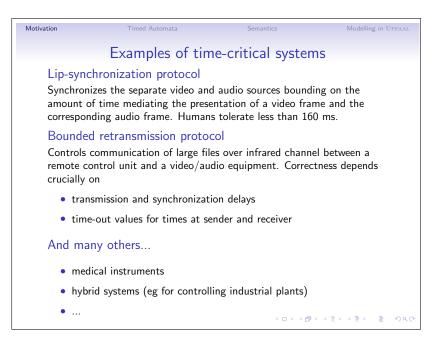
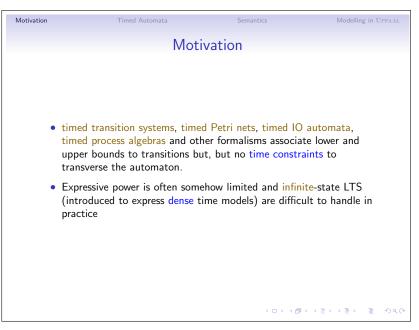
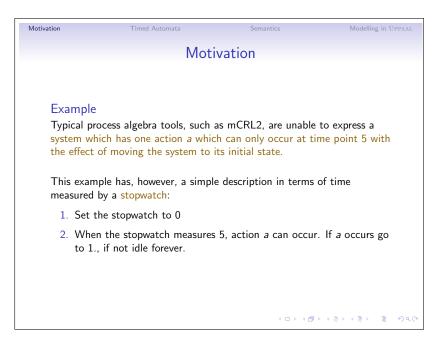
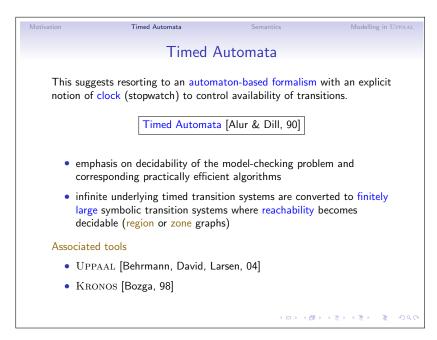

Lecture 4: Introduction to Timed Automata

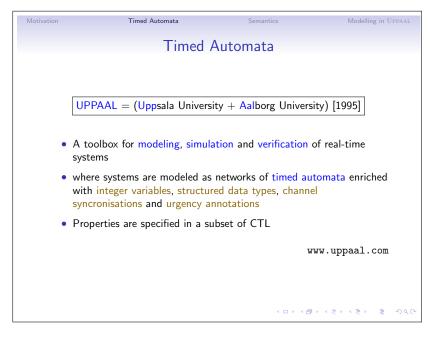
Luís Soares Barbosa

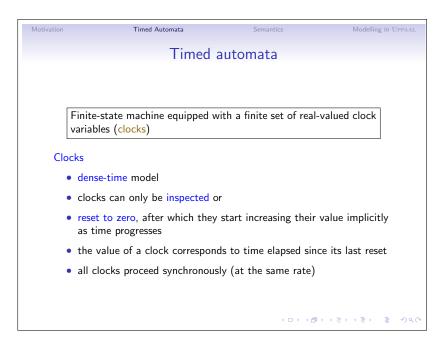

Abstract

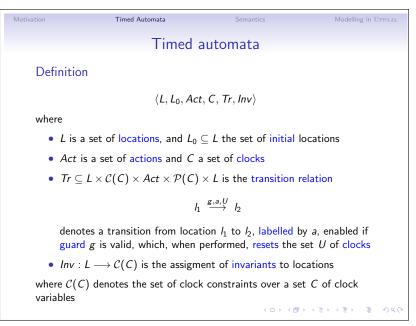

This lecture offers an introduction to timed automata as a modelling tool for reactive systems with real-time requirements. Behavioural equivalences for this kind of systems are also discussed. Finally, a variant of a modal logic for real-times systems is introduced and its use exemplified through a case-study. The whole lecture is based on the UPPAAL tool.

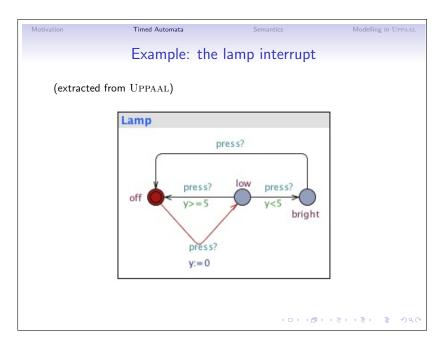

1 Motivation

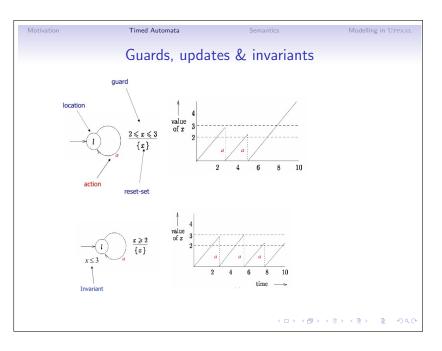

Lecture notes for Arquitectura e Cálculo, MEI profile in Formal Methods in Software Engineering, 2014-15.

