— Software Architecture —

Software Components as Monadic Mealy machines (MMM)

J.N. Oliveira

MFES/Software Architecture Course 2016/17

(中) (종) (종) (종) (종) (종)

Motivation

Background N

Mealy machi

Components

aulty component

References

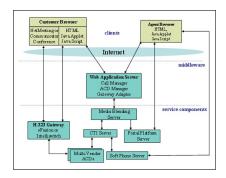
Motivation

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Software architecture

CBS component-oriented software design.

Analogy and inspiration comes from **hardware** and general engineering practice.



Questions: What is a software **component**? How do we **connect** components together? Can we calculate the **behaviour** of CBS **systems** from that of their **components**?

Overall concern for safety and certification

Opportunities for Formal Methods in standard RTCA **DO 178C** for certifying airborne software.

Warning:

(...) the use of formal methods to be "at least as good as" a conventional approach that does not use formal methods. (Joyce, 2011)

See also: Software Considerations in Airborne Systems and Equipment Certification by RTCA SC-205, EUROCAE WG-12 $^{\rm 1}$

 $^1 {\rm RTCA} = {\rm Radio}$ Technical Commission for Aeronautics; EUROCAE = European Organisation for Civil Aviation Equipment

Dependable software systems

Quoting Daniel Jackson (2009):

A **dependable system** is one (..) in which you can place your reliance or trust. A rational person or organization only does this with **evidence** that the system's **benefits** outweigh its **risks**.

In formula

dependable system = benefit + risk

one finds:

- benefit = qualitative
- **risk** = quantitative.

What about evidence?

MOD Defence Standard 00-56:

9.1 The Contractor shall produce a **Safety Case** for the system [which] shall [provide] a **compelling**, **comprehensible** and **valid** case that a system is safe for a given application in a given environment.

DS 00-56 (contd.):

10.5.4 All assumptions, data, judgements and calculations underpinning the **Risk Estimation** shall be recorded in the **Safety Case**, such that the risk estimates can be reviewed and reconstructed.

Risk estimation? Calculations? How, when and where is this performed in a **FM** life-cycle?

P(robabilistic)R(isk)A(nalysis)

NASA/SP-2011-3421 (Stamatelatos and Dezfuli, 2011):

1.2.2 A PRA characterizes risk in terms of three basic questions: (1) What can **go wrong**? (2) How **likely** is it? and (3) What are the **consequences**?

The PRA process

answers these questions by systematically (...) identifying, modeling, and **quantifying** scenarios that can lead to undesired consequences

Moreover,

1.2.3 (...) The **total probability** from the set of scenarios modeled may also be non-negligible even though the probability of each scenario is small.

Need for probabilism

As program semantics are usually **qualitative** — e.g. relational — how does one **quantify** risk?

PRA performed **a posteriori** — Hmmm... we've seen this mistake before, eg. in program correctness.

Need for a change:

Programming should incorporate **risk** as the rule rather than the exception (absence of risk = ideal case).

Need for **combinators** expressing risk of failure, eg. **probabilistic choice** between **expected behaviour** and **misbehaviour** (McIver and Morgan, 2005).

nents Fa

components

References

Need for probabilism

Think of things that can go wrong:

 $\textit{bad} \cup \textit{good}$

How likely? Try

bad _p◊ good

(1)

where

 $bad_{p} \diamond good = p \times bad + (1 - p) \times good$

for some **probability** *p* of *bad behaviour*, eg. the **imperfect** action

 $top_{(10^{-7})}$ $\diamond pop$

leaving a stack unchanged with 10^{-7} probability.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Probabilistic truth tables

Probabilistic **negation** *id* (0.01) \diamond *neg*:

	id $_{(0.01)}$ <	> neg						
=	$0.01 \times$	False	Ealse0	1 Lne	$+$ 0.99 \times	False True	Ealse01	Lue 1 0
=	False True		Lue 0 10.01	+	False True	Ealse 0 090.0	Lue 0.99 0	
=	False True	Ealse 10.0 99.0	Lue 0.99 0.01					

Our approach will be a **coalgebraic** semantics for software components modeled as **monadic Mealy machines** (Oliveira and Miraldo, 2016).

We shall be interested in reasoning about the risk of **faults propagating** in **component**-based software **(CBS)** systems.

This is central to software **certification** and to *safe* software **architectures**.

Traditional CBS **risk analysis** relies on *semantically weak* CBS models, e.g. component **call-graphs** (Cortellessa and Grassi, 2007).

Foundations:

- Functors, algebras and coalgebras
- Monads
- Interaction with relation algebra
- Kleisli composition
- (Components as) coalgebras
- Distributive laws

Applications:

• Simulation and animation in Haskell

Background:

• Items in boldface have been studied in previous courses.

Motivation

Background Mo

Mealy maching

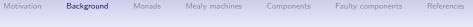
Componen

Faulty compor

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

References

Background



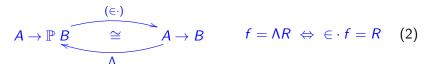
Power transpose

Let $A \xrightarrow{R} B$ be a relation. Define the function $\Lambda R : A \to \mathbb{P} B$ $\Lambda R a = \{ b \mid b R a \}$

such that:

 $\Lambda R = f \quad \Leftrightarrow \quad \langle \forall \ b, a \ :: \ b \ R \ a \Leftrightarrow b \in f \ a \rangle$

That is:



In words: relations can be represented by set-valued functions.

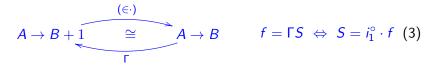
"Maybe" transpose

Let $A \xrightarrow{S} B$ be a **simple** relation. Define the function $\Gamma S : A \to B + 1$

such that:

$$\Gamma S = f \quad \Leftrightarrow \quad \langle \forall \ b, a \ :: \ b \ S \ a \Leftrightarrow (i_1 \ b) = f \ a \rangle$$

That is:



In words: simple **relations** can be represented by "pointer"-valued **functions**.

