
Software architecture for reactive systems
(introduction)

José Nuno Oliveira José Proença

HASLab - INESC TEC
Universidade do Minho

Braga, Portugal

February 2017

Software Engineering revisited Software Architecture The Course’s Approach

For today

Overview of Software Architecture

Its view by MFES profile

Pragmatics (evaluation, etc.)

http://wiki.di.uminho.pt/twiki/bin/view/Education/
MFES/AC

http://ac1617.proenca.org

2 / 34

http://wiki.di.uminho.pt/twiki/bin/view/Education/MFES/AC
http://wiki.di.uminho.pt/twiki/bin/view/Education/MFES/AC
http://ac1617.proenca.org

Software Engineering revisited Software Architecture The Course’s Approach

Software Engineering

Software development as one of the most complex but at the same
time most effective tasks in the engineering of innovative
applications:

• Software drives innovation in many application domains
• Appropriate software provides engineering solutions that can

calculate results, communicate messages, control devices,
animate and reason about all kinds of information

• Actually software is becoming everyware ...

3 / 34

Software Engineering revisited Software Architecture The Course’s Approach

Software Engineering
Model-driven architecture-centric engineering of (embedded) software intensive systems 77

Fig. 2 Idealized modular
development Informal

requirements

formalisation

S

Formalized
system requirements

S1 S2

S4 S3

R
1

R2

R Rarchitecture

realization

deliver

R1 R2

R4 R3

Requirements
Engineering
Validation

Architecture design
Architecture verification
S = S1⊗S2⊗S3⊗S4

Component
implementation
verification
R1 ⇒ S1
R2 ⇒ S2
R3 ⇒ S3
R3 ⇒ S4

Integration
R = R1⊗R2⊗R3⊗R4

R

integration

System delivery
System verification

R ⇒ S

,

Feature model

Composition
Refinement
Time

Implementation

Implementation

uses

uses

uses

Abstraction

Data model:
Types/sorts and characteristic functions

State transition model:
States and state machines

Composition
Refinement
Time

Process transition model:
Events actions and causal relations

Composition
Refinement
Time

Interface model: components
Input and output

Composition
Refinement
Time

Abstraction

Hierarchy
and
architecture

Abstraction

Is sub-feature

Fig. 3 The structure of modeling elements

syntactic) part of a data model. Every algebra with a
signature (TYPE, FUNCT) provides a carrier set (a set
of data elements) for every type and a function of the
requested functionality for every function symbol. For
each type T ∈ TYPE we denote by CAR(T) its carrier
set. There are many ways to describe data models such
as algebraic specifications, E/R diagrams (see [29]) or
class diagrams.

2.2 Syntactic interfaces of systems and their
components

A system and also a system component is an active
information-processing unit that encapsulates a state
and communicates asynchronously with its environment
through its interface, syntactically characterized by a set

of input and output channels. This communication takes
place within a global (discrete) time frame. In this sec-
tion we introduce the notion of a syntactic interface of
systems and system components. The syntactic interface
models by which communication lines, which we call
channels, the system or a system component is connected
to the environment and which messages are communi-
cated over the channels. We distinguish between input
and output channels.

The channels and their messages determine the inter-
action events that are possible for a system or a system
component. In the following sections we introduce sev-
eral views such as state machines, semantic interfaces
and architectures that all fit the syntactic interface view.
As we will see, each system can be used as a compo-
nent in a larger system and each component of a system

(illustration from [Broy, 2007])

4 / 34

Software Engineering revisited Software Architecture The Course’s Approach

Software Engineering

So, ... yet another module in the MFES profile?

Software architecture for reactive systems

characterised by
• a methodological shift: an architectural perspective
• a focus: on reactive systems

5 / 34

Software Engineering revisited Software Architecture The Course’s Approach

What is software architecture?

The architecture of a system describes its gross structure which
illuminates the top level design decisions, namely

• how is it composed and of which interacting parts?
• where are the pathways of interaction?
• which are the key properties of the parts the architecture rely

and/or enforce?

6 / 34

Software Engineering revisited Software Architecture The Course’s Approach

What is software architecture?