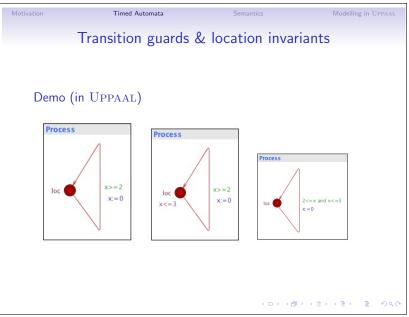


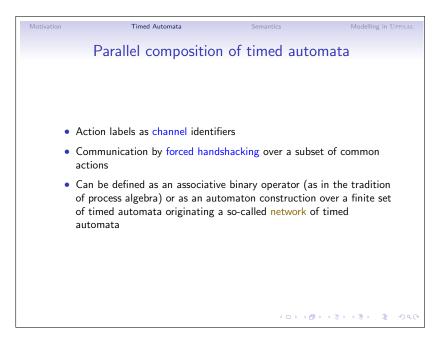


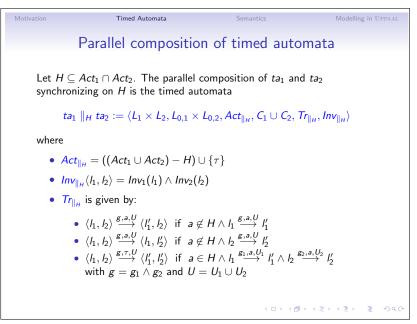


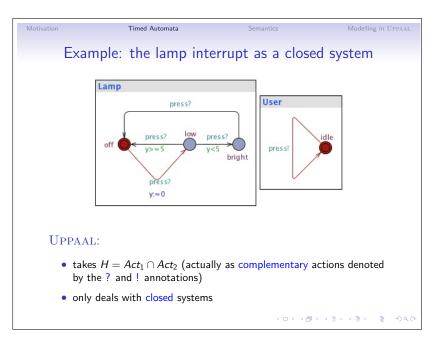

2 Timed Automata

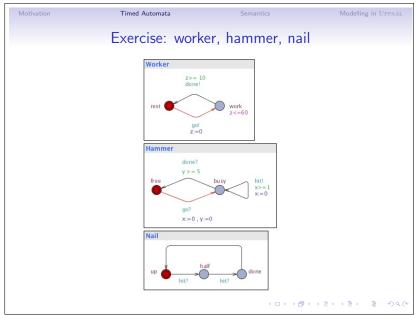









Motivation	Timed Automata	Semantics	Modelling in UPPAAL
	Clock cor	straints	
()	denotes the set of clock constra constraint is formed according to		of clock variables.
	$g ::= x \Box n \mid x$	$-y \Box n \mid g \wedge g$	
where used	e $x, y \in \mathcal{C}, n \in \mathcal{N}$ and $\Box \in \{<, \le$ in	$\{2, >, \geq\}$	
•	transitions as guards (enabling co	onditions)	
	a transition cannot occur if its g	guard is invalid	
•	locations as invariants (safety sp	ecifications)	
	a location must be left before it	s invariant becom	es invalid
Note Invar	e iants are the only way to force tr	ansitions to occur	
	, , , , , , , , , , , , , , , , , , ,		
		< = > < (聞 > 《 E > 《 E >) E - のくで



- 1. EXERCISE. Model in UPPAAL the following system described in the lectures:
 - 1. Set the stop watch to $0\,$
 - 2. When the stopwatch measures 10, action a can occur. If a occurs go to 1, if not idle forever.

2. EXERCISE (RAIL-ROAD CROSS). Build a UPPAAL model of a *rail-road cross* as depicted in Fig 2.

Your starting point is the parallel composition of the 3 untimed processes in Fig 2. Consider the following time requirements:

• There is a time interval lasting for at least 2 minutes between the detection of train approaching and its entering in the cross.

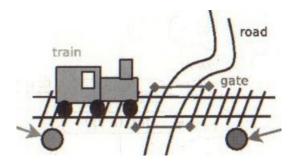
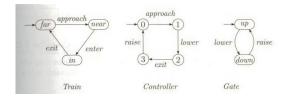
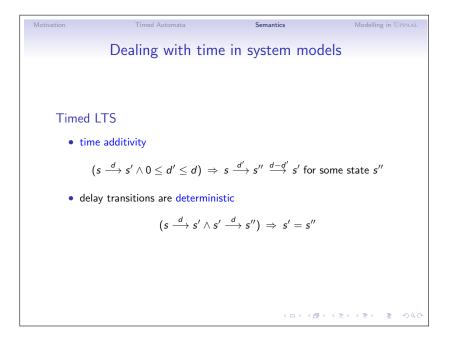
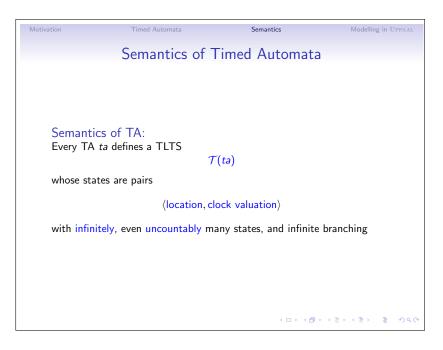
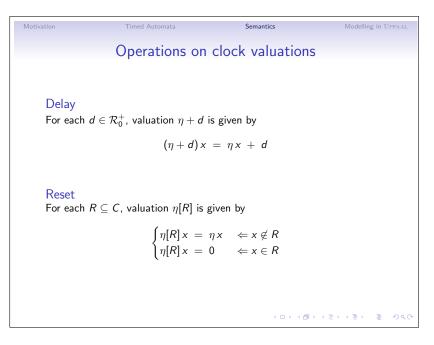


