Below we shall see a concrete example involving F := M.

Motivation Background Monads Mealy machines Components Faulty components References

From functional models to objects (CBS)

The process of building CBS systems suggested in the sequel is
made of several steps:

• Build a relational model of the problem in hands (this was
covered in the course Specification & Modelling)

• Derive a functional model of the relational model — using
any of the transposes studied above

• Promote a particular type S of the previous model to state of
the component — i.e. object — to be built.

• At least one function of the model must have type
F S → G S , to express state transitions (otherwise the object
would have no behaviour).

Then (next slide):

Motivation Background Monads Mealy machines Components Faulty components References

From functional models to objects (CBS)

• Convert each function into a method — an elementary Mealy
machine.

• Objectification — build an object by “adding” all methods
together.

• Transpose the final Mealy machine using the state monad.

Then develop combinators to compose the objects (software
components) thus obtained.

The Mealy machines will be monadic (MMM) in general.

We shall see this process at work over a simple example —
building a stack object.

Motivation Background Monads Mealy machines Components Faulty components References

Example — stack

Functional model of a stack (in Haskell):

push = flip (:)

pop = tail

top = head

empty = (0=) · length

Types:

push :: ([a], a)→ [a]
pop :: [a]→ [a]
top :: [a]→ a
empty :: [a]→ B

Clearly, S = [a] can act as state of a Mealy machine, with some
extra I/O typing.

Motivation Background Monads Mealy machines Components Faulty components References

Methods = elementary Mealy machines

Example of a method

push′ :: ([a], a)→ ([a], 1)

push′ = 〈p̂ush, !〉

which resorts

(a) to the uncurry operator,

f̂ (a, b) = f a b

(b) to the pairing operator,

〈f , g〉 x = (f x , g x)

(c) and to uniquely defined (total) function ! :: b → 1 (’bang’).

Motivation Background Monads Mealy machines Components Faulty components References

However: partiality, the rule rather than exception

Partiality, however, requires ‘Maybe’ (M) Mealy machines, one per
totalized (partial) function, eg.:

pop′ :: ([a], 1)→M ([a], a)
pop′ = 〈pop, top〉 ⇐ (¬ · empty) · π1

where · ⇐ · totalizes a partial function by fusion with a
precondition,

· ⇐ · ::(a→ b)→ (a→ B)→ a→M b
f ⇐ p = cond p (η · f) ⊥

where unit η (of M) means success and ’zero’ element ⊥ means
failure.

Motivation Background Monads Mealy machines Components Faulty components References

Standard stack methods

empty ′ :: ([a], 1)→M ([a],B)
empty ′ = η · 〈id , empty〉 · π1

top′ :: ([a], 1)→M ([a], a)
top′ = (〈id , top〉 ⇐ (¬ · empty)) · π1

push′ :: ([b], b)→M ([b], 1)

push′ = η · 〈p̂ush, !〉

pop′ :: ([a], 1)→M ([a], a)
pop′ = (〈pop, top〉 ⇐ (¬ · empty)) · π1

Motivation Background Monads Mealy machines Components Faulty components References

Component =
∑

methods

The stack component

stack :: ([p], (1 + 1) + p)→M ([p], (p + p) + 1)
stack = pop′ ⊕ top′ ⊕ push′

is built thanks to the MMM sum
combinator

· ⊕ · ::(Functor F)⇒
-- input machines
((s, i)→ F (s, o))→
((s, j)→ F (s, p))→
-- output machine
(s, i + j)→ F (s, o + p)
-- definition

m1 ⊕m2 = (F undistr) ·∆ · (m1 + m2) · distl

where (next slide)

Motivation Background Monads Mealy machines Components Faulty components References

Object =
∑

methods

• m1 + m2 is functional sum (coproduct);

• isomorphisms

distl :: (b, c + a)→ (b, c) + (b, a)
undistr :: (a, b) + (a, c)→ (a, b + c)

handle the shared state across input and output sums;

• “Cozip” operator

∆ :: (Functor F)⇒ (F a) + (F b)→ F (a + b)
∆ = [F i1,F i2]

promotes coproducts through F.

Motivation Background Monads Mealy machines Components Faulty components References

Exercises

Exercise 4: Evaluate expressions to express:

• pushing "a" into an empty stack

• poping from an empty stack

• getting the top of a stack with at least one element.