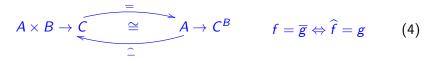
Distribution transpose

A **distribution** is a function $\mu : X \to [0, 1]$ such that (a) the set $\{x \in X \mid \mu \mid x > 0\}$ is finite; (b) $\langle \sum x : x \in X : \mu \mid x \rangle = 1$.

 μx denotes the **probability** of event x taking place.

Denote by \mathbb{D} *B* the set of all distributions on *B*.

Recall



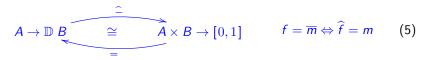
Curry / uncurrying — a very important device.

Distribution transpose

Let a **matrix** be denoted by a function $m : A \times B \to \mathbb{R}$ such that m(a, b) yields the contents of the **cell** addressed by **column** index *a* and **row** index *b*.

A matrix is said to be **column-stochastic** (CS) wherever $\overline{m} a$ is a distribution, for all $a \in A$.

Then:



In words: CS **matrices** can be represented by "distribution"-valued **functions**.

Motivation

round Monads

Mealy mac

Componen

Faulty comp

References

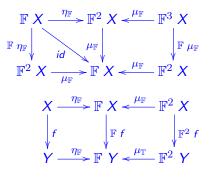
Monads

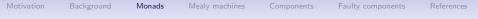
All functors above — powerset $\mathbb P,$ maybe $\mathbb M$ and distribution $\mathbb D$ are monads.

Recalling monads:

 $X \stackrel{\eta_{\mathbb{F}}}{\longrightarrow} \mathbb{F} X \stackrel{\mu_{\mathbb{F}}}{\longleftarrow} \mathbb{F}^2 X$

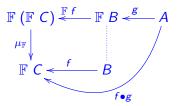
satisfying the equalities captured by the following commutative diagrams:





Kleisli composition

Kleisli composition for monad \mathbb{F} :



Properties:

$$f \bullet (g \bullet h) = (f \bullet g) \bullet h$$
$$f \bullet \eta_{\mathbb{F}} = f = \eta_{\mathbb{F}} \bullet f$$

Conceptually, it is as if one (typewise) drops the \mathbb{F} 's from f and g in the diagram above.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э.

In the same way pointwise composition is defined by

 $(f \cdot g) a =$ let b = g ain f b

there is a similar notation for pointwise Kleisli composition (the so-called do-notation):

$$(f \bullet g) a = \mathbf{do} \{ b \leftarrow g a; f b \}$$
(6)

This extends to multiple bindings, as e.g. in monadic *pairing* (splits):

$$(f \circ g) x = \mathbf{do} \{ a \leftarrow f x; b \leftarrow g x; \eta (a, b) \}$$

$$(7)$$

Example in $\mathbb D$

Probability of the sum of two dice:

```
do {x \leftarrow uniform [1..6]; y \leftarrow uniform [1..6]; \eta (x+y)}
```

Using the Haskell PFP library by Erwig and Kollmannsberger (2006):

```
*Main> do { x <- uniform [1..6] ;</pre>
y \leftarrow uniform [1..6]; return(x+y) \}
 7
   16.7%
 6
   13.9%
 8
   13.9%
 5
  11.1%
 9
    11.1%
    8.3%
 4
     8.3%
10
 3
     5.6%
    5.6%
11
 2
     2.8%
12
     2.8%
```

The most likely sum is 7, with 16.7% probability.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

The same code runs for different monads, e.g.

do { $x \leftarrow$ Just 3; $y \leftarrow$ Nothing; $\eta (x + y)$ }

yielding Nothing, while

do { $x \leftarrow \{1, 2\}$; $y \leftarrow \{-1, 0\}$; $\eta (x + y)$ }

yielding 0, 1, 2 and so on.

Note how post-composition with η converts any function into a monadic function, e.g. $\eta \cdot add$ above, for add(x, y) = x + y.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

We can now explain the

bad _p⇔ good

notation given earlier (1).

Given $f : A \to \mathbb{D} B$ and $g : A \to \mathbb{D} B$, we define

 $f_p \diamond g = p * f + (1 - p) * g$

where, in general,

(p * f) x = p * (f x)(f + g) x = (f x) + (g x)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

References

Recalling from above

id (0.01) *oneg*:

	id _(0.01)	> neg						
=	$0.01 \times$	False True	Ealse0	J L u e	$+$ 0.99 \times	False True	Ealse 0 = 1	L 1 0
=	False True		Lue 0 10.0) +	False True	Ealse 0 90.00	Lune 0.99 0	
=	False True	False 10.0 99.0	Lte 0.99 0.01					

PFP library by Erwig and Kollmansberger Erwig and Kollmannsberger (2006):

```
schoice (0.01) id not True
False 99.0%
True 1.0%
schoice (0.01) id not False
True 99.0%
False 1.0%
```

where schoice **p f g** is the **concrete syntax** for $f_p \diamond g$.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Exercise 1: A way to **totalize** simple relations (partial functions) in Haskell is to use the \mathbb{M} monad, by adding a pre-condition as another input: the totalized function will deliver Nothing wherever the pre-condition fails.

Write a pointwise and a pointfree definition of such a totalizer, with type

 $\cdot \ \leftarrow \ \colon ::(b \to a) \to (b \to \mathbb{B}) \to b \to \mathbb{M}$ a

and evaluate *tail* \leftarrow ($\neg \cdot empty$) [] and (/2) \leftarrow (>0) 3, where empty = (=[]).

The concrete syntax for $f \leftarrow p$ should be tot f p. \Box

Exercise 2: Specify a \mathbb{D} -monadic function f n that yields n + 1 with 99% probability and n with 1% probability. \Box

Exercise 3: Write the Haskell code for a monadic for-loop combinator of type

 $mfor::(Integral n, Monad m) \Rightarrow (a \rightarrow m a) \rightarrow m a \rightarrow n \rightarrow m a$

Then calculate the output distribution given by

mfor f $(\eta 0) 10$

where f was defined in the previous exercise. \Box

Mealy machines

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Mealy machines

Given any function of type $S \times I \rightarrow S \times O$, it can be converted into a function of type $I \rightarrow S O$ where

$$S X = (S \times X)^{S}$$
(8)

S is another monad, and a very important one — the **state monad**.