Figure 1: A rail-road cross


Figure 2: Suggestion for an untimed model

- 1 minute delay between the controller sensing the train approaching and giving order to lower the gate
- The gate goes down in less than 1 minute.


3 Semantics

Motivation	Timed Automata		Semantics	Modelling in UPPAAL	
	Timed Labelle	d	Transition Systems		
Syntax	x		Semantics]	
	ss Languages (eg CCS) I Automaton		LTS (Labelled Transition Sy TLTS (Timed LTS)	/stems)	
	·				
Timed Introdu		pti	ure the passage of time withi	n a LTS:	
$s \stackrel{a}{\longrightarrow}$	s' for $a \in Act$, are ordina		transitions due to action oc		
$s \stackrel{d}{\longrightarrow}$	s' for $d\in \mathcal{R}^+$, are delay	tr	ansitions		
subject	to a number of constrair				
			◆□> ◆圖> ◆≧>	<	C

Motivation	Timed Automata	Semantics	Modelling in	Uppaal
	Clock v	valuations		
Definition				
A clock val	uation η for a set of clo	cks C is a function		
	η : C	$\longrightarrow \mathcal{R}_0^+$		
assigning to	each clock $x \in C$ its c	surrent value ηx .		
Satisfactio	on of clock constrain	its		
	$\eta \models x \Box n$	$\Leftrightarrow \eta x \Box n$		
		$\Leftrightarrow (\eta x - \eta y) \Box n$		
	$\eta \models g_1 \land g_2$.	$\Leftrightarrow \eta \models g_1 \land \eta \models g_2$		
			(2) < 2) < 2) < 2) ≥	৩৫৫


```
Motivation Timed Automata Semantics Semantics Modelling in UPPAAL

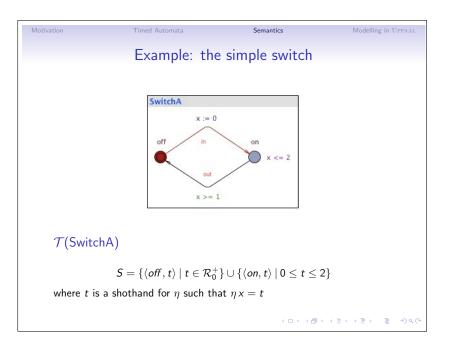
From ta to \mathcal{T}(ta)

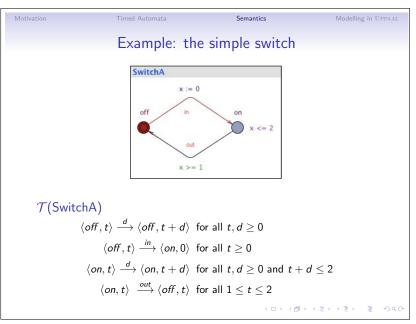
Let ta = \langle L, L_0, Act, C, Tr, Inv \rangle

\mathcal{T}(ta) = \langle S, S_0 \subseteq S, N, T \rangle

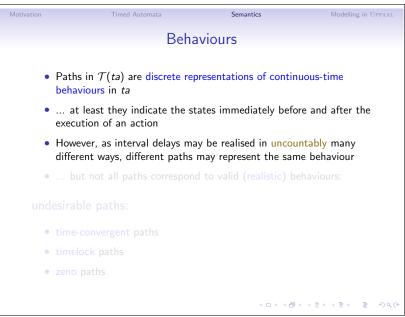
where

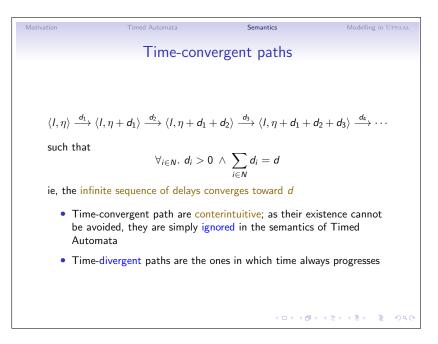
• S = \{\langle l, \eta \rangle \in L \times (\mathcal{R}_0^+)^C \mid \eta \models Inv(l)\}

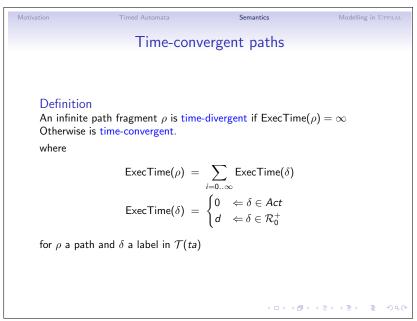

• S_0 = \{\langle l_0, \eta \rangle \mid l_0 \in L_0 \land \eta x = 0 \text{ for all } x \in C\}


• N = Act \cup \mathcal{R}_0^+ (ie, transitions can be labelled by actions or delays)

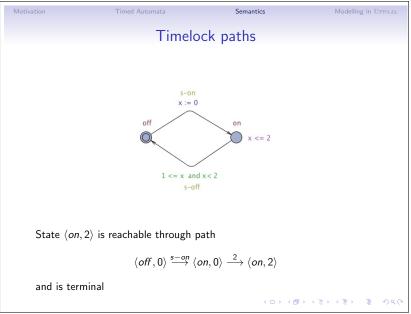
• T \subseteq S \times N \times S is given by:

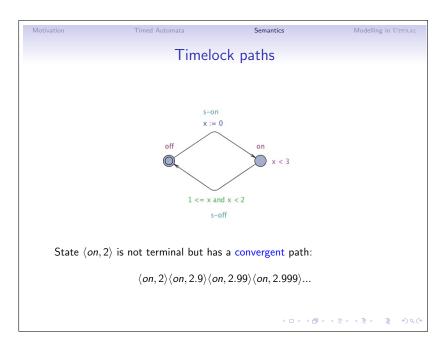

\langle l, \eta \rangle \xrightarrow{a} \langle l', \eta' \rangle \notin \exists_{I_{a}^{g,a,U} l' \in Tr} \eta \models g \land \eta' = \eta[U] \land \eta' \models Inv(l')

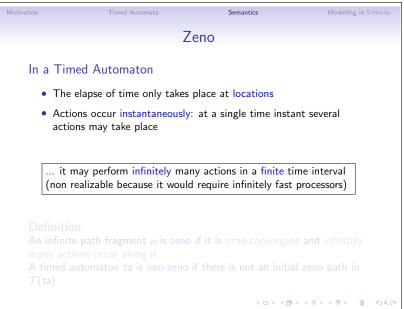

\langle l, \eta \rangle \xrightarrow{d} \langle l, \eta + d \rangle \notin \exists_{d \in \mathcal{R}_0^+} \eta + d \models Inv(l)
```