�

Motivation Background Monads Mealy machines Components Faulty components References

CBS Systems = comunicating objects

Consider the idea of building a system in which two stacks
interact with each other, e.g. by popping from one and pushing
the outcome onto the other.

For this another MMM combinator is needed taking two
I/O-compatible MMM m1 and m2 (with different internal states in
general) and building a third one, m1 ; m2, in which outputs of m1

are sent to m2:

I // m1
J // ; J // m2

K // (9)

Motivation Background Monads Mealy machines Components Faulty components References

CBS Systems = comunicating objects

The type of this combinator as implemented in Haskell is

(;) :: (Strong F,Monad F)⇒
-- input (sender) machine
((s, i)→ F (s, j))→
-- input (receiver) machine
((r , j)→ F (r , k))→
-- output (compound) machine
((s, r), i)→ F ((s, r), k)

It requires F to be a strong monad 2, a topic to be addressed
later. Note how the output compound machine has a composite
state pairing the states of the two input machines.

2Details in (Oliveira and Miraldo, 2016).

Motivation Background Monads Mealy machines Components Faulty components References

Composing objects

Queue = two stacks:

out stack (left) interacting with in stack (right)

Motivation Background Monads Mealy machines Components Faulty components References

Object (MMM) sequential composition

Let m1, m2 be two machines of types S × I → F (S × J) and
Q × J → F (Q × K), respectively.

We will represent these machines by arrows I
m1

S
// J and

J
m2

Q
// K , respectively.3 Then their sequential composition

I
m1;m2

S × Q
// K is a machine with composite state S × Q built as is

explained next.

3Wherever the state S of a machine A
m

S
// B is implicit from the

context, simplified notation A
m // B will be used instead.

Motivation Background Monads Mealy machines Components Faulty components References

Sequential composition

First, we build I
extr m1

S × Q
// J , the state-extension of m1 with the state

Q of m2

F ((S × J)× Q) F (S × J)× Q
τroo (S × I)× Q

m1×idoo

F ((S × Q)× J)

F xr

OO

(S × Q)× I

xr

OO

extr m1

oo

where

• xr : (A× B)× C → (A× C)× B is the obvious isomorphism

• τr : (F A)× B → F (A× B) is the right strength of monad F.

Motivation Background Monads Mealy machines Components Faulty components References

Sequential composition

So I
extr m1

S × Q
// J has the same interface as I

m1

S
// J , only the state

differs. In turn, m2 is extended in the same way,

F (S × (Q × K)) S × F (Q × K)
τloo S × (Q × J)

id×m2oo

F ((S × Q)× K)

F assocr

OO

(S × Q)× J

assocr

OO

extl m2

oo

adding the state of m1 to the left, where
τl : (B × F A)→ F (B × A) is the left strength of F, and assocr
and assocl are well-known.

Therefore:

extl m = F assocl · τl · (id ×m) · assocr (10)

extr m = F xr · τr · (m × id) · xr (11)

Motivation Background Monads Mealy machines Components Faulty components References

Sequential composition

Putting both extensions together

F ((S × Q)× J) (S × Q)× I
extr m1oo

(ext m2)•(ext m1)

ff
F ((S × Q)× K) (S × Q)× J

extr m2oo

we get the meaning of object composition

m1 ; m2 = (extl m2) • (extr m1) (12)

which unfolds to

m1 ; m2 = ((F assocl) · τl · (id ×m2) · xl) • (τr · (m1 × id) · xr)

Motivation Background Monads Mealy machines Components Faulty components References

Exercises

Exercise 5: Define

m = pop′ ; push′

which pops from a source stack (m1 = pop′) and pushes onto a target

stack (m2 = push′). Then run m (([1], [2]), ()) and m (([], [2]), ()) and

observe the outcome. �

Exercise 6: What is the type of stack ; stack?

�

Exercise 7: Define an (M-MMM) object queue = enq ⊕ deq which
should behave as a queue, with two methods: enq — enqueue, add to
the queue — and deq — dequeue, remove from the queue.

�

Motivation Background Monads Mealy machines Components Faulty components References

Object (MMM) interfacing

From above we see the need for some mechanism to control how
methods talk to each other when composing two objects.

