
Time-critical reactive systems
(verification)

José Proença

HASLab - INESC TEC
Universidade do Minho

Braga, Portugal

April/May 2017



Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Traces

Definition
A timed trace over a timed LTS is a (finite or infinite) sequence
〈t1, a1〉, 〈t2, a2〉, · · · in R+

0 × Act such that there exists a path

〈l0, η0〉
d1−→ 〈l0, η1〉

a1−→ 〈l1, η2〉
d2−→ 〈l1, η3〉

a2−→ · · ·

such that
ti = ti−1 + di

with t0 = 0 and, for all clock x , η0 x = 0.

Intuitively, each ti is an absolute time value acting as a time-stamp.

Warning
All results from now on are given over an arbitrary timed LTS; they
naturally apply to T (ta) for any timed automata ta.

2 / 29



Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Traces

Write possible traces

3 / 29



Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Traces

Given a timed trace tc, the corresponding untimed trace is (π2)ω tc.

Definition
• two states s1 and s2 of a timed LTS are timed-language equivalent if

the set of finite timed traces of s1 and s2 coincide;
• ... similar definition for untimed-language equivalent ...

Example

are not timed-language equivalent

〈(0, t)〉 is not a trace of the TLTS generated by the second system.

4 / 29



Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Traces

Given a timed trace tc, the corresponding untimed trace is (π2)ω tc.

Definition
• two states s1 and s2 of a timed LTS are timed-language equivalent if

the set of finite timed traces of s1 and s2 coincide;
• ... similar definition for untimed-language equivalent ...

Example

are not timed-language equivalent

〈(0, t)〉 is not a trace of the TLTS generated by the second system.

4 / 29



Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Bisimulation

Timed bisimulation (between states of timed LTS)
A relation R is a timed simulation iff whenever s1Rs2, for any action a
and delay d ,

s1
a−→ s ′1 ⇒ there is a transition s2

a−→ s ′2 ∧ s ′1Rs ′2
s1

d−→ s ′1 ⇒ there is a transition s2
d−→ s ′2 ∧ s ′1Rs ′2

And a timed bisimulation if its converse is also a timed simulation.

5 / 29



Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Bisimulation

Example

W1 bisimilar to Z1?

〈〈W 1, {x 7→ 0}〉, 〈Z1, {x 7→ 0}〉〉 ∈ R
where

R = {〈〈W 1, {x 7→ d}〉 , 〈Z1, {x 7→ d}〉〉 | d ∈ R+
0 } ∪

{〈〈W 2, {x 7→ d + 1}〉 , 〈Z2, {x 7→ d}〉〉 | d ∈ R+
0 } ∪

{〈〈W 3, {x 7→ d}〉 , 〈Z3, {x 7→ e}〉〉 | d , e ∈ R+
0 }

6 / 29



Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Bisimulation

Example

W1 bisimilar to Z1?

〈〈W 1, {x 7→ 0}〉, 〈Z1, {x 7→ 0}〉〉 ∈ R
where

R = {〈〈W 1, {x 7→ d}〉 , 〈Z1, {x 7→ d}〉〉 | d ∈ R+
0 } ∪

{〈〈W 2, {x 7→ d + 1}〉 , 〈Z2, {x 7→ d}〉〉 | d ∈ R+
0 } ∪

{〈〈W 3, {x 7→ d}〉 , 〈Z3, {x 7→ e}〉〉 | d , e ∈ R+
0 }

6 / 29



Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Untimed Bisimulation

Untimed bisimulation
A relation R is an untimed simulation iff whenever s1Rs2, for any action a
and delay t,

s1
a−→ s ′1 ⇒ there is a transition s2

a−→ s ′2 ∧ s ′1Rs ′2

s1
d−→ s ′1 ⇒ there is a transition s2

d′

−→ s ′2 ∧ s ′1Rs ′2

And it is an untimed bisimulation if its converse is also an untimed
simulation.

Alternatively, it can be defined over a modified LTS in which all delays
are abstracted on a unique, special transition labelled by ε.

7 / 29



Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Untimed Bisimulation

Example

W1 bisimilar to Z1?