Elements of S X describe **actions** over a state *S* with outputs in *X*.

Note that any $h \in S X$ is always of the form $h = \langle f, g \rangle$, where $f: S \to S$ updates the state and $g: S \to O$ yields an output.

Example: take push(s, i) = (i : s, Ok); clearly,

push i = h where $h = \langle (i:), \underline{Ok} \rangle$

mponents

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

References

Some generic actions

Get the value of the state $get = \langle id, id \rangle$

Modify the state:

modify $f = \langle f, ! \rangle$

Put a value in the state: $put \ s = modify \ \underline{s}$

Query the state:

query $f = \langle id, f \rangle$

A simple transation:

trans $g f = \mathbf{do} \{ modify g; query f \}$

Mealy machines

A function $m: S \times I \rightarrow S \times O$ is called a (deterministic) **Mealy** machine.

Mealy machines, in practice, need to be more elaborate because of either partial behaviour (functions undefined for some inputs), non-determinism (vague operations) or probabilistic behaviour (e.g. probability of faults).

Thus a **monad** is required in the type definition:

 $m: S \times I \rightarrow \mathbb{D} (S \times O)$

For $\mathbb{F} := \mathbb{P}$, $m = \Lambda R$ where R is a relational (non-deterministic) machine.

Below we shall see a concrete example involving $\mathbb{F} := \mathbb{M}$.

From functional models to objects (CBS)

The process of building CBS systems suggested in the sequel is made of several steps:

- Build a **relational** model of the problem in hands (this was covered in the course *Specification & Modelling*)
- Derive a **functional** model of the relational model using any of the **transposes** studied above
- Promote a particular **type** *S* of the previous model to **state** of the component i.e. **object** to be built.
- At least one function of the model must have type

 F S → G S, to express state transitions (otherwise the object would have no behaviour).

Then (next slide):

References

From functional models to objects (CBS)

- Convert each function into a **method** an elementary Mealy machine.
- **Objectification** build an **object** by "adding" all methods together.
- Transpose the final Mealy machine using the state monad.

Then develop combinators to **compose** the **objects** (software components) thus obtained.

The Mealy machines will be monadic (MMM) in general.

We shall see this process at work over a simple example — building a **stack object**.

oonents Re

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

References

Example — stack

Functional model of a stack (in Haskell):

```
push = flip (:)

pop = tail

top = head

empty = (0=) \cdot length
```

Types:

```
push :: ([a], a) \rightarrow [a]pop :: [a] \rightarrow [a]top :: [a] \rightarrow aempty :: [a] \rightarrow \mathbb{B}
```

Clearly, S = [a] can act as **state** of a Mealy machine, with some extra I/O typing.

$Methods = elementary \ Mealy \ machines$

Example of a method

$$push' :: ([a], a) \rightarrow ([a], 1)$$

 $push' = \langle \widehat{push}, ! \rangle$

which resorts

(a) to the **uncurry** operator, $\widehat{f}(a,b) = f a b$

(b) to the **pairing** operator,

 $\langle f,g\rangle x = (f x,g x)$

(c) and to uniquely defined (total) function $!:: b \rightarrow 1$ ('bang').

However: partiality, the rule rather than exception

Partiality, however, requires 'Maybe' (M) Mealy machines, one per totalized (partial) function, eg.:

 $pop' :: ([a], 1) \to \mathbb{M} ([a], a)$ $pop' = \langle pop, top \rangle \Leftarrow (\neg \cdot empty) \cdot \pi_1$

where $\cdot \ \Leftarrow \ \cdot$ totalizes a partial function by fusion with a **precondition**,

 $\begin{array}{rcl} \cdot & \Leftarrow & \cdot ::(a \to b) \to (a \to \mathbb{B}) \to a \to \mathbb{M} \ b \\ f & \Leftarrow \ p \ = \ cond \ p \ (\eta \cdot f) \ \bot \end{array}$

where unit η (of \mathbb{M}) means **success** and 'zero' element \bot means **failure**.

References

Standard stack methods

 $empty' :: ([a], 1) \rightarrow \mathbb{M} ([a], \mathbb{B})$ $empty' = \eta \cdot \langle id, empty \rangle \cdot \pi_1$

$$top' :: ([a], 1) \rightarrow \mathbb{M} ([a], a) \ top' = (\langle id, top \rangle \leftarrow (\neg \cdot empty)) \cdot \pi_1$$

 $push' :: ([b], b) \rightarrow \mathbb{M} ([b], 1)$ $push' = \eta \cdot \langle \widehat{push}, ! \rangle$

 $pop' :: ([a], 1) \to \mathbb{M} ([a], a)$ $pop' = (\langle pop, top \rangle \Leftarrow (\neg \cdot empty)) \cdot \pi_1$

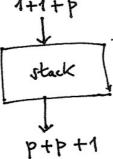
Component = \sum methods

The stack **component**

stack :: $([p], (1+1) + p) \rightarrow \mathbb{M}([p], (p+p) + 1)$ $stack = pop' \oplus top' \oplus push'$

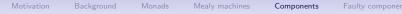
is built thanks to the MMM sum combinator

> $\cdot \oplus \cdot ::(Functor \mathbb{F}) \Rightarrow$ -- input machines $((s,i) \rightarrow \mathbb{F}(s,o)) \rightarrow$ $((s, j) \rightarrow \mathbb{F}(s, p)) \rightarrow$ -- output machine $(s, i+j) \rightarrow \mathbb{F}(s, o+p)$ -- definition



 $m_1 \oplus m_2 = (\mathbb{F} \text{ undistr}) \cdot \Delta \cdot (m_1 + m_2) \cdot \text{distl}$

where (next slide)



$\mathsf{Object} = \sum \mathsf{methods}$

- $m_1 + m_2$ is functional sum (coproduct);
- isomorphisms

 $distl :: (b, c + a) \rightarrow (b, c) + (b, a)$ undistr :: (a, b) + (a, c) \rightarrow (a, b + c)

handle the shared state across input and output sums;

• "Cozip" operator

 $\Delta :: (Functor \mathbb{F}) \Rightarrow (\mathbb{F} \ a) + (\mathbb{F} \ b) \rightarrow \mathbb{F} \ (a+b)$ $\Delta = [\mathbb{F} \ i_1, \mathbb{F} \ i_2]$

promotes coproducts through \mathbb{F} .