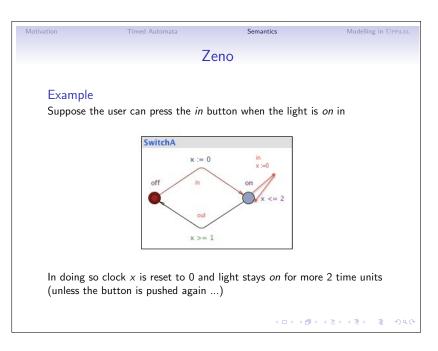


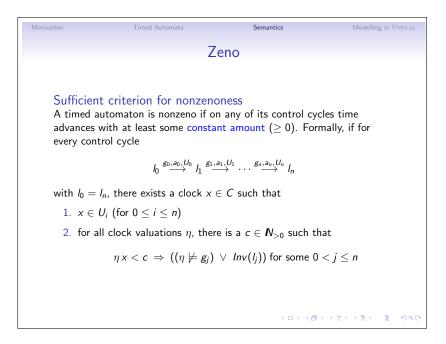


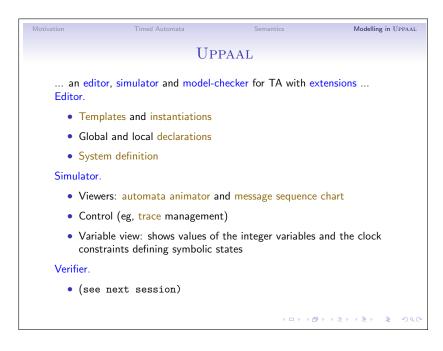


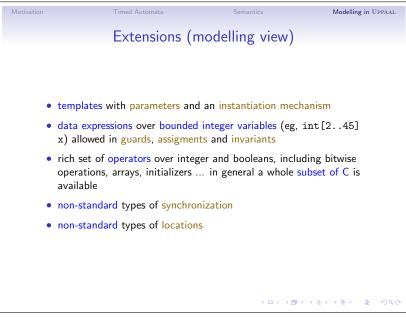


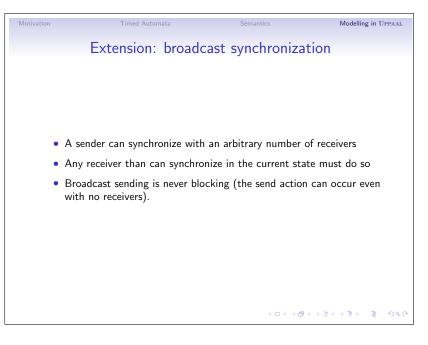


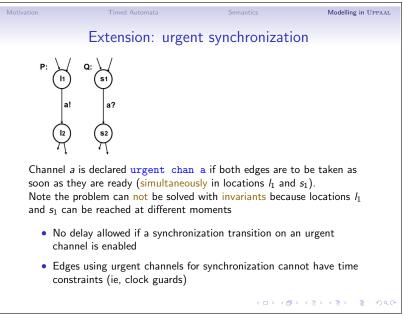




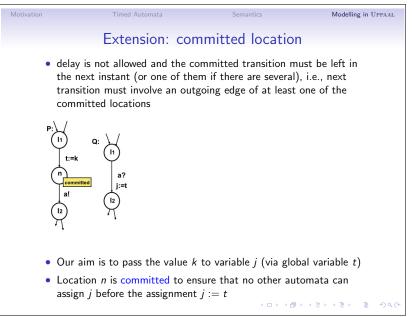


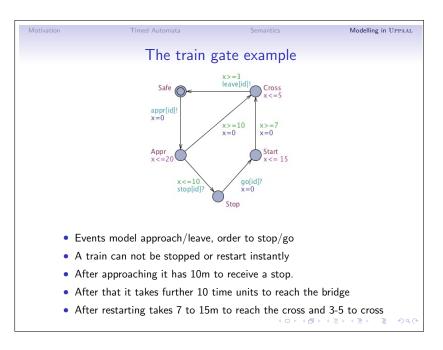

Motivation	Timed Automata	Semantics	Modelling in UPPAAL
	Z	eno	
Example			
Typical path	s: The user presses in	infinitely fast:	
$\langle \textit{off}, 0 angle$	$\stackrel{\textit{in}}{\longrightarrow} \langle \textit{on}, 0 \rangle \stackrel{\textit{in}}{\longrightarrow} \langle \textit{on}, 0 \rangle$	$0 angle \stackrel{\textit{in}}{\longrightarrow} \langle \textit{on}, 0 angle \stackrel{\textit{in}}{\longrightarrow} \langle \textit{on}, 0 \rangle$	$0 angle \stackrel{in}{\longrightarrow} \cdots$
The user pre	sses in faster and faste	er:	
$\langle \textit{off}, 0 \rangle \stackrel{\textit{in}}{\longrightarrow}$	$\langle \textit{on}, 0 \rangle \xrightarrow{0.5} \langle \textit{on}, 0.5 \rangle \xrightarrow{0.5}$	$\stackrel{\text{in}}{\longrightarrow} \langle \textit{on}, 0 \rangle \stackrel{0.25}{\longrightarrow} \langle \textit{on}, 0.25 \rangle$	$\left\langle \begin{array}{c} in \\ \longrightarrow \end{array} \left\langle \textit{on}, 0 \right\rangle \begin{array}{c} \overset{0.125}{\longrightarrow} \cdots \end{array} \right\rangle$
How can	this be fixed?		
		< 🗆 > < 🗗	◆ 注 > ◆ 注 > ◆ 注 > ◆ (三) ◆ (三) ◆ (三) ◆ (三) ◆ (○) ● (○) ◆ (○) ● (○) ◆ (○) ● (○)

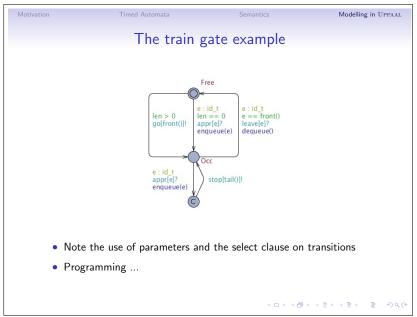



Motivation	Timed Automata	Semantics	Modelling in UPPAAL
	Wa	arning	
		-	
Both			
• timeloo	cks		
• zenone	SS		
are modellin	g flaws and need to be	avoided.	
Example			
	ple above, it is enough cessive button pushing		minimal delay
		< => < @	・ 4 目 > 4 目 > 目 うくで

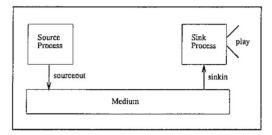
4 Modelling in Uppaal





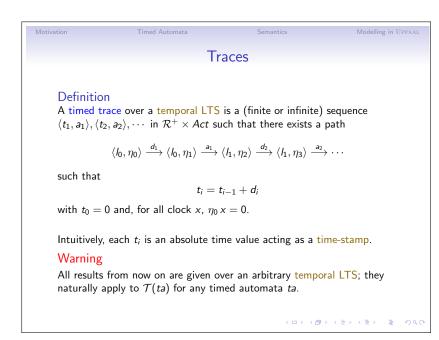


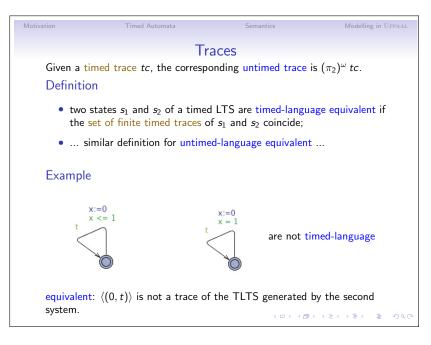
3. UPPAAL DEMO. Read the UPPAAL tutorial [Behrmann, David & Larsen, 05] available from the tool web page and run all demos included in the distribution. Explain the problems and corresponding modelling solution; try out a few variants.

