
Lecture 4: Introduction to Timed Automata

Lúıs Soares Barbosa

Abstract

This lecture offers an introduction to timed automata as a modelling tool for reactive sys-
tems with real-time requirements. Behavioural equivalences for this kind of systems are also
discussed. Finally, a variant of a modal logic for real-times systems is introduced and its use
exemplified through a case-study. The whole lecture is based on the Uppaal tool.

1 Motivation

Motivation Timed Automata Semantics Modelling in Uppaal

Motivation

Specifying an airbag saying that in a car crash the airbag eventually
inflates maybe not enough, but:

in a car crash the airbag eventually inflates within 20ms

Correctness in time-critical systems not only depends on the logical
result of the computation, but also on the time at which the results
are produced

[Baier & Katoen, 2008]

Lecture notes for Arquitectura e Cálculo, MEI profile in Formal Methods in Software Engineering, 2014-15.

Motivation Timed Automata Semantics Modelling in Uppaal

Examples of time-critical systems
Lip-synchronization protocol
Synchronizes the separate video and audio sources bounding on the
amount of time mediating the presentation of a video frame and the
corresponding audio frame. Humans tolerate less than 160 ms.

Bounded retransmission protocol
Controls communication of large files over infrared channel between a
remote control unit and a video/audio equipment. Correctness depends
crucially on

• transmission and synchronization delays

• time-out values for times at sender and receiver

And many others...

• medical instruments

• hybrid systems (eg for controlling industrial plants)

• ...

Motivation Timed Automata Semantics Modelling in Uppaal

Motivation

• timed transition systems, timed Petri nets, timed IO automata,
timed process algebras and other formalisms associate lower and
upper bounds to transitions but, but no time constraints to
transverse the automaton.

• Expressive power is often somehow limited and infinite-state LTS
(introduced to express dense time models) are difficult to handle in
practice

Motivation Timed Automata Semantics Modelling in Uppaal

Motivation

Example
Typical process algebra tools, such as mCRL2, are unable to express a
system which has one action a which can only occur at time point 5 with
the effect of moving the system to its initial state.

This example has, however, a simple description in terms of time
measured by a stopwatch:

1. Set the stopwatch to 0

2. When the stopwatch measures 5, action a can occur. If a occurs go
to 1., if not idle forever.

2 Timed Automata

Motivation Timed Automata Semantics Modelling in Uppaal

Timed Automata

This suggests resorting to an automaton-based formalism with an explicit
notion of clock (stopwatch) to control availability of transitions.

Timed Automata [Alur & Dill, 90]

• emphasis on decidability of the model-checking problem and
corresponding practically efficient algorithms

• infinite underlying timed transition systems are converted to finitely
large symbolic transition systems where reachability becomes
decidable (region or zone graphs)

Associated tools

• Uppaal [Behrmann, David, Larsen, 04]

• Kronos [Bozga, 98]

Motivation Timed Automata Semantics Modelling in Uppaal

Timed Automata

UPPAAL = (Uppsala University + Aalborg University) [1995]

• A toolbox for modeling, simulation and verification of real-time
systems

• where systems are modeled as networks of timed automata enriched
with integer variables, structured data types, channel
syncronisations and urgency annotations

• Properties are specified in a subset of CTL

www.uppaal.com

Motivation Timed Automata Semantics Modelling in Uppaal

Timed automata

Finite-state machine equipped with a finite set of real-valued clock
variables (clocks)

Clocks

• dense-time model

• clocks can only be inspected or

• reset to zero, after which they start increasing their value implicitly
as time progresses

• the value of a clock corresponds to time elapsed since its last reset

• all clocks proceed synchronously (at the same rate)

Motivation Timed Automata Semantics Modelling in Uppaal

Timed automata

Definition

〈L, L0,Act,C ,Tr , Inv〉
where

• L is a set of locations, and L0 ⊆ L the set of initial locations

• Act is a set of actions and C a set of clocks

• Tr ⊆ L× C(C)× Act × P(C)× L is the transition relation

l1
g ,a,U−→ l2

denotes a transition from location l1 to l2, labelled by a, enabled if
guard g is valid, which, when performed, resets the set U of clocks

• Inv : L −→ C(C) is the assigment of invariants to locations

where C(C) denotes the set of clock constraints over a set C of clock
variables

Motivation Timed Automata Semantics Modelling in Uppaal

Example: the lamp interrupt

(extracted from Uppaal)

Motivation Timed Automata Semantics Modelling in Uppaal

Clock constraints

C(C) denotes the set of clock constraints over a set C of clock variables.
Each constraint is formed according to

g ::= x � n | x − y � n | g ∧ g

where x , y ∈ C , n ∈ IN and � ∈ {<,≤, >,≥}
used in

• transitions as guards (enabling conditions)

a transition cannot occur if its guard is invalid

• locations as invariants (safety specifications)

a location must be left before its invariant becomes invalid

Note
Invariants are the only way to force transitions to occur

Motivation Timed Automata Semantics Modelling in Uppaal

Guards, updates & invariants

Motivation Timed Automata Semantics Modelling in Uppaal

Transition guards & location invariants

Demo (in Uppaal)