Exercise 4: Evaluate expressions to express:

- pushing "a" into an empty stack
- poping from an empty stack

П

getting the top of a stack with at least one element.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

CBS Systems = comunicating objects

Consider the idea of building a system in which two stacks **interact** with each other, e.g. by popping from one and pushing the outcome onto the other.

For this another MMM combinator is needed taking two I/O-compatible MMM m_1 and m_2 (with different internal states in general) and building a third one, m_1 ; m_2 , in which outputs of m_1 are sent to m_2 :

$$\xrightarrow{I} \qquad m_1 \qquad \xrightarrow{J} \qquad \vdots \qquad \xrightarrow{K} \qquad (9)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

CBS Systems = comunicating objects

The type of this combinator as implemented in Haskell is

 $\begin{array}{l} (;) :: (Strong \ \mathbb{F}, Monad \ \mathbb{F}) \Rightarrow \\ -- \ \text{input (sender) machine} \\ ((s,i) \rightarrow \mathbb{F} \ (s,j)) \rightarrow \\ -- \ \text{input (receiver) machine} \\ ((r,j) \rightarrow \mathbb{F} \ (r,k)) \rightarrow \\ -- \ \text{output (compound) machine} \\ ((s,r),i) \rightarrow \mathbb{F} \ ((s,r),k) \end{array}$

It requires \mathbb{F} to be a **strong** monad ², a topic to be addressed later. Note how the output **compound** machine has a **composite state** pairing the states of the two input machines.

²Details in (Oliveira and Miraldo, 2016).

onents

y components

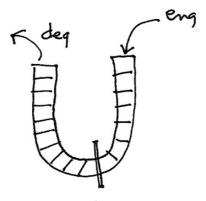
・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

References

Composing objects

Queue = two stacks:



out stack (left) interacting with in stack (right)

Object (MMM) sequential composition

Let m_1 , m_2 be two machines of types $S \times I \to \mathbb{F}(S \times J)$ and $Q \times J \to \mathbb{F}(Q \times K)$, respectively.

We will represent these machines by arrows $I \xrightarrow{m_1} J$ and $J \xrightarrow{m_2} Q K$, respectively.³ Then their sequential *composition* $I \xrightarrow{m_1;m_2} K$ is a machine with composite state $S \times Q$ built as is explained next.

³Wherever the state S of a machine $A \xrightarrow{m}{s} B$ is implicit from the context, simplified notation $A \xrightarrow{m}{s} B$ will be used instead.

Sequential composition

First, we build $I \stackrel{\text{extr } m_1}{\underset{S \times Q}{\longrightarrow}} J$, the state-extension of m_1 with the state Q of m_2

$$\mathbb{F} \left((S \times J) \times Q \right) \stackrel{\tau_r}{\longleftarrow} \mathbb{F} \left(S \times J \right) \times Q \stackrel{m_1 \times id}{\longleftarrow} (S \times I) \times Q$$

$$\mathbb{F}_{\mathsf{xr}}^{\uparrow} \qquad \qquad \uparrow^{\mathsf{xr}}$$

$$\mathbb{F} \left((S \times Q) \times J \right) \stackrel{\mathsf{extr}}{\longleftarrow} (S \times Q) \times I$$

where

• xr : $(A \times B) \times C \rightarrow (A \times C) \times B$ is the obvious isomorphism

• $\tau_r : (\mathbb{F} A) \times B \to \mathbb{F} (A \times B)$ is the right *strength* of monad \mathbb{F} .

・ロット 4回ット 4回ット 4回ット 4回ット

Sequential composition

So $I \xrightarrow{\text{extr } m_1} J$ has the same interface as $I \xrightarrow{m_1} J$, only the state differs. In turn, m_2 is extended in the same way,

$$\mathbb{F} (S \times (Q \times K)) \stackrel{\tau_1}{\longleftarrow} S \times \mathbb{F} (Q \times K) \stackrel{id \times m_2}{\longleftarrow} S \times (Q \times J)$$

$$\mathbb{F} \operatorname{assocr} \uparrow \qquad \uparrow^{\operatorname{assocr}}$$

$$\mathbb{F} ((S \times Q) \times K) \stackrel{\operatorname{extl} m_2}{\longleftarrow} (S \times Q) \times J$$

adding the state of m_1 to the left, where $\tau_l: (B \times \mathbb{F} A) \to \mathbb{F} (B \times A)$ is the left strength of \mathbb{F} , and assocr and assocl are well-known.

Therefore:

extl
$$m = \mathbb{F} \operatorname{assocl} \cdot \tau_l \cdot (id \times m) \cdot \operatorname{assocr}$$
 (10)
extr $m = \mathbb{F} \operatorname{xr} \cdot \tau_r \cdot (m \times id) \cdot \operatorname{xr}$ (11)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Sequential composition

Putting both extensions together

$$\mathbb{F}\left((S \times Q) \times J\right) \stackrel{\text{extr } m_1}{\leftarrow} (S \times Q) \times I$$

$$\mathbb{F}\left((S \times Q) \times K\right) \stackrel{\text{extr } m_2}{\leftarrow} (S \times Q) \times J$$

$$(ext \ m_2) \bullet (ext \ m_1)$$

we get the meaning of object composition

 $m_1; m_2 = (\mathbf{extl} \ m_2) \bullet (\mathbf{extr} \ m_1)$ (12)

which unfolds to

 $m_1; m_2 = ((\mathbb{F} \text{ assocl}) \cdot \tau_l \cdot (id \times m_2) \cdot \mathsf{xl}) \bullet (\tau_r \cdot (m_1 \times id) \cdot \mathsf{xr})$

Exercise 5: Define

m = pop'; push'

which pops from a source stack $(m_1 = pop')$ and pushes onto a target stack $(m_2 = push')$. Then run m(([1], [2]), ()) and m(([], [2]), ()) and observe the outcome. \Box

Exercise 6: What is the type of *stack* ; *stack*?