Such a mechanism is called interface-wrapping:

·{·→·} :: (Functor F)⇒
-- input machine

((a, e)→ F (a, c))→
-- input wrapper

(i → e)→
-- output wrapper

(c → d)→
-- output machine

(a, i)→ F (a, d)
-- definition

m{f→g} = F (id × g) ·m · (id × f)

Motivation Background Monads Mealy machines Components Faulty components References

Object (MMM) interfacing

Note the types in:

A
f //

m{f→g}

S

??I
m

S
// J

g // B

This diagram is explained in the following exercise:

Exercise 8: Using the laws of Kleisli composition, show that

m{f→g} = pgq •m • pf q (13)

holds, where

p·q : (I → O)→ (S × I → F (S × O))

pf q = η · (id × f) (14)

lifts functions to MMMs. �

Motivation Background Monads Mealy machines Components Faulty components References

Universal property of MMM sums

Given two F-monadic Mealy machines I
p

S
// O and J

q

S
// P

(with the same state space) their sum is the machine

I + J
p⊕q
S
// O + P defined by the following universal property:

k = p ⊕ q ⇔
{

k{i1→id} = p{id→i1}
k{i2→id} = q{id→i2}

(15)

�
Proof: see (Oliveira and Miraldo, 2016).

Therefore:

(p ⊕ q){i1→id} = p{id→i1} (16)

(p ⊕ q){i2→id} = q{id→i2} (17)

Motivation Background Monads Mealy machines Components Faulty components References

Exchange law

Universal property (15) is central to the calculation of the exchange
law between machine sum and machine composition which follows:

Let I
m1

S
// O , J

m2

S
// P and O

n1

Q
// U , P

n2

Q
// V

be pairs of F-monadic Mealy machines (each pair sharing
the same state space). Then the following exchange law
holds, showing how sequential composition commutes
with sums:

(m1 ⊕m2) ; (n1 ⊕ n2) = (m1 ; n1)⊕ (m2 ; n2) (18)

Proof: see (Oliveira and Miraldo, 2016).

Motivation Background Monads Mealy machines Components Faulty components References

Exchange law

In pictures, law (18) shows that the composition of machines

I+J // m1 ⊕m2
O+P // ;

O+P // n1 ⊕ n2
U+V //

is the same machine as
I // m1

O // ; O // n1
U //

+ ⊕ +

J
// m2

P
// ;

P
// n2

V
//



Motivation Background Monads Mealy machines Components Faulty components References

Changing effect of composition

Sometimes, we need to reverse composite machines:

←−· :: Functor F⇒
-- original MM
(((b, a), i)→ F ((b, a), o))→
-- changed MM
((a, b), i)→ F ((a, b), o)
←−m = F (swap × id) ·m · (swap × id)

where

swap (b, a) = (a, b)

thus changing which component is affected first in a composition.

Motivation Background Monads Mealy machines Components Faulty components References

Case study — folder

Let

folder = right ⊕ left ⊕ rd ⊕ new

where

right = pop′ ; push′

left =
←−−
right

new = extl push′

rd = extl top′

or new = nop ; push′, rd = nop ; top′

where nop = η.

Motivation Background Monads Mealy machines Components Faulty components References

Summary
Component

(Monadic) Mealy machine (MMM), that is, an F
-branching transition structure of type:

S × I → F(S × O) (19)

where F is a monad.

Component-oriented design

Using MMM combinators as seen thus far.

Semantics

There are two alternative transpositions of F -branching
transition structure (19):
State-monadic:

I → (F (S × O))S (20)

Coalgebraic:

S → (F(S × O))I (21)

Motivation Background Monads Mealy machines Components Faulty components References

Abstracting from the state

Recalling the state monad (8):

S X = (S × X)S

we have the following diagram relating two base monads S and F

(F (S × X))S

F X

iF
88

S X

iS
ff

to the compound one — T X = (F (S × X))S — where

iS = ηS

iF = (F swap) · τr

Motivation Background Monads Mealy machines Components Faulty components References

Abstracting from the state

Given a MMM S × I
m // F (S × O) , we denote by mT the

T-transposed version of m, that is, I
mT // T O .

For instance, let

a = push′T 2

Then action a will be such that [[a]] [1] = Just ((), [2, 1]).4

Moreover, we can thread T-actions without caring about passing
the state explicitly. For instance, let the thread

t = do {pop′T (); push′T 2}

be defined.

4The meaning of [[a]] will be explained later on.

Motivation Background Monads Mealy machines Components Faulty components References

Abstracting from the state

Then run it over a starting state s0 = [0],

[[t]] s0 = Just ()

as expected. Now run the thread do {pop′T (); t }:
[[do {popT (); t }]] s0 = Nothing

This fails over the same starting state because the starting stack is
empty.

