Architectural design: the coordination perspective

José Proença
HASLab - INESC TEC \& UM
Arquitectura e Cálculo 2015-16

Reo

Reo eclipse toolset

Reo semantics

Jongmans and Arbab 2012
Overview of Thirty Semantic Formalisms for Reo

Reo semantics

- Coalgebraic models
- Timed data streams
- Record streams
- Coloring models
- Two colors
- Three colors
- Tile models
- Other models
- Process algebra
- Constraints
- Petri nets \& intuitionistic logic
- Unifying theories of programming
- Structural operational semantics
- Operational models
- Constraint automata
- Variants of constraint automata
- Port automata
- Timed Probabilistic
- Continuous-time
- Quantitative
- Resource-sensitive timed
- Transactional
- Context-sensitive automata
- Büchi automata
- Reo automata
- Intentional automata
- Action constraint automata
- Behavioral automata
- Structural operational semantics

2 CM : Coloring models with two colors [28, 29, 33]
3 CM : Coloring models with three colors [28, 29, 33]
ABAR : Augmented BAR [39, 40]
ACA : Action CA [46]
BA : Behavioral automata [61]
BAR : Büchi automata of records [38, 40]
CA : Constraint automata $[10,17]$
CASM : CA with state memory [60]
CCA : Continuous-time CA [18]
Constr.: Propositional constraints [30, 31, 32]
GA : Guarded automata [20, 21]
IA : Intentional automata [33]
ITLL : Intuitionistic temporal linear logic [27]
LCA : Labeled CA [44]
mCRL2 : Process algebra [47, 48, 49]

PA : Port automata [45]
PCA : Probabilistic CA [15]
QCA : Quantitative CA [12, 53]
QIA : Quantitative IA [13]
RS : Record streams [38, 40]
RSTCA: Resource-sensitive timed CA [51]
SGA : Stochastic GA [56, 57]
SOS : Structural operational semantics [58]
SPCA : Simple PCA [15]
TCA : Timed CA [8, 9]
TDS : Timed data streams $[4,5,14,62]$
Tiles : Tile models [11]
TNCA : Transactional CA [54]
UTP : Unifying theories of programming [55, 52]
ZSN : Zero-safe nets [27]

Outline

Outline

Reo Connector Colouring

Behaviour?

merger: data flows from one of the source ends to the sink end
lossy-sync: either data flows from the source to the sink end, OR it is lost

FIFO-1: data flows from the source end to the buffer, becoming a FIFOFull-1

FIFOFull-1: data flows from the buffer to the sink buffer, becoming a FIFO-I

Colourings to describe synchronous dataflow

Colouring composition

Colouring semantics (CC2)

- Colouring: End \rightarrow \{Flow, NoFlow $\}$
- Colouring table: Set(Colouring)
- Composition $=$ matching colours
- More visual (intuitive)
- Used for generating animations

Colouring semantics (CC2)

- Colouring: End \rightarrow \{Flow, NoFlow $\}$
- Colouring table: Set(Colouring)
- Composition $=$ matching colours

$$
\begin{aligned}
& C T_{1} \bowtie C T_{2}= \\
& \quad\left\{c l_{1} \bowtie c l_{2} \mid c l_{1} \in C T_{1}, c l_{2} \in C T_{2}, c l_{1} \frown c l_{2}\right\} \\
& c l_{1} \frown c l_{2}=\forall e \in \operatorname{dom}\left(c l_{1}\right) \cap \operatorname{dom}\left(c l_{2}\right) \cdot c l_{1}(e)=c l_{2}(e) \\
& c l_{1} \bowtie c l_{2}=c l_{1} \cup c l_{2}
\end{aligned}
$$

Exercise: compose colouring tables

Reo Connector Colouring

Port and Constraint Automata

Connector behaviour (statefull)

- Dataflow behaviour is discrete in time: it can be observed and snapshots taken at a pace fast enough to obtain (at least) a snapshot as often as the configuration of the connector changes
- At each time unit the connector performs an evaluation step: it evaluates its configuration and according to its interaction constraints changes to another (possibly different) configuration
- A connector can fire multiple ports in the same evaluation step