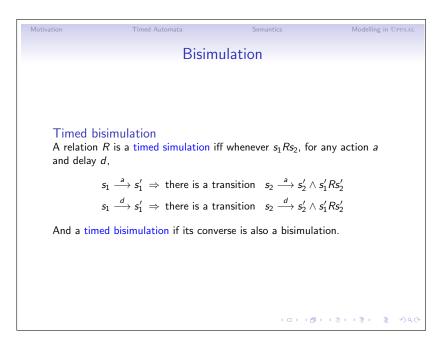

4. EXERCISE (AN ELEVATOR). Consider an autonomous elevator which operates between two floors. The requested behaviour of the elevator is as follows:

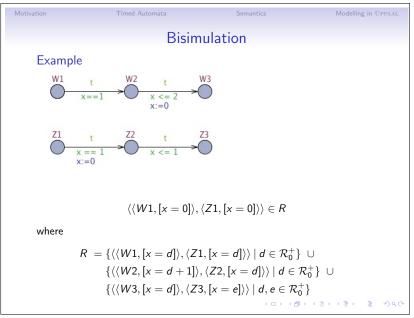
- The elevator can stop either at the ground floor or the first floor.
- When the elevator arrives at a certain floor, its door automatically opens. It takes at least 2 seconds from its arrival before the door opens but the door must definitely open within 5 seconds.

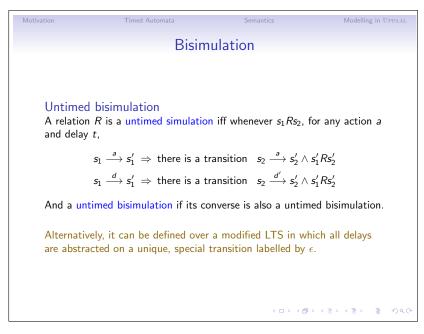
- Whenever the elevator's door is open, passengers can enter. They enter one by one and we (optimistically) assume that the elevator has a sufficient capacity to accommodate any number of passengers waiting outside.
- The door can close only 4 seconds after the last passenger entered. After the door closes, the elevator waits at least 2 seconds and then travels up or down to the other floor.

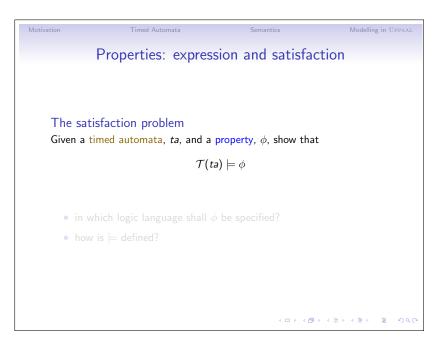

Suggest a timed automaton model of the elevator. Use the actions up and down to model the movement of the elevator, open and close to describe the door operation and the action enter which means that a passenger is entering the elevator.

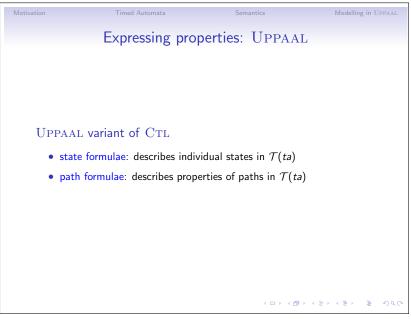

5. EXERCISE (QOS OF A MEDIA STREAM). Consider the following requirements for a media stream channel and model a possible representation in UPPAAL.

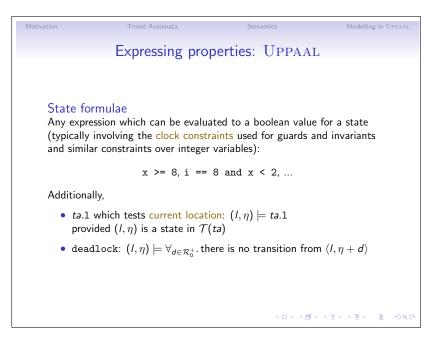


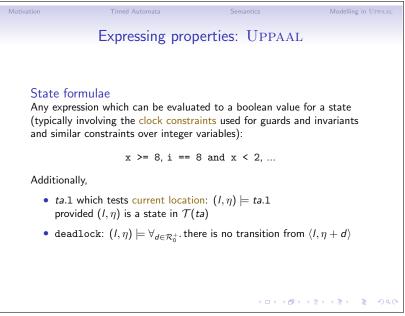

- Source emits a message every 50ms (ie, 20 messages per second)
- Channel latency is between 80ms and 90 ms
- Channel may loose messages (no more than 20%)
- A message is considered lost if it does not arrive within 90 ms
- Sink end receives messages and takes 5ms to process each one
- An error should be generated if less than 15 messages per second arrive at the sink end