Motivation Timed Automata Semantics Modelling in Uppaal

Parallel composition of timed automata

• Action labels as channel identifiers

• Communication by forced handshacking over a subset of common
actions

• Can be defined as an associative binary operator (as in the tradition
of process algebra) or as an automaton construction over a finite set
of timed automata originating a so-called network of timed
automata

Motivation Timed Automata Semantics Modelling in Uppaal

Parallel composition of timed automata

Let H ⊆ Act1 ∩ Act2. The parallel composition of ta1 and ta2
synchronizing on H is the timed automata

ta1 ‖H ta2 := 〈L1 × L2, L0,1 × L0,2,Act‖H ,C1 ∪ C2,Tr‖H , Inv‖H 〉

where

• Act‖H = ((Act1 ∪ Act2)− H) ∪ {τ}
• Inv‖H 〈l1, l2〉 = Inv1(l1) ∧ Inv2(l2)

• Tr‖H is given by:

• 〈l1, l2〉 g ,a,U−→ 〈l ′1, l2〉 if a 6∈ H ∧ l1
g ,a,U−→ l ′1

• 〈l1, l2〉 g ,a,U−→ 〈l1, l ′2〉 if a 6∈ H ∧ l2
g ,a,U−→ l ′2

• 〈l1, l2〉 g ,τ,U−→ 〈l ′1, l ′2〉 if a ∈ H ∧ l1
g1,a,U1−→ l ′1 ∧ l2

g2,a,U2−→ l ′2
with g = g1 ∧ g2 and U = U1 ∪ U2

Motivation Timed Automata Semantics Modelling in Uppaal

Example: the lamp interrupt as a closed system

Uppaal:

• takes H = Act1 ∩ Act2 (actually as complementary actions denoted
by the ? and ! annotations)

• only deals with closed systems

Motivation Timed Automata Semantics Modelling in Uppaal

Exercise: worker, hammer, nail

1. Exercise. Model in Uppaal the following system described in the lectures:

1. Set the stopwatch to 0

2. When the stopwatch measures 10, action a can occur. If a occurs go to 1., if not idle forever.

2. Exercise (Rail-Road Cross). Build a Uppaal model of a rail-road cross as depicted in
Fig 2.

Your starting point is the parallel composition of the 3 untimed processes in Fig 2. Consider
the following time requirements:

• There is a time interval lasting for at least 2 minutes between the detection of train ap-
proaching and its entering in the cross.

Figure 1: A rail-road cross

Figure 2: Suggestion for an untimed model

• 1 minute delay between the controller sensing the train approaching and giving order to
lower the gate

• The gate goes down in less than 1 minute.

3 Semantics

Motivation Timed Automata Semantics Modelling in Uppaal

Timed Labelled Transition Systems

Syntax Semantics

Process Languages (eg CCS) LTS (Labelled Transition Systems)
Timed Automaton TLTS (Timed LTS)

Timed LTS
Introduce delay transitions to capture the passage of time within a LTS:

s
a−→ s ′ for a ∈ Act, are ordinary transitions due to action occurrence

s
d−→ s ′ for d ∈ R+, are delay transitions

subject to a number of constraints, eg,

Motivation Timed Automata Semantics Modelling in Uppaal

Dealing with time in system models

Timed LTS

• time additivity

(s
d−→ s ′ ∧ 0 ≤ d ′ ≤ d) ⇒ s

d′
−→ s ′′

d−d′
−→ s ′ for some state s ′′

• delay transitions are deterministic

(s
d−→ s ′ ∧ s ′

d−→ s ′′) ⇒ s ′ = s ′′

Motivation Timed Automata Semantics Modelling in Uppaal

Semantics of Timed Automata

Semantics of TA:
Every TA ta defines a TLTS

T (ta)

whose states are pairs

〈location, clock valuation〉

with infinitely, even uncountably many states, and infinite branching

Motivation Timed Automata Semantics Modelling in Uppaal

Clock valuations

Definition
A clock valuation η for a set of clocks C is a function

η : C −→ R+
0

assigning to each clock x ∈ C its current value η x .