Port Automata

\[

\]

transitions must have a non-empty set of ports!
examples:

$$
a \leadsto b
$$

$$
a---->b
$$

Composing steps

Composing steps

$$
\begin{aligned}
\mathbf{a c} \bowtie \mathbf{c d} \bowtie \mathbf{d} & =\text { acd } \\
\mathbf{a c} \bowtie \mathbf{c} \bowtie d & =\perp
\end{aligned}
$$

Composition - formally

Definition 2. The product of two port automata $\mathcal{A}_{1}=$ $\left(\mathcal{Q}_{1}\left(\mathcal{N}_{1}\right) \rightarrow_{1}, \mathcal{Q}_{0,1}\right)$ and $\mathcal{A}_{2}=\left(\mathcal{Q}_{2}\left(\mathcal{N}_{2}\right) \rightarrow_{2}, \mathcal{Q}_{0,2}\right)$ is defined by

$$
\mathcal{A}_{1} \bowtie \mathcal{A}_{2}=\left(\mathcal{Q}_{1} \times \mathcal{Q}_{2}\left(\mathcal{N}_{1}\right)\left(\mathcal{N}_{2}\right) \rightarrow, \mathcal{Q}_{0,1} \times \mathcal{Q}_{0,2}\right)
$$

where \rightarrow is defined by the rule

$$
\left.\xrightarrow\left[{\xrightarrow[\longrightarrow]{q_{1}}{ }^{N_{1}} p_{1} \quad q_{2} \xrightarrow{N_{2}} p_{2} \quad N_{1},\left(\mathcal{N}_{2}\right)=N_{2}, \mathcal{N}_{1}}\right)\right]{\left\langle q_{1}, q_{2}\right\rangle \xrightarrow{N_{1} \cup N_{2}}\left\langle p_{1}, p_{2}\right\rangle}
$$

and the following and its symmetric rule

$$
\frac{\left.q_{1} \xrightarrow[N_{1}]{N_{1}} p_{1} \quad N_{1} \hat{N}_{2}\right)=\emptyset}{\left\langle q_{1}, q_{2}\right\rangle \xrightarrow{N_{1}}\left\langle p_{1}, q_{2}\right\rangle}
$$

Formalize and compose

$$
\frac{q_{1} \xrightarrow{N_{1}} 1 p_{1} \quad q_{2} \xrightarrow{N_{2}} p_{2} \quad N_{1} \cap \mathcal{N}_{2}=N_{2} \cap \mathcal{N}_{1}}{\left\langle q_{1}, q_{2}\right\rangle \xrightarrow{N_{1} \cup N_{2}}\left\langle p_{1}, p_{2}\right\rangle}
$$

$$
\mathcal{A}=\left(\mathcal{Q}, \mathcal{N}, \rightarrow, \mathcal{Q}_{0}\right)
$$

$$
\frac{q_{1} \xrightarrow{N_{1}} 1 p_{1} \quad N_{1} \cap \mathcal{N}_{2}=\emptyset}{\left\langle q_{1}, q_{2}\right\rangle \xrightarrow{N_{1}}\left\langle p_{1}, q_{2}\right\rangle}
$$

Examples I

Flow regulator
"b" controls flow from " 2 " to "c"

data flows from "a" to "b" ONLY if either "c" or "d" have data

Examples II

Synchronising barrier data flows "a" \longrightarrow "b" IFF
data flows "c" —> "d"

Alternator

data flows from "a" and from "b" to " z ",
alternating (+ extra syuch constraints)

Examples III

N-Alternator

data flows from "a", "b", "c", and "d" to " z ", alternating (+ extra syuch constraints)

Examples IV

Sequencer
Data flows from " a " to " d ", " b " to " e ", and " c " to " f " alternating.

