Architectural design: the coordination perspective

José Proença HASLab - INESC TEC & UM Arquitectura e Cálculo 2015-16

Reo eclipse toolset

Reo semantics

Jongmans and Arbab 2012

Overview of Thirty Semantic Formalisms for Reo

Reo semantics

- Coalgebraic models
 - Timed data streams
 - Record streams
- Coloring models
 - Two colors
 - Three colors
 - Tile models
- Other models
 - Process algebra
 - Constraints
 - Petri nets & intuitionistic logic
 - Unifying theories of programming
 - Structural operational semantics

- Operational models
 - Constraint automata
 - Variants of constraint automata
 - Port automata
 - Timed Probabilistic
 - Continuous-time
 - Quantitative
 - Resource-sensitive timed
 - Transactional
 - Context-sensitive automata
 - Büchi automata
 - Reo automata
 - Intentional automata
 - Action constraint automata
 - Behavioral automata
 - Structural operational semantics

- 2_{CM} : Coloring models with two colors [28, 29, 33]
- 3CM : Coloring models with three colors [28, 29, 33]
- ABAR : Augmented BAR [39, 40]
- ACA : Action CA [46]
- BA : Behavioral automata [61]
- BAR : Büchi automata of records [38, 40]
- CA : Constraint automata [10, 17]
- CASM : CA with state memory [60]
- CCA : Continuous-time CA [18]
- Constr.: Propositional constraints [30, 31, 32]
- GA : Guarded automata [20, 21]
- IA : Intentional automata [33]
- ITLL : Intuitionistic temporal linear logic [27]
- LCA : Labeled CA [44]
- mCRL2 : Process algebra [47, 48, 49]

- PA : Port automata [45]
- PCA : Probabilistic CA [15]
- QCA : Quantitative CA [12, 53]
- QIA : Quantitative IA [13]
- RS : Record streams [38, 40]
- RSTCA: Resource-sensitive timed CA [51]
- SGA : Stochastic GA [56, 57]
- SOS : Structural operational semantics [58]
- SPCA : Simple PCA [15]
- TCA : Timed CA [8, 9]
- TDS : Timed data streams [4, 5, 14, 62]
- Tiles : Tile models [11]
- TNCA : Transactional CA [54]
- UTP : Unifying theories of programming [55, 52]
- ZSN : Zero-safe nets [27]

Outline

Formalism	Synchr.	Data	Context	Partial
Connector Colouring	CC2	-	CC3	_
Automata	Port Automata	Constraint Automata	-	-
Constraints	\checkmark	\checkmark	V	\checkmark

Reo Connector Colouring

Dave Clarke, David Costa, and Farhad Arbab. Connector colouring I: Synchronisation and context dependency

Behaviour?

merger: data flows from one of the source ends to the sink end

lossy-sync: either data flows from the source to the sink end, OR it is lost

FIFO-1: data flows from the source end to the buffer, becoming a FIFOFull-1

FIFOFull-1: data flows from the buffer to the sink buffer, becoming a FIFO-1

Colourings to describe synchronous dataflow

Colouring composition

Colouring semantics (CC2)

- Colouring: End \rightarrow {Flow, NoFlow}
- Colouring table: Set(Colouring)
- Composition = matching colours

- More visual (intuitive)
- Used for generating <u>animations</u>

Colouring semantics (CC2)

- Colouring: End → {Flow, NoFlow}
- Colouring table: Set(Colouring)

• Composition = matching colours $CT_{1} \bowtie CT_{2} = \{cl_{1} \bowtie cl_{2} \mid cl_{1} \in CT_{1}, cl_{2} \in CT_{2}, cl_{1} \frown cl_{2}\}$ $cl_{1} \frown cl_{2} = \forall e \in \operatorname{dom}(cl_{1}) \cap \operatorname{dom}(cl_{2}) \cdot cl_{1}(e) = cl_{2}(e)$ $cl_{1} \bowtie cl_{2} = cl_{1} \cup cl_{2}$

Reo Connector Colouring

Dave Clarke, David Costa, and Farhad Arbab. Connector colouring I: Synchronisation and context dependency

Port and Constraint Automata

Christel Baier, Marjan Sirjani, Farhad Arbab, Jan Rutten. Modeling Component Connectors in Reo by Constraint Automata. 2004 Christian Koehler and Dave Clarke. Decomposing Port Automata. 2009

Connector behaviour (statefull)

- Dataflow behaviour is discrete in time: it can be observed and snapshots taken at a pace fast enough to obtain (at least) a snapshot as often as the configuration of the connector changes
- At each time unit the connector performs an evaluation step: it evaluates its configuration and according to its interaction constraints changes to another (possibly different) configuration
- A connector can fire multiple ports in the same evaluation step

Port Automata

 $\begin{array}{ll} \mathcal{A} = (\mathcal{Q}, \mathcal{N}, \rightarrow, \mathcal{Q}_0) \\ \begin{array}{l} \mathcal{Q} \\ \mathcal{N} \\ \rightarrow \end{array} & \text{set of states} \\ \mathcal{N} \\ \rightarrow \end{array} & \text{a set of ports } \mathcal{N} \\ \mathcal{Q}_0 \subseteq \mathcal{Q} \end{array} & \text{a transition relation} \\ \begin{array}{l} \text{a set of initial states} \end{array}$

transitions must have a non-empty set of ports!