Exercise 7: Define an (M-MMM) object $queue = enq \oplus deq$ which should behave as a *queue*, with two methods: enq - enqueue, add to the queue - and deq - dequeue, remove from the queue.

Object (MMM) interfacing

From above we see the need for some mechanism to control how methods talk to each other when composing two objects.

Such a mechanism is called interface-wrapping:

 $\begin{array}{l} \cdot_{\{\cdot,\rightarrow\cdot\}} :: (Functor \ \mathbb{F}) \Rightarrow \\ - \text{ input machine} \\ ((a,e) \rightarrow \mathbb{F}(a,c)) \rightarrow \\ - \text{ input wrapper} \\ (i \rightarrow e) \rightarrow \\ - \text{ output wrapper} \\ (c \rightarrow d) \rightarrow \\ - \text{ output machine} \\ (a,i) \rightarrow \mathbb{F}(a,d) \\ - \text{ definition} \\ m_{\{f \rightarrow g\}} = \mathbb{F}(id \times g) \cdot m \cdot (id \times f) \end{array}$

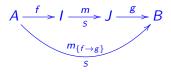
ty components

References

(14)

Object (MMM) interfacing

Note the types in:



This diagram is explained in the following exercise:

Exercise 8: Using the laws of Kleisli composition, show that

$$m_{\{f \to g\}} = \lceil g \rceil \bullet m \bullet \lceil f \rceil \tag{13}$$

holds, where

$$\ulcorner \cdot \urcorner : (I \to O) \to (S \times I \to \mathbb{F} (S \times O))$$
$$\ulcorner f \urcorner = \eta \cdot (id \times f)$$

lifts functions to MMMs. \Box

Universal property of MMM sums

Given two \mathbb{F} -monadic Mealy machines $I \xrightarrow{p} O$ and $J \xrightarrow{q} P$ (with the same state space) their sum is the machine

 $I + J \xrightarrow{p \oplus q} O + P$ defined by the following universal property:

$$k = p \oplus q \quad \Leftrightarrow \quad \left\{ \begin{array}{l} k_{\{i_1 \to id\}} = p_{\{id \to i_1\}} \\ k_{\{i_2 \to id\}} = q_{\{id \to i_2\}} \end{array} \right. \tag{15}$$

Proof: see (Oliveira and Miraldo, 2016).

Therefore:

$$(p \oplus q)_{\{i_1 \to id\}} = p_{\{id \to i_1\}}$$

$$(p \oplus q)_{\{i_2 \to id\}} = q_{\{id \to i_2\}}$$

$$(16)$$

$$(17)$$

Motivation Background Monads Mealy machines Components Faulty components References Exchange law

Universal property (15) is central to the calculation of the *exchange law* between machine sum and machine composition which follows:

Let $I \xrightarrow{m_1}{s} O$, $J \xrightarrow{m_2}{s} P$ and $O \xrightarrow{n_1}{q} U$, $P \xrightarrow{n_2}{q} V$ be pairs of \mathbb{F} -monadic Mealy machines (each pair sharing the same state space). Then the following exchange law holds, showing how sequential composition commutes with sums:

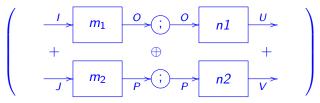
 $(m_1 \oplus m_2)$; $(n1 \oplus n2) = (m_1; n1) \oplus (m_2; n2)$ (18)

Proof: see (Oliveira and Miraldo, 2016).

In pictures, law (18) shows that the composition of machines

$$\xrightarrow{I+J} m_1 \oplus m_2 \xrightarrow{O+P} \stackrel{O+P}{\longrightarrow} n1 \oplus n2 \xrightarrow{U+V}$$

is the same machine as



(日) (同) (日) (日)

э

Changing effect of composition

Sometimes, we need to reverse composite machines:

$$\begin{array}{l} \overleftarrow{\cdot} :: \textit{Functor } \mathbb{F} \Rightarrow \\ - \cdot \text{ original } \mathsf{MM} \\ (((b, a), i) \rightarrow \mathbb{F} ((b, a), o)) \rightarrow \\ - \cdot \text{ changed } \mathsf{MM} \\ ((a, b), i) \rightarrow \mathbb{F} ((a, b), o) \\ \overleftarrow{m} = \mathbb{F} (\textit{swap} \times \textit{id}) \cdot m \cdot (\textit{swap} \times \textit{id}) \end{array}$$

where

swap(b,a) = (a,b)

thus changing which component is affected first in a composition.

Case study — folder

Let

 $folder = right \oplus left \oplus rd \oplus new$

where

right = pop'; push' $left = \overleftarrow{right}$ *new* = **extl** *push'* rd = extl top'

or new = nop; push', rd = nop; top'where $nop = \eta$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Summary

Component

(Monadic) Mealy machine (MMM), that is, an \mathbb{F} -branching transition structure of type:

 $S \times I \to \mathbb{F}(S \times O)$

(19)

(20)

э.

(21)

where \mathbb{F} is a monad.

Component-oriented design

Using MMM combinators as seen thus far.

Semantics

There are two alternative transpositions of \mathbb{F} -branching transition structure (19):

State-monadic:

 $I
ightarrow (\mathbb{F} (S imes O))^S$

Coalgebraic:

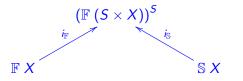
 $S \to (\mathbb{F}(S \times O))^{I}$

Abstracting from the state

Recalling the state monad (8):

 $\mathbb{S} X = (S \times X)^S$

we have the following diagram relating two base monads $\mathbb S$ and $\mathbb F$



to the compound one — $\mathbb{T} X = (\mathbb{F} (S \times X))^{S}$ — where

$$i_{\mathbb{S}} = \eta^{\mathsf{S}}$$
$$i_{\mathbb{F}} = \overline{(\mathbb{F} \text{ swap}) \cdot \tau_{\mathsf{r}}}$$

Abstracting from the state

Given a MMM $S \times I \xrightarrow{m} \mathbb{F}(S \times O)$, we denote by $m_{\mathbb{T}}$ the \mathbb{T} -transposed version of m, that is, $I \xrightarrow{m_{\mathbb{T}}} \mathbb{T} O$.