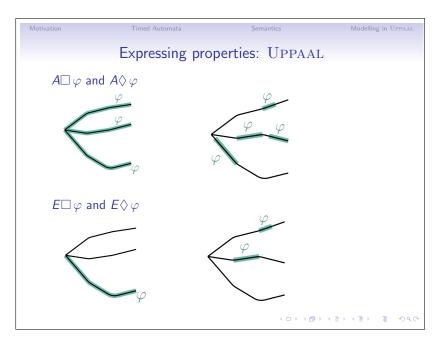

5 Behavioural equivalences

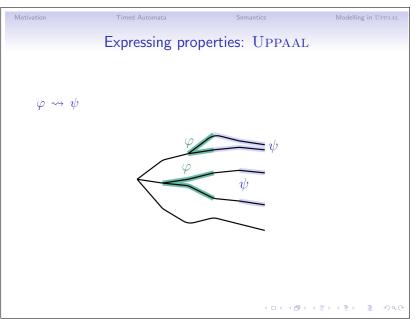

6. EXERCISE (GOSSIP GIRLS). A number of girls, say G_1 to G_n , for $n \ge 2$, initially know one distinct secret each. You can assume that the secrets are subsets of $\{1, ..., n\}$, and that initially girl G_i knows $\{i\}$, for each $i \in \{1, ..., n\}$. Each girl has access to a phone that can be used to call another girl to share their secrets. Every time two girls talk to each other they always exchange all of the secrets they know. Thus, after the phone call, they both know all secrets they knew together before the phone call. The girls can communicate only in pairs (no conference calls are allowed), but it is possible that different pairs of girls talk concurrently.

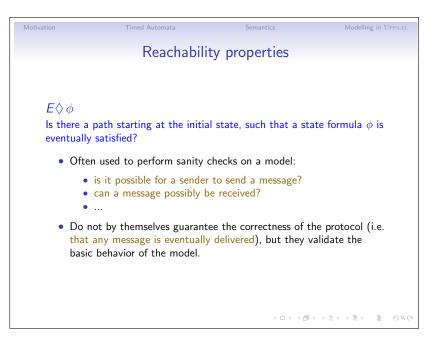

- Model the problem as a network of timed automata in UPPAAL, and use it to find the smallest number of phone calls needed for four girls to know all secrets.
- Refine your model so that each phone call lasts exactly 60 seconds (for simplicity this time duration is independent of the number of exchanged secrets). Find the minimum time needed to solve the gossiping girls problem for four girls.
- Experiment with the UPPAAL search options breath-first and depth-first search and with the diagnostic trace settings fastest and shortest. Try to solve the problem for five girls.

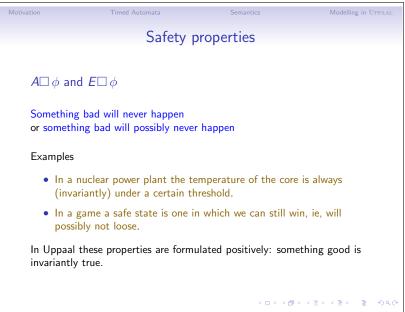

Hints.

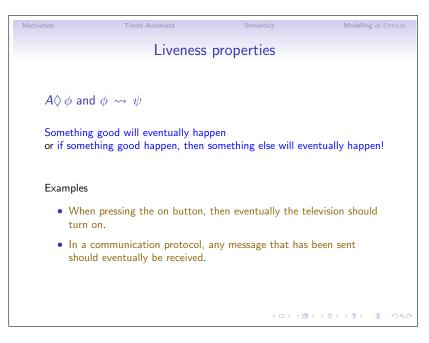

- Design a single template for all girls. For each girl, remember the currently known secrets in a local integer variable. (Use a binary encoding such that if a girl knows the secrets of, for instance, girls 1 and 3 but does not know the secrets of girls 2 and 4, the value in the integer variable will be 0101 in binary; that is, 5 in decimal representation. You might find the operation |, for a bitwise OR, useful.)
- How to model value passing when two girls make a phone call? (check the UPPAAL tutorial)