Note how M effects and S effects are blended in an implicit way
via the T compound monad.

NB: the pretty-printing above hides a number of details of the
implementation. These can be found in module SMT.hs.

Motivation Background Monads Mealy machines Components Faulty components References

Faulty components

Motivation Background Monads Mealy machines Components Faulty components References

Why fauty components?

In the trend towards miniaturization of automated systems the
size of circuit transistors cannot be reduced endlessly, as these
eventually become unreliable.

There is, however, the idea that inexact hardware can be tolerated
provided it is “good enough” (Lingamneni et al., 2013).

Good enough has always been the way engineering works as a
broad discipline.

If unreliable hardware becomes widely accepted on the basis of
fault tolerance guarantees, what will the impact of this be on the
software layers which run on top of it in virtually any automated
system?

Motivation Background Monads Mealy machines Components Faulty components References

Recall

Software V&V

compared with. . .

Motivation Background Monads Mealy machines Components Faulty components References

Motivation

Sloppy arithmetic useful?

Horror!

But there is more. . .

Motivation Background Monads Mealy machines Components Faulty components References

“Just good enough” h/w

. . . coming from the land of the Swiss watch:

Message:

Why perfection if (some) imperfection still meets the
standards?

Motivation Background Monads Mealy machines Components Faulty components References

S/w for “just good enough” h/w

What about software running over “just good enough” hardware?

Ready to take the risk?

Nonsense to run safety critical software on defective hardware?

Uups! — it seems “it already runs”:

“IEC 60601-1 [brings] risk management into the
very first stages of [product development]”

Risk is everywhere — an inevitable (desired?) part of life.

Motivation Background Monads Mealy machines Components Faulty components References

Faulty components

Risk of pop′ behaving like top′ with probability 1− p

pop′′ :: P→ ([a], 1)→ D (M ([a], a))
pop′′ p = pop′ p� top′

and risk of push′ not pushing anything, with probability 1− q

push′′ :: P→ ([a], a)→ D (M ([a], 1))
push′′ q = push′ q� skip′

where P = [0, 1], D is the (finite) distribution monad and

· ·� · :: P→ (t → a)→ (t → a)→ t → D a
(f p� g) x = choose p (f x) (g x)

choses between f and g .

Motivation Background Monads Mealy machines Components Faulty components References

Simulation

Example (no faults) — popping from one stack and pushing onto
another,

m1 = pop′ ; push′

should produce the intended behaviour, eg.

> curry m1 ([1],[2]) ()

Just (([],[1,2]),())

> curry m1 ([],[2]) ()

Nothing

Example (faulty stacks) — now suppose the stacks are faulty,

m2 = pop′′ 0.95 ; push′′ 0.8

over the same (global) state ([1],[2]).

Motivation Background Monads Mealy machines Components Faulty components References

Simulation

Running the same simulation, now for machine m2,

> curry m2 ([1],[2]) ()

Just (([],[1,2]),()) 76.0%

Just (([],[2]),()) 19.0%

Just (([1],[1,2]),()) 4.0%

Just (([1],[2]),()) 1.0%

the risk of faulty behaviour is 24% (1− 0.76), structured as:
(a) 1% — both components misbehave; (b) 19% — left stack
misbehaves; (c) 4% — right stack misbehaves.

As expected,

> curry m2 ([],[2]) ()

Nothing 100.0%

is catastrophic (popping from an empty stack).

Motivation Background Monads Mealy machines Components Faulty components References

Faulty components

Simulation:

Using the PFP library written by Erwig and
Kollmannsberger (2006).

Important:

Our MMMs have become probabilistic, leading to actions
of general shape

I → (D(F(S × O)))S

Challenge:

Need for the probabilistic extension of the MMM
combinators above.

Question: do we need to start all over again for the probabilistic
case?

Motivation Background Monads Mealy machines Components Faulty components References

Monads, again

No. :-)

Note that all our combinators are parametric on a
“branching”-monad F.

It all amounts to check whether the composition D ·M forms a
monad or not.

Monad composition is a well-studied subject. We just need, in
our case, to check whether there is a function
λ : (M · D) X → (D ·M) X satisfying some laws (see below).