〈〈W 1, {x 7→ 0}〉, 〈Z1, {x 7→ 0}〉〉 ∈ R

where
R = {〈〈W 1, {x 7→ d}〉 , 〈Z1, {x 7→ d ′}〉〉 | 0 ≤ d ≤ 1, 0 ≤ d ′ ≤ 2} ∪

{〈〈W 1, {x 7→ d}〉 , 〈Z1, {x 7→ d ′}〉〉 | d > 1, d ′ > 2} ∪
{〈〈W 2, {x 7→ d}〉 , 〈Z2, {x 7→ d ′}〉〉 | d , d ′ ∈ R+

0 }

8 / 29



Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Untimed Bisimulation

Example

W1 bisimilar to Z1?

〈〈W 1, {x 7→ 0}〉, 〈Z1, {x 7→ 0}〉〉 ∈ R

where
R = {〈〈W 1, {x 7→ d}〉 , 〈Z1, {x 7→ d ′}〉〉 | 0 ≤ d ≤ 1, 0 ≤ d ′ ≤ 2} ∪

{〈〈W 1, {x 7→ d}〉 , 〈Z1, {x 7→ d ′}〉〉 | d > 1, d ′ > 2} ∪
{〈〈W 2, {x 7→ d}〉 , 〈Z2, {x 7→ d ′}〉〉 | d , d ′ ∈ R+

0 }

8 / 29



Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Properties: expression and satisfaction

The satisfaction problem
Given a timed automata, ta, and a property, φ, show that

T (ta) |= φ

• in which logic language shall φ be specified?
• how is |= defined?

9 / 29



Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Properties: expression and satisfaction

The satisfaction problem
Given a timed automata, ta, and a property, φ, show that

T (ta) |= φ

• in which logic language shall φ be specified?
• how is |= defined?

9 / 29



Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Expressing properties: Uppaal

Uppaal variant of Ctl
• state formulae: describes individual states in T (ta)
• path formulae: describes properties of paths in T (ta)

10 / 29



Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Expressing properties: Uppaal

State formulae
Any expression which can be evaluated to a boolean value for a state
(typically involving the clock constraints used for guards and invariants
and similar constraints over integer variables):

x >= 8, i == 8 and x < 2, ...

Additionally,
• ta.` which tests current location: (`, η) |= ta.`

provided (`, η) is a state in T (ta)
• deadlock: (`, η) |= ∀d∈R+

0
. there is no transition from 〈`, η + d〉

11 / 29



Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Expressing properties: Uppaal

Path formulae

Π ::= A�Ψ | A♦Ψ | E�Ψ | E♦Ψ | Φ Ψ

Ψ ::= ta.` | gc | gd | not Ψ | Ψ or Ψ | Ψ and Ψ | Ψ imply Ψ

where
• A, E quantify (universally and existentially, resp.) over paths
• �, ♦ quantify (universally and existentially, resp.) over states in a

path
also notice that

Φ Ψ abv= A� (Φ⇒ A♦Ψ)

12 / 29



Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Expressing properties: Uppaal

A�ϕ and A♦ϕ

E�ϕ and E♦ϕ

13 / 29



Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Expressing properties: Uppaal

ϕ  ψ

Example
If a message is sent, it will eventually be received –
send(m) received(m)

14 / 29



Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Reachability properties

E♦φ
Is there a path starting at the initial state, such that a state formula φ is
eventually satisfied?

• Often used to perform sanity checks on a model:
• is it possible for a sender to send a message?
• can a message possibly be received?
• ...

• Do not by themselves guarantee the correctness of the protocol (i.e.
that any message is eventually delivered), but they validate the
basic behavior of the model.

15 / 29



Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Safety properties

A�φ and E�φ

Something bad will never happen
or something bad will possibly never happen

Examples

• In a nuclear power plant the temperature of the core is always
(invariantly) under a certain threshold.

• In a game a safe state is one in which we can still win, ie, will
possibly not loose.

In Uppaal these properties are formulated positively: something good is
invariantly true.

16 / 29



Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Liveness properties

A♦φ and φ  ψ

Something good will eventually happen
or if something happens, then something else will eventually happen!

Examples

• When pressing the on button, then eventually the television should
turn on.

• In a communication protocol, any message that has been sent
should eventually be received.