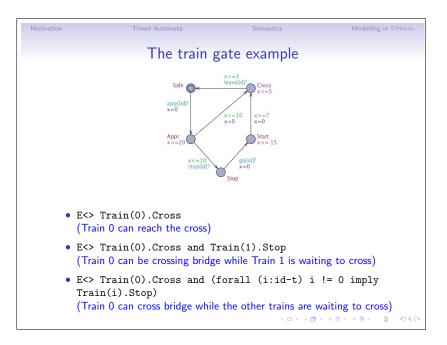

6 Behavioural properties

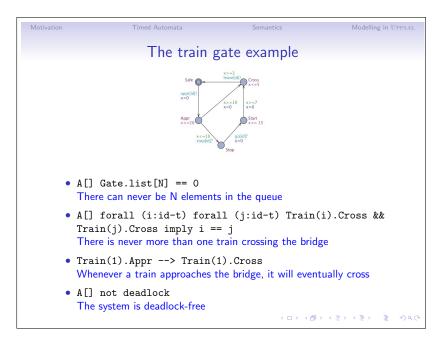


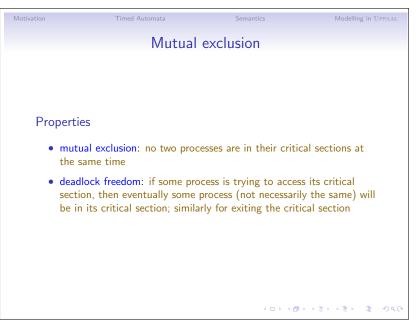




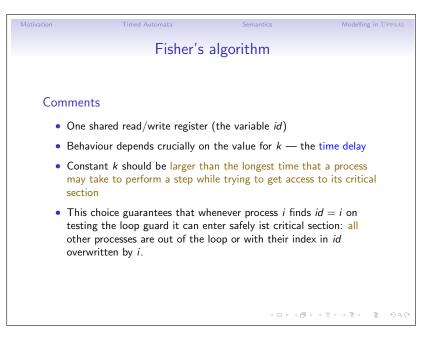


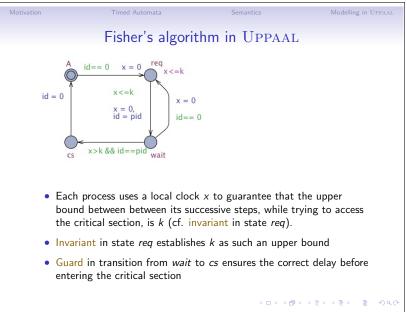


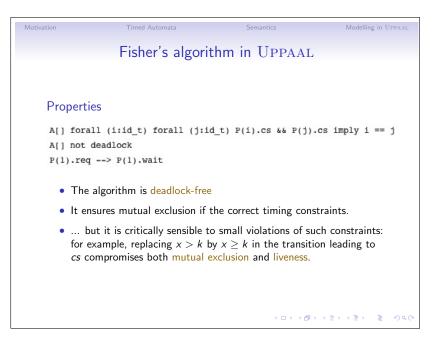


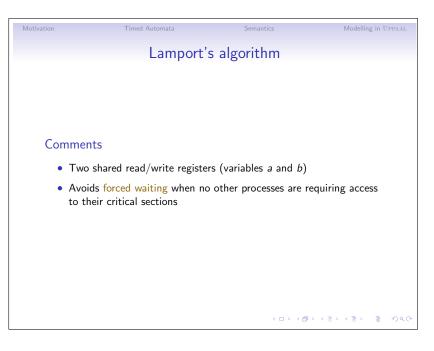


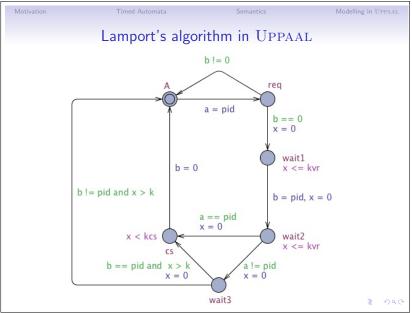
7 Case-study: proving mutual exclusion








Motivation	Timed Automata	Semantics	Modelling in UPPAAL
	Fisher's	algorithm	
		0	
The algorit	hm		
The algorith			
	repeat		
	repe	eat	
		await $id = 0$	
		id := i	
		delay(k)	
	unti	l id = i	
	(crit	tical section)	
	<i>id</i> :=	= 0	
	forever		
		< = > < @	マック ボット ボット ボック くら



Motivation	Timed Automata	Semantics	Modelling in UPPAAL
	Lamport's	s algorithm	
		· ·	
The algorit	thm		
	start : <i>a</i> := <i>i</i>		
	if $b \neq 0$ then	goto start	
	b:=i		
	if $a \neq i$ then		
		f $b \neq i$ then goto start	
	(critical secti	on)	
	b := 0		
			< 三 > < 三 > 三 のへの
			terter e Daar

Motivation Tim	ed Aut	omata		Semant	tics	Modelling in UPPAAL
	L	.amp	ort's	algorith	ım	
Model time const	tant	S:				
k —	time	e delay				
kvr -	— m	ax boı	ind for	register ac	cess	
kcs -	— m	ax bou	ind for	permanen	ce in critical	section
Typically						
		k	$\geq k$	r + kcs		
Experiments						
	k	kvr	kcs	verified?]	
Mutual Exclusion	4	1	1	Yes	1	
Mutual Exclusion	2	1	1	Yes		
Mutual Exclusion	1	1	1	No		
No deadlock	4	1	1	Yes		
No deadlock	2	1	1	Yes		
No deadlock	1	1	1	Yes		
L					, , , , , , , , , , , , , , , , , , , ,	(E) (E) E 90