Reo in mCRL2

$$
\text { Lossy }=(c \mid d+c) \text {.Lossy }
$$

Merger $=(a|c+b| c)$.Merger

Reo in mCRL2

Conn $=\operatorname{hide}(\{c, d\}$,

$$
\begin{aligned}
& \operatorname{block}\left(\left\{c_{1}, c_{2}, d_{1}, d_{2}\right\},\right. \\
& \operatorname{comm}\left(\left\{c_{1}\left|c_{2}->c_{,} d_{1}\right| d_{2}->\mathrm{d}\right\},\right. \\
& \text { Merger } \| \text { Lossy } \| \text { FIFO1 })))
\end{aligned}
$$

Reo in mCRL2

Conn $=\operatorname{hide}(\{c, d\}$, block($\left\{c_{1}, c_{2}, d_{1}, d_{2}\right\}$, $\operatorname{comm}\left(\left\{c_{1}\left|c_{2}->c, d_{1}\right| d_{2}->\mathrm{d}\right\}\right.$,
Merger || Lossy || FIFO1)))

Build connectors

$$
2, b, c, d, e, \cdots \text { a, } c, e, \cdots
$$

$$
a, b, c, \cdots
$$

$$
a, d, b, e, c, f, \cdots
$$

$$
d, e, f, \cdots
$$

$$
a, b, c, d, e, \cdots
$$

Stop

Can you prove?

colourings and port automata provide equivalent semantics

$$
\begin{aligned}
& \mathcal{A}\left(C_{1}\right)=\left(Q_{1}, \mathcal{N}_{1}, \rightarrow_{1}, q_{0,1}\right) \\
& \mathcal{A}\left(C_{2}\right)=\left(Q_{2}, \mathcal{N}_{2}, \rightarrow_{2}, q_{0,2}\right)
\end{aligned}
$$

$$
\mathcal{C T}(C) \text { - colouring table of } C
$$

$$
\operatorname{col}\left(q \xrightarrow{P} q^{\prime}\right) \text { - colouring associated }
$$ to a transition

$$
\begin{gathered}
\left(\left\langle q_{0,1}, q_{0,2}\right\rangle \xrightarrow{P}\left\langle q_{1}, q_{2}\right\rangle\right) \in \mathcal{A}\left(C_{1}\right) \bowtie \mathcal{A}\left(C_{2}\right) \\
\Rightarrow \\
\operatorname{col}\left(\left\langle q_{0,1}, q_{0,2}\right\rangle \xrightarrow{P}\left\langle q_{1}, q_{2}\right\rangle\right) \in \mathcal{C T}\left(C_{1}\right) \bowtie \mathcal{C T}\left(C_{2}\right)
\end{gathered}
$$

Can you prove? (more generically)

colourings and port automata provide equivalent semantics

$$
\begin{gathered}
\mathcal{A}=\left(\mathcal{Q}, \mathcal{N}, \rightarrow,\left\{q_{0}\right\}\right) \\
\left(q_{0} \xrightarrow{P} q\right) \in \mathcal{A}(C) \\
\Rightarrow \\
\operatorname{col}(P, \mathcal{N}) \in \mathcal{C T}(C)
\end{gathered}
$$

Constraint Automata

Automata labelled by

- a data constraint which represents a set of data assignments to port names

$$
g::=\text { true }\left|d_{A}=v\right| g_{1} \vee g_{2} \mid \neg g
$$

Note: other constraints, such as

$$
d_{A}=d_{B} \stackrel{\text { abv }}{=} \vee_{d \in \operatorname{Data}}\left(d_{A}=d \wedge d_{B}=d\right)
$$

are derived.

- a name set which represents the set of port names at which IO can occur

States represent the configurations of the corresponding connector, while transitions encode its maximally-parallel stepwise behaviour.

Constraint Automata

Example: FIFOI

Constraint Automata Definition

$$
\begin{array}{ll}
\mathcal{A}=\left(\mathcal{Q}, \mathcal{N}, \rightarrow, \mathcal{Q}_{0}\right) & \\
\begin{array}{ll}
\mathcal{Q} & \text { set of states } \\
\mathcal{N} & \text { a set of ports } \mathcal{N} \\
\mathcal{Q}_{0} \subseteq \mathcal{Q} & \text { a set of initial states } \\
\rightarrow \subseteq \mathcal{Q} \times 2^{\mathcal{N}} \times D C \times \mathcal{Q} & \text { a transition relation such that } \xrightarrow{P(\mathcal{Q})} \text { iff } \\
& 1 . P \neq \emptyset \\
& \text { 2. }(g) D C(P, \text { Data })
\end{array}
\end{array}
$$