A framework to perform early verification of a system and ensure
composability of separately developed parts, providing

• structural vs behavioural views
• hierarchical decomposition into interacting entities
• functional vs non functional properties

(e.g. performance, reliability, dependability, portability,
scalability, interoperability ...)
to analyse schedulability, flow latency, memory consumption

• design guidelines (e.g. binding threads to processors to make
the system schedulable)

• models for adaptation and reconfigurability
• ...

7 / 34

Software Engineering revisited Software Architecture The Course’s Approach

What is software architecture?

Which structure? Architectural views
• code-based structures: such as modules, classes, packages and

relationships like uses, inherits from or depends on.
• run-time structures: such as object instances, clients, servers,

databases, browsers, channels, broadcasters, software buses, ...
• allocation structures: intended to map code-based and

run-time structures to external items, such as network
locations, physical devices, managerial structures ...

This course
• focus on run-time structures
• and entails a particular view: components & glue

8 / 34

Software Engineering revisited Software Architecture The Course’s Approach

What is software architecture?

Components:

Loci of computation and data stores, encapsulating
subsets of the system’s functionality and/or data;
Equipped with run-time interfaces defining their in-
teraction points and restricting access to those sub-
sets;
May explicitly define dependencies on their required
execution contexts;
Typically provide application-specific services

Connectors:

Pathways of interaction between components;
Ensure the flow of data and regulates interaction;
Typically provide application-independent interac-
tion facilities;
Examples: procedure calls, pipes, wrappers, shared
data structures, synchronisation barriers, etc.

9 / 34

Software Engineering revisited Software Architecture The Course’s Approach

What is software architecture?

Configurations:

Specifications of how components and connec-
tors are associated;
Examples: relations associating component
ports to connector roles, mapping diagrams, etc.

Properties:

Set of non functional properties associated to
any architectural element;
Examples (for components): availability, loca-
tion, priority, CPU usage, ...
Examples (for connectors): reliability, latency,
throughput, ...

10 / 34

Software Engineering revisited Software Architecture The Course’s Approach

What is software architecture?

Constraints:

Represent claims about an architectural design
that should remain true even as it evolves over
time. Typical constraints include restrictions on
allowable values of properties, topology, and de-
sign vocabulary. For example, the number of
clients of a particular server is less than some
maximum value.

Styles:

Styles represent families of related systems. A
style defines a vocabulary of design element
types and rules for composing them. Exam-
ples include dataflow architectures based on
pipes and filters, blackboard architectures based
on shared data space and a set of knowledge
sources, and layered systems.

11 / 34

Software Engineering revisited Software Architecture The Course’s Approach

Two examples

from the micro level (a Unix shell script)

cat invoices | grep january | sort

• Application architecture can be understood based on very few
rules

• Applications can be composed by non-programmers
• ... a simple architectural concept that can be comprehended

and applied by a broad audience

12 / 34

Software Engineering revisited Software Architecture The Course’s Approach

Two examples

to the macro level (the WWW architecture)

• Architecture is totally separated from the code
• There is no single piece of code that implements the

architecture
• There are multiple pieces of code that implement the various

components of the architecture (e.g., different browsers)
• One of the most successful applications is only understood

adequately from an architectural point of view

13 / 34

Software Engineering revisited Software Architecture The Course’s Approach

Architectural styles (or patterns)

An architectural style consists of:
• a set of component types (e.g., process, procedure) that

perform some function at runtime
• a topological layout of the components showing their runtime

relationships
• a set of semantic constraints (e.g. a layer may only talk to its

adjacent)
• a set of connectors (e.g., data streams, sockets) that mediate

communication among components

14 / 34

Software Engineering revisited Software Architecture The Course’s Approach

Architectural styles (or patterns)

• classify families of software architectures
• act as types for configurations
• provide

• domain-specific design vocabulary (eg, set of connector and
component types admissible)

• a set of constraints to single out which configurations are
well-formed. Eg, a pipeline architecture might constraint valid
configurations to be linear sequences of pipes and filters.