Composing steps

Composing steps

$\mathbf{ac} \bowtie \mathbf{cd} \bowtie \mathbf{d} = \mathbf{acd}$ $\mathbf{ac} \bowtie \mathbf{c} \bowtie \mathbf{d} = \bot$

Composition - formally

Definition 2. The product of two port automata $\mathcal{A}_1 = (\mathcal{Q}_1, \mathcal{N}_1, \rightarrow_1, \mathcal{Q}_{0,1})$ and $\mathcal{A}_2 = (\mathcal{Q}_2, \mathcal{N}_2, \rightarrow_2, \mathcal{Q}_{0,2})$ is defined by $\mathcal{A}_1 \bowtie \mathcal{A}_2 = (\mathcal{Q}_1 \times \mathcal{Q}_2, \mathcal{N}_1, \mathcal{N}_2, \rightarrow, \mathcal{Q}_{0,1} \times \mathcal{Q}_{0,2})$

where \rightarrow is defined by the rule

$$\underbrace{\begin{array}{ccccc} q_1 & \stackrel{N_1}{\longrightarrow} _1 p_1 & q_2 & \stackrel{N_2}{\longrightarrow} _1 p_2 & N_1 \cap \mathcal{N}_2 = N_2 \cap \mathcal{N}_1 \\ & & \langle q_1, q_2 \rangle \xrightarrow[N_1 \cup N_2]{N_1 \cup N_2} \langle p_1, p_2 \rangle \end{array} }$$

and the following and its symmetric rule

$$\frac{q_1 \xrightarrow{N_1} p_1 \quad N_1 \cap \mathcal{N}_2}{\langle q_1, q_2 \rangle \xrightarrow{N_1} \langle p_1, q_2 \rangle} = \emptyset$$

Formalize and compose

Examples I

Flow regulator "b" controls flow from "a" to "c"

data flows from "a" to "b" ONLY if either "c" or "d" have data

Examples II

Synchronising barrier data flows "a" \longrightarrow "b" IFF data flows "c" \longrightarrow "d"

Alternator

data flows from "a" and from "b" to "z", alternating (+ extra synch constraints)

Examples III

N-Alternator

data flows from "a", "b", "c", and "d" to "z", alternating (+ extra Synch constraints)

Examples IV

Sequencer

Data flows from "a" to "d", "b" to "e", and "c" to "f" alternating.

Reo in mCRL2

$$Lossy = (c | d + c).Lossy$$

Merger = (a | c + b | c).Merger

Conn = hide($\{c,d\}$, block($\{c_1,c_2,d_1,d_2\}$, comm($\{c_1|c_2 \rightarrow c, d_1|d_2 \rightarrow d\}$, Merger || Lossy || FIFO1)))

Conn = hide($\{c,d\}$, block($\{c_1,c_2,d_1,d_2\}$, comm($\{c_1|c_2 \rightarrow c, d_1|d_2 \rightarrow d\}$, Merger || Lossy || FIFO1)))

Build connectors

Can you prove?

colourings and port automata provide equivalent semantics

$$\begin{aligned} \mathcal{A}(C_1) &= (Q_1, \mathcal{N}_1, \rightarrow_1, q_{0,1}) \\ \mathcal{A}(C_2) &= (Q_2, \mathcal{N}_2, \rightarrow_2, q_{0,2}) \end{aligned} \qquad \begin{array}{l} \mathcal{CT}(C) &- \text{ colouring table of } C \\ col(q \xrightarrow{P} q') &- \text{ colouring associated} \\ \text{to a transition} \end{aligned}$$

$$(\langle \mathbf{q}_{0,1}, \mathbf{q}_{0,2} \rangle \xrightarrow{P} \langle q_1, q_2 \rangle) \in \mathcal{A}(C_1) \bowtie \mathcal{A}(C_2)$$
$$\Rightarrow$$
$$col(\langle \mathbf{q}_{0,1}, \mathbf{q}_{0,2} \rangle \xrightarrow{P} \langle q_1, q_2 \rangle) \in \mathcal{CT}(C_1) \bowtie \mathcal{CT}(C_2)$$

Can you prove? (more generically)

colourings and port automata provide equivalent semantics

$$\mathcal{A} = (\mathcal{Q}, \mathcal{N}, \rightarrow, \{q_0\})$$
$$(q_0 \xrightarrow{P} q) \in \mathcal{A}(C)$$
$$\Rightarrow$$
$$col(P, \mathcal{N}) \in \mathcal{CT}(C)$$

Constraint Automata

Automata labelled by

• a data constraint which represents a set of data assignments to port names

$$g$$
 ::= true | $d_A = v$ | $g_1 \lor g_2$ | $\neg g$

Note: other constraints, such as $d_A = d_B \stackrel{\text{abv}}{=} \lor_{d \in Data} (d_A = d \land d_B = d)$ are derived.

 a name set which represents the set of port names at which IO can occur

States represent the configurations of the corresponding connector, while transitions encode its maximally-parallel stepwise behaviour.