For instance, let

 $a = push'_{\mathbb{T}} 2$

Then action a will be such that $[a] [1] = Just ((), [2, 1]).^4$

Moreover, we can **thread** \mathbb{T} -actions without caring about passing the state explicitly. For instance, let the thread

 $t = \mathbf{do} \{ pop'_{\mathbb{T}} (); push'_{\mathbb{T}} 2 \}$

be defined.

⁴The meaning of [a] will be explained later on.

Abstracting from the state

Then run it over a starting state $s_0 = [0]$,

 $\begin{bmatrix} t \end{bmatrix} s_0 = Just$

as expected. Now run the thread **do** { pop'_{T} (); t }:

 $[do \{ popT (); t \}] s_0 = Nothing$

This fails over the same starting state because the starting stack is empty.

Note how \mathbb{M} effects and \mathbb{S} effects are blended in an implicit way via the \mathbb{T} compound monad.

NB: the pretty-printing above hides a number of details of the implementation. These can be found in module SMT.hs.

Motivation

Faulty components

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

References

Faulty components

Why fauty components?

In the trend towards **miniaturization** of automated systems the size of circuit transistors cannot be reduced endlessly, as these eventually become **unreliable**.

There is, however, the idea that inexact hardware can be *tolerated* provided it is *"good enough"* (Lingamneni et al., 2013).

Good enough has always been the way **engineering** works as a broad discipline.

If unreliable hardware becomes widely accepted on the basis of fault tolerance guarantees, what will the **impact** of this be on the **software** layers which run on top of it in virtually any automated system?

Sloppy arithmetic useful?

Horror!

イロト 不得 トイヨト イヨト

3

But there is more...

References

"Just good enough" h/w

... coming from the land of the Swiss watch:

"We should stop designing perfect circuits"

o2.10.13 - Are integrated circuits "too good" for current technological applications? Christian Enz, the new Director of the Institute of Microengineering, backs the idea that perfection is overrated.

Message:

Why **perfection** *if* (*some*) **imperfection** *still meets the standards*?

S/w for "just good enough" h/w

What about **software** running over "just good enough" hardware? Ready to **take the risk**?

Nonsense to run safety critical software on defective hardware?

Uups! — it seems "it already runs":

medical "IEC 60601-1 [brings] **risk management** into the **design** very first stages of [product development]"

Risk is everywhere — an inevitable (desired?) part of life.

References

Faulty components

Risk of pop' behaving like top' with **probability** 1 - p

 $pop'' :: \mathbb{P} \to ([a], 1) \to \mathbb{D} (\mathbb{M} ([a], a))$ $pop'' p = pop'_{p} \diamond top'$

and risk of push' not pushing anything, with probability 1-q

 $push'' :: \mathbb{P} \to ([a], a) \to \mathbb{D} (\mathbb{M} ([a], 1))$ $push'' q = push'_q \diamond skip'$

where $\mathbb{P} = [0, 1]$, \mathbb{D} is the (finite) **distribution** monad and

choses between f and g.

Simulation

Example (no faults) — popping from one stack and pushing onto another,

 $m_1 = pop'$; push'

should produce the intended behaviour, eg.

```
> curry m1 ([1],[2]) ()
Just (([],[1,2]),())
> curry m1 ([],[2]) ()
Nothing
```

Example (faulty stacks) — now suppose the stacks are faulty,

 $m_2 = pop'' \ 0.95$; $push'' \ 0.8$

over the same (global) state ([1],[2]).

Motivation

Faulty components

References

Simulation

Running the same simulation, now for machine m_2 ,

> curry m2 ([1],[2]) ()
Just (([],[1,2]),()) 76.0%
Just (([],[2]),()) 19.0%
Just (([1],[1,2]),()) 4.0%
Just (([1],[2]),()) 1.0%

the risk of faulty behaviour is 24% (1 - 0.76), structured as: (a) 1% — both components misbehave; (b) 19% — left stack misbehaves; (c) 4% — right stack misbehaves.

As expected,

```
> curry m2 ([],[2]) ()
Nothing 100.0%
```

is catastrophic (popping from an empty stack).

Faulty components

Simulation:

Using the **PFP library** written by Erwig and Kollmannsberger (2006).

Important:

Our MMMs have become probabilistic, leading to actions of general shape $I \rightarrow (\mathbb{D}(\mathbb{F}(S \times O)))^S$

Challenge:

Need for the probabilistic extension of the MMM combinators above.

Question: do we need to start **all over again** for the **probabilistic** case?

Note that all our combinators are parametric on a "branching"-monad \mathbb{F} .

It all amounts to check whether the composition $\mathbb{D}\cdot\mathbb{M}$ forms a monad or not.

Monad composition is a well-studied subject. We just need, in our case, to check whether there is a function $\lambda : (\mathbb{M} \cdot \mathbb{D}) X \to (\mathbb{D} \cdot \mathbb{M}) X$ satisfying some laws (see below).