• guidance for architectural design based on the problem domain
and the deployment context

15 / 34

Software Engineering revisited Software Architecture The Course’s Approach

Examples

• Layers
• Client & Server
• Master & Slave
• Publish & Subscribe
• Peer2Peer
• Pipes and Filters
• Event-bus
• Repositories

• triggering by transactions: databases
• triggering by current state: blackboard

• Table-driven (virtual machines)
• ...

16 / 34

Software Engineering revisited Software Architecture The Course’s Approach

Pattern: Layers

• helps to structure applications that can be decomposed into
groups of subtasks at different levels of abstraction

• Layer n provides services to layer n + 1 implementing them
through services of the layer n + 1

• Typically, service requests resort to synchronous procedure
calls

Examples:
virtual machines (eg, JVM)
APIs (eg, C standard library on top of Unix system calls)
operating systems (eg, Windows NT microkernel)
networking protocols (eg, ISO OSI 7-layer model; TCP/IP)

17 / 34

Software Engineering revisited Software Architecture The Course’s Approach

Pattern: Client-Server

• permanently active servers supporting multiple clients
• requests typically handled in separate threads
• stateless (session state maintained by the client) vs stateful

servers
• interaction by some inter-process communication mechanism

Examples:
remote DB access
web-based applications
interactive shells

18 / 34

Software Engineering revisited Software Architecture The Course’s Approach

Pattern: Peer-2-Peer

• symmetric Client-Service pattern
• peers may change roles dynamically
• services can be implicit (eg, through the use of a data stream)

Examples:
multi-user applications
P2P file sharing

19 / 34

Software Engineering revisited Software Architecture The Course’s Approach

Pattern: Publish-Subscribe

• used to structure distributed systems whose components
interact through remote service invocations

• servers publish their capabilities (services + characteristics) to
a broker component, which accepts client requests and
coordinate communication

• allows dynamic reconfiguration
• requires standardisation of service descriptions through IDL

(eg CORBA IDL, .Net, WSDL) or a binary standard (eg,
Microsoft OLE — methods are called indirectly using pointers)

Examples:
web services
CORBA (for cooperation among heterogeneous OO systems)

20 / 34

Software Engineering revisited Software Architecture The Course’s Approach

Pattern: Master-Slave

• a master component distributes work load to similar slave
components and computes a final result from the results these
slaves return

• isolated slaves; no sharing of data
• supports fault-tolerance and parallel computation

Examples:
dependable systems

21 / 34

Software Engineering revisited Software Architecture The Course’s Approach

Pattern: Event-Bus

• event sources publish messages to particular channels on an
event bus

• event listeners subscribe to particular channels and are
notified of message availability

• asynchronous interaction
• channels can be implicit (eg, using event patterns)
• allows dynamic reconfiguration
• variant of so-called event-driven architectures

Examples:
process monitoring
trading systems

22 / 34

Software Engineering revisited Software Architecture The Course’s Approach

Pattern: Pipe & Filter

• suitable for data stream processing
• each processing step is encapsulated into a filter component
• uniform data format
• no shared state
• concurrent processing is natural

Examples:
compilers
Unix shell commands

23 / 34

Software Engineering revisited Software Architecture The Course’s Approach

Pattern: Blackboard

• suitable for problems with non deterministic solution strategy
known

• all components have access to a shared data store
• components feed the blackboard and inspect it for new partial

data
• extending the data space is easy, but changing its structure

may be hard

Examples:
complex IA problems (eg, planning, machine learning)
complex applications in computing science (eg, speech recognition;
computational chemistry)

24 / 34

Software Engineering revisited Software Architecture The Course’s Approach

Software Architecture as a discipline

• Until the 90’s, SA was largely an ad hoc affair
(but see [Dijkstra,69], [Parnas79], ...)