($D C(P$, Data $)$ is the set of data constraints over Data and P)

Constraint Automata Definition

$$
s \xrightarrow{P, g} s^{\prime} \mathrm{iff}
$$

$$
\begin{array}{ll}
\longrightarrow & 1: P \neq \emptyset \\
& \text { 2. } \\
\hline \in D C(P, D a t a)
\end{array}
$$

in configuration s, ports in P can perform 10 operations which meet guard g and lead to s^{\prime} transitions fire only if data occurs at a (set of) ports P
behaviour depends only on observed data
(not on future evolution)

Constraint Automata as a semantics for Reo

- cannot capture context-awareness [Baier, Sirjani, Arbab, Rutten 2006], but forms the basis for more elaborated models (eg, Reo automata)
- captures all behaviour alternatives of a connector; useful to generate a state-machine implementing the connector's behaviour
- basis for several tools, including the model checker Vereofy [Kluppelholz, Baier 2007]

Constraint Automata Reo connectors

synchronous channel

synchronous drain
or synchronous spout

asynchronous drain
or asynchronous spout

Parameterised

constraint automata

States are parametric on data values ... therefore capturing complex constraint automata emerging form data-dependencies Example: 1 bounded FIFO

Composing constraint automata

Definition 4.1 [Product-automaton] The product-automaton of the two constraint automata $\mathcal{A}_{1}=\left(Q_{1}, \mathcal{N}\right.$ ames $\left._{1}, \longrightarrow_{1}, Q_{0,1}\right)$ and $\mathcal{A}_{2}=\left(Q_{2}, \mathcal{N}\right.$ ames $\left._{2}, \longrightarrow{ }_{2}, Q_{0,2}\right)$, is:

$$
\mathcal{A}_{1} \bowtie \mathcal{A}_{2}=\left(Q_{1} \times Q_{2}, \mathcal{N} \text { ames }_{1} \cup \mathcal{N} \text { ames }_{2}, \longrightarrow, Q_{0,1} \times Q_{0,2}\right)
$$

where \longrightarrow is defined by the following rules:
and

$$
\frac{\left.q_{1} \stackrel{(N, g}{ }\right)_{1} p_{1}, N \cap \mathcal{N} \text { ames }_{2}=\emptyset}{\left\langle q_{1}, q_{2}\right\rangle \stackrel{N, g}{ }\left\langle p_{1}, q_{2}\right\rangle}
$$

You are here

2 reasons for context

2 reasons for context

Context $=3$ colours

- Colouring:

End \rightarrow \{Flow, GiveReason, GetReason\}

- Composition $=$ matching colours:

$----->$

$$
----4>
$$

$----->$
-4-4>

Context $=3$ colours

- col End $=\left\{e_{1}, \ldots, e_{n}\right\} \cup\left\{\overline{e_{1}}, \ldots, \overline{e_{n}}\right\}$

End \rightarrow \{Flow, GiveReason, GetReason\}

- Composition $=$ matching colours:
$C T_{1} \bowtie C T_{2}=$
$\left\{c l_{1} \bowtie c l_{2} \mid c l_{1} \in C T_{1}, c l_{2} \in C T_{2}, c l_{1} \frown c l_{2}\right\}$
$c l_{1} \frown c l_{2}=\forall e_{1} \in \operatorname{dom}\left(c l_{1}\right) \cdot \forall e_{2} \operatorname{dom}\left(c l_{2}\right)$.

$$
e_{1}=\bar{e}_{2} \Rightarrow
$$

$$
\left(c l_{1}(e), c l_{2}(e)\right) \in\{(\triangleright, \triangleright),(\triangleleft, \triangleleft),(\triangleright, \triangleleft),\}
$$

$c l_{1} \bowtie c l_{2}=c l_{1} \cup c l_{2}$

Composition

Priority with 3 colours

Connector colouring 3

- Compositional - composition operation is associative, commutative, and does not require post-processing.
- Reasons for the absence of flow are propagated.
- Expresses priority.
- 2 colours \Leftrightarrow constraint automata (without data)
- 3 colours: + expressive (\Leftrightarrow intentional automata)

Build a connector

prefer fast FIFo