Constraint Automata

Example: FIFOI

Constraint Automata -Definition

$$\begin{aligned} \mathcal{A} &= (\mathcal{Q}, \mathcal{N}, \rightarrow, \mathcal{Q}_{0}) \\ \mathcal{Q} \\ \mathcal{N} \\ \mathcal{Q}_{0} &\subseteq \mathcal{Q} \\ \rightarrow &\subseteq \mathcal{Q} \times 2^{\mathcal{N}} \times DC \times \mathcal{Q} \end{aligned} & \text{set of states} \\ a \text{ set of ports } \mathcal{N} \\ a \text{ set of initial states} \\ a \text{ transition relation such that} \xrightarrow{P,g} \text{ iff} \\ 1. \ P \neq \emptyset \\ 2. \ g \in DC(P, Data) \end{aligned}$$

(DC(P, Data) is the set of data constraints over Data and P)

Constraint Automata -Definition $s \xrightarrow{P,g} s'$ iff 1. $P \neq \emptyset$ in configuration s, ports in P > 2. $g \in DC(P, Data)$ can perform 10 operations which meet guard g and lead to s' transitions fire only if data occurs at a (set of) ports P behaviour depends only on observed data (not on future evolution)

Constraint Automata as a semantics for Reo

- cannot capture context-awareness [Baier, Sirjani, Arbab, Rutten 2006], but forms the basis for more elaborated models (eg, Reo automata)
- captures all behaviour alternatives of a connector; useful to generate a state-machine implementing the connector's behaviour
- basis for several tools, including the model checker Vereofy [Kluppelholz, Baier 2007]

Constraint Automata -Reo connectors

{ A }

synchronous drain or synchronous spout

asynchronous drain or asynchronous spout

lossy synchronous channel

{A,B}

 $d_A = d_B$

Parameterised constraint automata

States are parametric on data values ... therefore capturing complex constraint automata emerging form data-dependencies Example: 1 bounded FIFO

Composing constraint automata

Definition 4.1 [*Product-automaton*] The product-automaton of the two constraint automata $\mathcal{A}_1 = (Q_1, \mathcal{N}ames_1, \longrightarrow_1, Q_{0,1})$ and $\mathcal{A}_2 = (Q_2, \mathcal{N}ames_2, \longrightarrow_2, Q_{0,2})$, is:

 $\mathcal{A}_{1} \bowtie \mathcal{A}_{2} = (Q_{1} \times Q_{2}, \mathcal{N}ames_{1} \cup \mathcal{N}ames_{2}, \longrightarrow, Q_{0,1} \times Q_{0,2})$

where \longrightarrow is defined by the following rules:

and

$$\underline{q_1 \stackrel{N_1,g_1}{\longrightarrow} p_1, \ q_2 \stackrel{N_2,g_2}{\longrightarrow} p_2, \ N_1 \cap \mathcal{N}ames_2 = N_2 \cap \mathcal{N}ames_1}_{\langle q_1,q_2 \rangle \stackrel{N_1 \cup N_2,g_1 \wedge g_2}{\longrightarrow} \langle p_1,p_2 \rangle}$$
$$\underline{q_1 \stackrel{N,g}{\longrightarrow} p_1, \ N \cap \mathcal{N}ames_2 = \emptyset}_{\langle q_1,q_2 \rangle \stackrel{N,g}{\longrightarrow} \langle p_1,q_2 \rangle}$$

You are here

2 reasons for context

Context = 3 colours

• Colouring:

End \rightarrow {Flow, GiveReason, GetReason}

• *Composition* = matching colours:

Context = 3 colours
•
$$c_{ol} End = \{e_1, \dots, e_n\} \cup \{\overline{e_1}, \dots, \overline{e_n}\}$$

• $End \rightarrow \{Flow, GiveReason, GetReason\}$
• $composition = matching colours:$
• $CT_1 \bowtie CT_2 =$
 $\{cl_1 \bowtie cl_2 \mid cl_1 \in CT_1, cl_2 \in CT_2, cl_1 \frown cl_2\}$
 $cl_1 \frown cl_2 = \forall e_1 \in dom(cl_1) \cdot \forall e_2 dom(cl_2) \cdot$
 $e_1 = \overline{e}_2 \Rightarrow$
 $(cl_1(e), cl_2(e)) \in \{(\blacktriangleright, \blacktriangleright), (\triangleleft, \triangleleft), (\triangleright, \triangleleft), \}$
 $cl_1 \bowtie cl_2 = cl_1 \cup cl_2$

Composition

Priority with 3 colours

Connector colouring 3

- Compositional composition operation is associative, commutative, and does not require post-processing.
- Reasons for the absence of flow are propagated.
- Expresses priority.
- 2 colours ⇔ constraint automata (without data)
- 3 colours: + expressive (⇔ intentional automata)

Build a connector

prefer fast FIFO