17 / 29



Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

The train gate example

• E<> Train(0).Cross
(Train 0 can reach the cross)

• E<> Train(0).Cross and Train(1).Stop
(Train 0 can be crossing bridge while Train 1 is waiting to cross)

• E<> Train(0).Cross and
(forall (i:id-t) i != 0 imply Train(i).Stop)

(Train 0 can cross bridge while the other trains are waiting to cross)
18 / 29



Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

The train gate example

• A[] Gate.list[N] == 0
There can never be N elements in the queue

• A[] forall (i:id-t) forall (j:id-t) Train(i).Cross &&
Train(j).Cross imply i == j
There is never more than one train crossing the bridge

• Train(1).Appr -> Train(1).Cross
Whenever a train approaches the bridge, it will eventually cross

• A[] not deadlock
The system is deadlock-free

19 / 29



Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Mutual exclusion

Properties
• mutual exclusion: no two processes are in their critical sections at

the same time
• deadlock freedom: if some process is trying to access its critical

section, then eventually some process (not necessarily the same) will
be in its critical section; similarly for exiting the critical section

20 / 29



Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Mutual exclusion

The Problem
• Dijkstra’s original asynchronous algorithm (1965) requires, for n

processes to be controlled, O(n) read-write registers and O(n)
operations.

• This result is a theoretical limit (proved by Lynch and Shavit in
1992) which compromises scalability.

but it can be overcome by introducing specific timing constraints

Two timed algorithms:
• Fisher’s protocol (included in the Uppaal distribution)
• Lamport’s protocol

21 / 29



Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Mutual exclusion

The Problem
• Dijkstra’s original asynchronous algorithm (1965) requires, for n

processes to be controlled, O(n) read-write registers and O(n)
operations.

• This result is a theoretical limit (proved by Lynch and Shavit in
1992) which compromises scalability.

but it can be overcome by introducing specific timing constraints

Two timed algorithms:
• Fisher’s protocol (included in the Uppaal distribution)
• Lamport’s protocol

21 / 29



Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Fisher’s algorithm

The algorithm

repeat
repeat

await id = 0
id := i
delay(k)

until id = i
(critical section)
id := 0

forever

22 / 29



Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Fisher’s algorithm

Comments
• One shared read/write register (the variable id)
• Behaviour depends crucially on the value for k — the time delay
• Constant k should be larger than the longest time that a process

may take to perform a step while trying to get access to its critical
section

• This choice guarantees that whenever process i finds id = i on
testing the loop guard it can enter safely ist critical section: all
other processes are out of the loop or with their index in id
overwritten by i .

23 / 29



Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Fisher’s algorithm in Uppaal

• Each process uses a local clock x to guarantee that the upper
bound between between its successive steps, while trying to access
the critical section, is k (cf. invariant in state req).

• Invariant in state req establishes k as such an upper bound
• Guard in transition from wait to cs ensures the correct delay before

entering the critical section

24 / 29



Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Fisher’s algorithm in Uppaal

Properties

% P(1) requests access => it will eventually wait
P(1).req → P(1).wait

% the algorithm is deadlock−free
A[] not deadlock

% mutual exclusion invariant
A[] forall (i:int[1,6]) forall (j:int[1,6])

P(i).cs && P(j).cs imply i == j

• The algorithm is deadlock-free
• It ensures mutual exclusion if the correct timing constraints.
• ... but it is critically sensible to small violations of such constraints:

for example, replacing x > k by x ≥ k in the transition leading to
cs compromises both mutual exclusion and liveness.

25 / 29



Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Lamport’s algorithm

The algorithm

start : a := i
if b 6= 0 then goto start
b := i
if a 6= i then delay(k)

else if b 6= i then goto start
(critical section)
b := 0

26 / 29



Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Lamport’s algorithm

Comments
• Two shared read/write registers (variables a and b)
• Avoids forced waiting when no other processes are requiring access

to their critical sections

27 / 29



Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Lamport’s algorithm in Uppaal

28 / 29



Behavioural equivalences Behavioural properties Case-study: proving mutual exclusion

Lamport’s algorithm

Model time constants:
k — time delay
kvr — max bound for register access
kcs — max bound for permanence in critical section

Typically
k ≥ kvr + kcs

Experiments
k kvr kcs verified?

Mutual Exclusion 4 1 1 Yes
Mutual Exclusion 2 1 1 Yes
Mutual Exclusion 1 1 1 No
No deadlock 4 1 1 Yes
No deadlock 2 1 1 Yes
No deadlock 1 1 1 Yes

29 / 29


	Behavioural equivalences
	Behavioural properties
	Case-study: proving mutual exclusion