Such a function indeed exists:

λ Nothing = η Nothing
λ (Just a) = D Just a

Motivation Background Monads Mealy machines Components Faulty components References

Composing monads

Here is how composite monad H = D ·M is built, assuming that D and
M are so:

instance Monad H where
eta = ηD · ηM
x >>= f = (µ · D (M f)) x where µ = (D µM) · µD · D λ

We can do everything as before for probabilistic objects (components),
for instance addition over a run-time execution stack:

t ′′ = do {
x ← pop′′ 0.8T ();
y ← pop′′ 0.9T ();
push′′ 0.6T (x + y);
pop′′ 0.7T ()}

such that [[t ′′]] [4, 5] will yield

Just 9 48.0%

Nothing 28.8%

Just 8 12.0%

Just 5 10.4%

Just 4 0.8%

Motivation Background Monads Mealy machines Components Faulty components References

Distributive laws

Let X
ηT // TX T2X

µToo and X
ηF // FX F2X

µFoo be two monads.

A distributive law of T over F is a polymorphic function
λ : F T→ T F such that

λ · F ηT = ηT (22)

λ · F µT = µT · T λ · λ (23)

and

λ · ηF = TηF (24)

TµF · λ · Fλ = λ · µF (25)

hold.

Motivation Background Monads Mealy machines Components Faulty components References

In Haskell

From Cp.hs:

class Functor F⇒ DistL F where
λ :: Monad T⇒ F (T a)→ T (F a)

Listas:

instance DistL [] where λ = sequence

Maybe:

instance DistL M where
λ Nothing = η Nothing
λ (Just a) = T Just a

Motivation Background Monads Mealy machines Components Faulty components References

Exercises

Exercise 9: Let m = (pop′′ 0.6) ; (push′′ 0.5). When running

[[mT ()]] s0

for any initial state s0 you always get a Dirac distribution as output.

Where is the probabilistic behaviour, then? �

Exercise 10: Build a probabilistic folder and exercise it in GHCi. �

Motivation Background Monads Mealy machines Components Faulty components References

More combinators

Parallel composition:

·� · ::(Monad F,Strong F)⇒
-- input machines
((s, i)→ F (s, o))→
((t, j)→ F (t, r))→
-- output machine
((s, t), (i , j))→ F ((s, t), (o, r))

p � q = (F m) · δ · (p × q) ·m

where m = 〈π1 × π1, π2 × π2〉 and

δ :: Strong F⇒ (F a,F b)→ F (a, b)
δ = τr • τl

is the double strength operator.

Motivation Background Monads Mealy machines Components Faulty components References

Conditionals

Also useful is the MMM-level McCarthy conditional combinator,

· → · , · :: (Monad F,Functor F)⇒
-- condition
((a, i)→ F (a,B))→
-- ’then’ branch
((a, 1)→ F (a, o))→
-- ’else’ branch
((a, 1)→ F (a, o))→
-- output
(a, i)→ F (a, o)
-- definition

p → m1 , m2 = [m1,m2] • (F distl · p{id→outB})

where outB witnesses isomorphism B ∼= 1 + 1.

Motivation Background Monads Mealy machines Components Faulty components References

MMM behavioural equivalence

Two Mealy machines I
m1

S
// J and I

m2

Q
// J are behaviourally

equivalent provided a function h : S → Q can be found such that

F (S × J)

F (h×id)
��

S × I
m1oo

h×id
��

S

h
��

F (Q × J) Q × Im2

oo Q

holds:

F (h × id) ·m1 = m2 · (h × id) (26)

h : S → Q is said to be a MM-morphism and we write m1 ' m2

to express the equivalence. Behavioural equivalence in what
sense?

Motivation Background Monads Mealy machines Components Faulty components References

Behavioural equivalence

Let us reason about equality (26):

F (h × id) ·m1 = m2 · (h × id)

⇔ { currying }

F (h × id) ·m1 = m2 · (h × id)

⇔ { absorption and fusion laws of exponentials }

(F (h × id))I ·m1 = m2 · h

⇔ { define H X = (F (X × J))I }

H h ·m1 = m2 · h

m1 : S → H S and m2 : Q → H Q are said to be H-coalgebras.