Such a function indeed exists:

 λ Nothing = η Nothing λ (Just a) = \mathbb{D} Just a

Composing monads

Here is how composite monad $\mathbb{H}=\mathbb{D}\cdot\mathbb{M}$ is built, assuming that \mathbb{D} and \mathbb{M} are so:

instance *Monad* \mathbb{H} where $eta = \eta_{\mathbb{D}} \cdot \eta_{\mathbb{M}}$ $x \gg f = (\mu \cdot \mathbb{D} (\mathbb{M} f)) x$ where $\mu = (\mathbb{D} \mu_{\mathbb{M}}) \cdot \mu_{\mathbb{D}} \cdot \mathbb{D} \lambda$

We can do everything as before for **probabilistic** objects (components), for instance addition over a run-time execution stack:

$t'' = \operatorname{do} \{$	Just 9	48.0%
$x \leftarrow pop'' 0.8_{\mathbb{T}}$ ();	Nothing	28.8%
$y \leftarrow pop'' 0.9_{\mathbb{T}}$ ();	Just 8	12.0%
$push'' 0.6_{\mathbb{T}} (x+y);$	Just 5	10.4%
$pop^{\prime\prime} 0.7_{\mathbb{T}}$ ()}	Just 4	0.8%

such that [t''] [4,5] will yield

Distributive laws

Let $X \xrightarrow{\eta_{\mathbb{T}}} \mathbb{T}X \xleftarrow{\mu_{\mathbb{T}}} \mathbb{T}^2X$ and $X \xrightarrow{\eta_{\mathbb{F}}} \mathbb{F}X \xleftarrow{\mu_{\mathbb{F}}} \mathbb{F}^2X$ be two monads.

A **distributive law** of \mathbb{T} over \mathbb{F} is a polymorphic function $\lambda : \mathbb{F} \mathbb{T} \to \mathbb{T} \mathbb{F}$ such that

$$\lambda \cdot \mathbb{F} \eta_{\mathbb{T}} = \eta_{\mathbb{T}}$$
(22)
$$\lambda \cdot \mathbb{F} \mu_{\mathbb{T}} = \mu_{\mathbb{T}} \cdot \mathbb{T} \lambda \cdot \lambda$$
(23)

and

$$\lambda \cdot \eta_{\mathbb{F}} = \mathbb{T}\eta_{\mathbb{F}}$$
(24)
$$\mathbb{T}\mu_{\mathbb{F}} \cdot \lambda \cdot \mathbb{F}\lambda = \lambda \cdot \mu_{\mathbb{F}}$$
(25)

hold.

From Cp.hs:

class Functor $\mathbb{F} \Rightarrow DistL \mathbb{F}$ where $\lambda :: Monad \mathbb{T} \Rightarrow \mathbb{F} (\mathbb{T} a) \rightarrow \mathbb{T} (\mathbb{F} a)$

Listas:

instance DistL [] where $\lambda = sequence$

Maybe:

instance $DistL \mathbb{M}$ where λ Nothing = η Nothing λ (Just a) = \mathbb{T} Just a

Exercise 9: Let $m = (pop'' \ 0.6)$; $(push'' \ 0.5)$. When running $[m_{\mathbb{T}}()] s_0$

for any initial state s_0 you always get a Dirac distribution as output. Where is the probabilistic behaviour, then? \Box

Exercise 10: Build a probabilistic folder and exercise it in GHCi. \Box

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

ients Fa

Faulty components

References

More combinators

Parallel composition:

 $\begin{array}{l} \cdot \boxtimes \cdot ::(\textit{Monad } \mathbb{F},\textit{Strong } \mathbb{F}) \Rightarrow \\ -\text{input machines} \\ ((s,i) \to \mathbb{F} (s,o)) \to \\ ((t,j) \to \mathbb{F} (t,r)) \to \\ -\text{output machine} \\ ((s,t),(i,j)) \to \mathbb{F} ((s,t),(o,r)) \\ p \boxtimes q = (\mathbb{F} m) \cdot \delta \cdot (p \times q) \cdot m \end{array}$

where $m = \langle \pi_1 imes \pi_1, \pi_2 imes \pi_2 \rangle$ and

 $\delta :: Strong \mathbb{F} \Rightarrow (\mathbb{F} a, \mathbb{F} b) \rightarrow \mathbb{F} (a, b)$ $\delta = \tau_r \bullet \tau_l$

is the double strength operator.

Conditionals

Also useful is the MMM-level McCarthy conditional combinator,

```
\cdot \rightarrow \cdot, \cdot :: (Monad \mathbb{F}, Functor \mathbb{F}) \Rightarrow
    -- condition
    ((a,i) \rightarrow \mathbb{F}(a,\mathbb{B})) \rightarrow
    -- 'then' branch
    ((a,1) \rightarrow \mathbb{F}(a,o)) \rightarrow
    -- 'else' branch
    ((a,1) \rightarrow \mathbb{F}(a,o)) \rightarrow
    -- output
    (a,i) \rightarrow \mathbb{F}(a,o)
    -- definition
p \rightarrow m_1, m_2 = [m_1, m_2] \bullet (\mathbb{F} \text{ distl} \cdot p_{\{id \rightarrow outB\}})
```

where *outB* witnesses isomorphism $\mathbb{B} \cong 1 + 1$.

MMM behavioural equivalence

Two Mealy machines $I \xrightarrow{m_1}{s} J$ and $I \xrightarrow{m_2}{q} J$ are **behaviourally** equivalent provided a function $h: S \to Q$ can be found such that

$$\begin{array}{cccc}
\mathbb{F} (S \times J) \stackrel{m_1}{\longleftarrow} S \times I & S \\
\mathbb{F} (h \times id) & & & \downarrow h \times id & \downarrow h \\
\mathbb{F} (Q \times J) \stackrel{m_2}{\longleftarrow} Q \times I & Q
\end{array}$$

holds:

$$\mathbb{F}(h \times id) \cdot m_1 = m_2 \cdot (h \times id)$$
(26)

 $h: S \rightarrow Q$ is said to be a MM-morphism and we write $m_1 \simeq m_2$ to express the equivalence. Behavioural equivalence in what sense?

Behavioural equivalence

Let us reason about equality (26):

$$\mathbb{F} (h \times id) \cdot m_1 = m_2 \cdot (h \times id)$$

$$\Leftrightarrow \qquad \{ \text{ currying } \}$$

$$\overline{\mathbb{F} (h \times id) \cdot m_1} = \overline{m_2 \cdot (h \times id)}$$

$$\Leftrightarrow \qquad \{ \text{ absorption and fusion laws of exponentials } \}$$

$$(\mathbb{F} (h \times id))^I \cdot \overline{m_1} = \overline{m_2} \cdot h$$

$$\Leftrightarrow \qquad \{ \text{ define } \mathbb{H} \ X = (\mathbb{F} (X \times J))^I \}$$

$$\mathbb{H} \ h \cdot \overline{m_1} = \overline{m_2} \cdot h$$

 $\overline{m_1}: S \to \mathbb{H} \ S$ and $\overline{m_2}: Q \to \mathbb{H} \ Q$ are said to be \mathbb{H} -coalgebras.