• Descriptions relied on informal box-and-line diagrams, rarely
maintained once the system was built

Challenges
• recognition of a shared repertoire of methods, techniques and

patterns for structuring complex systems
• quest for reusable frameworks for the development of product

families

25 / 34

Software Engineering revisited Software Architecture The Course’s Approach

Current trends

Everyware everywhere
• Everyware products
• vs everywhere development:

many companies look at themselves more as system
integrators rather than as software developers:

the code they write is glue code ...
which entails the need for common frameworks
to reduce architectural mismatchs

26 / 34

Software Engineering revisited Software Architecture The Course’s Approach

Current trends

From object-oriented to component-based

• In OO the architecture is implicit: source code exposes class
hierarchies but not the run-time interaction

• Objects are wired at a very low level and the description of
the wiring patterns is distributed among them

• CBD retains the basic encapsulation of data and code
principle to increase modularity but shifts the emphasis from
class inheritance to object composition

• ... to avoid interference between inheritance and
encapsulation and pave the way to a development
methodology based on third-party assembly of components

27 / 34

Software Engineering revisited Software Architecture The Course’s Approach

Current trends

From programming-in-the-large to programming-in-the-world

’not only the complexity of building a large application
that one needs to deliver, in time and budget, to a
client, but of managing an open-ended structure of
autonomous components, possibly distributed and highly
heterogeneous.
This means developing software components that are
autonomous and can be interconnected with other
components, software or otherwise, and managing the
interconnections themselves as new components may be
required to join in and others to be removed.’

[Fiadeiro, 05]

28 / 34

Software Engineering revisited Software Architecture The Course’s Approach

Challenges

Such trends entails a number of challenges to the way we think
about SA

• new target: need for an architectural discipline for reactive
systems
(often complex, time critical, mobile, cyber-physical, etc ...)

• from composition to coordination (orchestration)
• relevance of wrappers and component adapters: integration vs

incompatible assumptions about component interaction
• reconfigurability
• continued interaction as a first-class citizen and the main form

of software composition

29 / 34

Software Engineering revisited Software Architecture The Course’s Approach

Reactive systems

Reactive system

system that computes by reacting to stimuli from its environment
along its overall computation

• in contrast to sequential systems whose meaning is defined by the
results of finite computations, the behaviour of reactive systems is
mainly determined by interaction and mobility of non-terminating
processes, evolving concurrently.

• observation ≡ interaction

• behaviour ≡ a structured record of interactions

30 / 34

Software Engineering revisited Software Architecture The Course’s Approach

Reactive systems

Concurrency vs interaction

x := 0;
x := x + 1 | x := x + 2

• both statements in parallel could read x before it is written

• which values can x take?

• which is the program outcome if exclusive access to memory and
atomic execution of assignments is guaranteed?

31 / 34

Software Engineering revisited Software Architecture The Course’s Approach

Our approach

There is no general-purpose, universally tailored, approach to
architectural design of complex and reactive systems

Therefore, the course
• introduces different models for reactive systems
• discusses their architectural design and analysis
• with (reasonable) tool support for modelling and analysis

32 / 34

Software Engineering revisited Software Architecture The Course’s Approach

Syllabus

• Introduction to software architecture
• Background

• Introduction to transition systems (mCRL2)
• Introduction to modal, hybrid and dynamic logic (mCRL2)

• Models and calculi of reactive systems
• Timed (with real time constraints) (Uppaal)

• Architecture for reactive systems
• Component-oriented architectural design

• Paradigm: Software components as monadic Mealy machines
• Method: The mMm calculus; prototyping in Haskell

• Coordination-oriented architectural design
• Paradigm: The Reo exogenous coordination model
• Method: Compositional specification of the glue layer

33 / 34

Software Engineering revisited Software Architecture The Course’s Approach

Pragmatics ...
• Assessment:

• Test in June - 60 %
• Group projects (3x) - 40 % (10+15+15)

http://wiki.di.uminho.pt/twiki/bin/view/Education/
MFES/AC

http://ac1617.proenca.org

• Research context: Projects
• Dali — 2016-18

on Dynamic logics for cyber-physical systems
• Trust — 2016-18

on Trustworthy Software Design with Alloy

possible GRANTS available!
(with U. Nijmegen, U. Aveiro, CWI, INESC TEC)

34 / 34

http://wiki.di.uminho.pt/twiki/bin/view/Education/MFES/AC
http://wiki.di.uminho.pt/twiki/bin/view/Education/MFES/AC
http://ac1617.proenca.org

	Software Engineering revisited
	Software Architecture
	The Course's Approach