Motivation Background Monads Mealy machines Components Faulty components References

Behavioural equivalence

From

H h ·m1 = m2 · h

we infer

m2 · h ⊆ H h ·m1

that is, m1 and m2 are bisimilar. In general, R is a bisimulation if

m2 · R ⊆ H R ·m1 (27)

holds, that is (pointwise):

q′ R q ⇒ (m2 q′) H R (m1 q)

Motivation Background Monads Mealy machines Components Faulty components References

Behaviour coalgebra
Recall

(F (S × J))I

(F (h×id))I

��

S
m1oo

h

��

S

h

��
(F (Q × J))I Q

m2

oo Q

In particular, h = [(m1)] always exists, assigning to each state s ∈ S the
behaviour of m1 taking s as starting state:

(F (S × J))I

(F (h×id))I

��

S
m1oo

h

��

S

h

��
(F (Ω× J))I Ω

ω
oo Ω

Ω = (F J∞)I
∞

— possibly infinite stream of inputs monadically mapped
to similar stream of outputs.

Motivation Background Monads Mealy machines Components Faulty components References

Finite approximation

Recall [(m)] : S → (I∞ → (F J∞)).

Finite approximation,

[(m)] :: S → ([I]→ F [J])

assuming finite stream of inputs:

[(m)] s [] = η []
[(m)] s (i : is) = do {

(s ′, j)← m s i ; -- get next state, next output
js ← [(m)] s ′ is; -- get behaviour for next state s’
η (j : js)} -- append

Motivation Background Monads Mealy machines Components Faulty components References

Example (stack)

Recall:

stack :: ([p], (1 + 1) + p)
→M ([p], (p + p) + 1)

stack = (pop′ ⊕ top′)⊕ push′

Define, just for convenience, the
following “methods”:

mPOP = i1 · i1
mTOP = i1 · i2
mPUSH = i2

and coalgebra c = stack .

Motivation Background Monads Mealy machines Components Faulty components References

Example (stack)

Then experiment with the behaviour of m for finite streams of
inputs:

Main> [(c)] [] [mPUSH 2,mPOP (),mTOP ()]
Nothing
Main> [(c)] [] [mPUSH 2,mTOP (),mTOP ()]
Just [i2 (), i1 (i2 2), i1 (i2 2)]

Motivation Background Monads Mealy machines Components Faulty components References

Exercises

Exercise 11: Define the machine J
copy // J that faithfully passes its

input to the output, never changing state:

copy : 1× J → F (1× J)
copy = η

Show that:

m ; copy ' m ' copy ; m (28)

m ; (n ; p) ' (m ; n) ; p (29)

�

Motivation Background Monads Mealy machines Components Faulty components References

Case study (TP3 assignment)

Implement a queue by composing two
stacks.

out stack (left) interacting with in stack
(right)

When out stack gets empty you should
flush into it the data from the other stack.

Build a faulty queue by injecting faults into
the stacks.

Test the behaviour of the (faulty) queue with a distribution of (finite)
input streams. Can you measure the probability of the stack flushes?

Motivation Background Monads Mealy machines Components Faulty components References

References

Motivation Background Monads Mealy machines Components Faulty components References

V. Cortellessa and V. Grassi. A modeling approach to analyze the
impact of error propagation on reliability of component-based
systems. In Component-Based Software Engineering, volume
4608 of LNCS, pages 140–156. 2007.

M. Erwig and S. Kollmannsberger. Functional pearls: Probabilistic
functional programming in Haskell. J. Funct. Program., 16:
21–34, January 2006.

D. Jackson. A direct path to dependable software. Commun.
ACM, 52(4):78–88, 2009.

J. Joyce. Proposed Formal Methods Supplement for RTCA DO
178C, 2011. High Confidence Software and Systems, 11th
Annual Conference, 3-6 May 2011, Annapolis.

A. Lingamneni, C. Enz, K. Palem, and C. Piguet. Synthesizing
parsimonious inexact circuits through probabilistic design
techniques. ACM Trans. Embed. Comput. Syst., 12(2s):
93:1–93:26, May 2013. ISSN 1539-9087.

A. McIver and C. Morgan. Abstraction, Refinement and Proof for
Probabilistic Systems. Monographs in Computer Science.
Springer-Verlag, 2005. ISBN 0387401156.

Motivation Background Monads Mealy machines Components Faulty components References

J.N. Oliveira and V.C. Miraldo. “Keep definition, change category”
— a practical approach to state-based system calculi. JLAMP,
85(4):449–474, 2016.

M. Stamatelatos and H. Dezfuli. Probabilistic Risk Assessment
Procedures Guide for NASA Managers and Practitioners, 2011.
NASA/SP-2011-3421, 2nd edition, December 2011.

	Motivation
	Background
	Monads
	Mealy machines
	Components
	Faulty components