Behavioural equivalence

From

 $\mathbb{H} h \cdot \overline{m_1} = \overline{m_2} \cdot h$

we infer

 $\overline{m_2} \cdot h \subseteq \mathbb{H} \ h \cdot \overline{m_1}$

that is, m_1 and m_2 are **bisimilar**. In general, R is a bisimulation if

 $\overline{m_2} \cdot R \subseteq \mathbb{H} \ R \cdot \overline{m_1}$

(27)

holds, that is (pointwise):

 $q' \ R \ q \Rightarrow (\overline{m_2} \ q') \ \mathbb{H} \ R \ (\overline{m_1} \ q)$

Faulty components

References

Behaviour coalgebra

Recall

$$\begin{array}{c|c} \left(\mathbb{F}\left(S\times J\right)\right)^{l} \xleftarrow{\overline{m_{1}}} S & S\\ \left(\mathbb{F}\left(h\times id\right)\right)^{l} & \downarrow & \downarrow \\ \left(\mathbb{F}\left(Q\times J\right)\right)^{l} \xleftarrow{\overline{m_{2}}} Q & Q \end{array}$$

In particular, $h = [(\overline{m_1})]$ always exists, assigning to each state $s \in S$ the behaviour of m_1 taking s as **starting** state:

$$\begin{array}{c|c} \left(\mathbb{F}\left(S\times J\right)\right)^{l} \stackrel{\overline{m_{1}}}{\longleftarrow} S & S \\ \left(\mathbb{F}\left(h\times id\right)\right)^{l} & \downarrow & \downarrow \\ \left(\mathbb{F}\left(\Omega\times J\right)\right)^{l} \stackrel{\overline{m_{1}}}{\longleftarrow} \Omega & \Omega \end{array}$$

 $\Omega = (\mathbb{F} J^{\infty})^{\prime \infty} - \text{possibly infinite stream of inputs monadically mapped}$ to similar stream of outputs.

Finite approximation

Recall $[\!(m)\!]: S \to (I^{\infty} \to (\mathbb{F} J^{\infty})).$

Finite approximation,

 $\llbracket (m] :: S \to ([I] \to \mathbb{F} [J])$

assuming finite stream of inputs:

Example (stack)

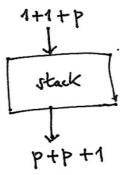
Recall:

```
stack :: ([p], (1+1) + p)
   \rightarrow \mathbb{M}([p], (p+p)+1)
stack = (pop' \oplus top') \oplus push'
```

Define, just for convenience, the following "methods":

> $mPOP = i_1 \cdot i_1$ $mTOP = i_1 \cdot i_2$ $mPUSH = i_2$

and **coalgebra** c = stack.



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

```
Motivation Background Monads Mealy machines Components Faulty components References
Example (stack)
```

Then experiment with the behaviour of m for finite streams of inputs:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

```
\begin{array}{l} \textit{Main> [(c)] [] [mPUSH 2, mPOP (), mTOP ()]} \\ \textit{Nothing} \\ \textit{Main> [(c)] [] [mPUSH 2, mTOP (), mTOP ()]} \\ \textit{Just [} i_2 (), i_1 (i_2 2), i_1 (i_2 2)] \end{array}
```


Exercise 11: Define the machine $J \xrightarrow{copy} J$ that faithfully passes its input to the output, never changing state:

 $copy: 1 imes J
ightarrow \mathbb{F} (1 imes J) \ copy = \eta$

Show that:

 $m; copy \simeq m \simeq copy; m$ (28) $m; (n; p) \simeq (m; n); p$ (29)

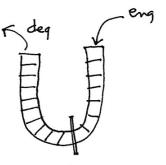
Case study (TP3 assignment)

Implement a queue by composing two stacks.

 $\begin{array}{l} \textbf{out} \text{ stack (left) interacting with } \textbf{in stac} \\ (\text{right}) \end{array}$

When **out** stack gets empty you should flush into it the data from the other sta

Build a faulty queue by injecting faults the stacks.



イロト 不得 トイヨト イヨト

Test the behaviour of the (faulty) queue with a distribution of (finite) input streams. Can you measure the probability of the stack flushes?

Motivation

round N

Mealy machi

Components

Faulty components

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

References

References

Motivation

- V. Cortellessa and V. Grassi. A modeling approach to analyze the impact of error propagation on reliability of component-based systems. In *Component-Based Software Engineering*, volume 4608 of *LNCS*, pages 140–156. 2007.
- M. Erwig and S. Kollmannsberger. Functional pearls: Probabilistic functional programming in Haskell. J. Funct. Program., 16: 21–34, January 2006.
- D. Jackson. A direct path to dependable software. *Commun. ACM*, 52(4):78–88, 2009.
- J. Joyce. Proposed Formal Methods Supplement for RTCA DO 178C, 2011. High Confidence Software and Systems, 11th Annual Conference, 3-6 May 2011, Annapolis.
- A. Lingamneni, C. Enz, K. Palem, and C. Piguet. Synthesizing parsimonious inexact circuits through probabilistic design techniques. *ACM Trans. Embed. Comput. Syst.*, 12(2s): 93:1–93:26, May 2013. ISSN 1539-9087.
- A. McIver and C. Morgan. *Abstraction, Refinement and Proof for Probabilistic Systems*. Monographs in Computer Science. Springer-Verlag, 2005. ISBN 0387401156.

Motivation

J.N. Oliveira and V.C. Miraldo. "Keep definition, change category"

— a practical approach to state-based system calculi. JLAMP, 85(4):449–474, 2016.

M. Stamatelatos and H. Dezfuli. Probabilistic Risk Assessment Procedures Guide for NASA Managers and Practitioners, 2011. NASA/SP-2011-3421, 2nd edition, December 2011.