Satisfaction of clock constraints

η |= x � n ⇔ η x � n

η |= x − y � n ⇔ (η x − η y)� n

η |= g1 ∧ g2 ⇔ η |= g1 ∧ η |= g2

Motivation Timed Automata Semantics Modelling in Uppaal

Operations on clock valuations

Delay
For each d ∈ R+

0 , valuation η + d is given by

(η + d) x = η x + d

Reset
For each R ⊆ C , valuation η[R] is given by

{
η[R] x = η x ⇐ x 6∈ R

η[R] x = 0 ⇐ x ∈ R

Motivation Timed Automata Semantics Modelling in Uppaal

From ta to T (ta)

Let ta = 〈L, L0,Act,C ,Tr , Inv〉

T (ta) = 〈S ,S0 ⊆ S ,N,T 〉

where

• S = {〈l , η〉 ∈ L× (R+
0)C | η |= Inv(l)}

• S0 = {〈l0, η〉 | l0 ∈ L0 ∧ η x = 0 for all x ∈ C}
• N = Act ∪R+

0 (ie, transitions can be labelled by actions or delays)

• T ⊆ S × N × S is given by:

〈l , η〉 a−→ 〈l ′, η′〉 ⇐ ∃
l
g,a,U−→ l′∈Tr η |= g ∧ η′ = η[U] ∧ η′ |= Inv(l ′)

〈l , η〉 d−→ 〈l , η + d〉 ⇐ ∃d∈R+
0
η + d |= Inv(l)

Motivation Timed Automata Semantics Modelling in Uppaal

Example: the simple switch

T (SwitchA)

S = {〈off , t〉 | t ∈ R+
0 } ∪ {〈on, t〉 | 0 ≤ t ≤ 2}

where t is a shothand for η such that η x = t

Motivation Timed Automata Semantics Modelling in Uppaal

Example: the simple switch

T (SwitchA)

〈off , t〉 d−→ 〈off , t + d〉 for all t, d ≥ 0

〈off , t〉 in−→ 〈on, 0〉 for all t ≥ 0

〈on, t〉 d−→ 〈on, t + d〉 for all t, d ≥ 0 and t + d ≤ 2

〈on, t〉 out−→ 〈off , t〉 for all 1 ≤ t ≤ 2

Motivation Timed Automata Semantics Modelling in Uppaal

Note

• The elapse of time in timed automata only takes place in locations:

• ... actions take place instantaneously

• Thus, several actions may take place at a single time unit

Motivation Timed Automata Semantics Modelling in Uppaal

Behaviours

• Paths in T (ta) are discrete representations of continuous-time
behaviours in ta

• ... at least they indicate the states immediately before and after the
execution of an action

• However, as interval delays may be realised in uncountably many
different ways, different paths may represent the same behaviour

• ... but not all paths correspond to valid (realistic) behaviours:

undesirable paths:

• time-convergent paths

• timelock paths

• zeno paths

Motivation Timed Automata Semantics Modelling in Uppaal

Time-convergent paths

〈l , η〉 d1−→ 〈l , η+ d1〉 d2−→ 〈l , η + d1 + d2〉 d3−→ 〈l , η+ d1 + d2 + d3〉 d4−→ · · ·

such that
∀i∈N . di > 0 ∧

∑

i∈N
di = d

ie, the infinite sequence of delays converges toward d

• Time-convergent path are conterintuitive; as their existence cannot
be avoided, they are simply ignored in the semantics of Timed
Automata

• Time-divergent paths are the ones in which time always progresses

Motivation Timed Automata Semantics Modelling in Uppaal

Time-convergent paths

Definition
An infinite path fragment ρ is time-divergent if ExecTime(ρ) =∞
Otherwise is time-convergent.

where

ExecTime(ρ) =
∑

i=0..∞
ExecTime(δ)

ExecTime(δ) =

{
0 ⇐ δ ∈ Act

d ⇐ δ ∈ R+
0

for ρ a path and δ a label in T (ta)

Motivation Timed Automata Semantics Modelling in Uppaal

Timelock paths

Definition
A path is timelock if it contains a state with a timelock, ie, a state from
which there is not any time-divergent path

A timelock represents a situation that causes time progress to halt (e.g.
when it is impossible to leave a location before its invariant becomes
invalid)

• any teminal state (6= terminal location) in T (ta) contains a timelock

• ... but not all timelocks arise as terminal states in T (ta)

Motivation Timed Automata Semantics Modelling in Uppaal

Timelock paths

State 〈on, 2〉 is reachable through path

〈off , 0〉 s−on−→ 〈on, 0〉 2−→ 〈on, 2〉

and is terminal

Motivation Timed Automata Semantics Modelling in Uppaal

Timelock paths

State 〈on, 2〉 is not terminal but has a convergent path:

〈on, 2〉〈on, 2.9〉〈on, 2.99〉〈on, 2.999〉...

Motivation Timed Automata Semantics Modelling in Uppaal

Zeno

In a Timed Automaton

• The elapse of time only takes place at locations

• Actions occur instantaneously: at a single time instant several
actions may take place

... it may perform infinitely many actions in a finite time interval
(non realizable because it would require infinitely fast processors)

Definition
An infinite path fragment ρ is zeno if it is time-convergent and infinitely
many actions occur along it
A timed automaton ta is non-zeno if there is not an initial zeno path in
T (ta)

Motivation Timed Automata Semantics Modelling in Uppaal

Zeno

Example
Suppose the user can press the in button when the light is on in

In doing so clock x is reset to 0 and light stays on for more 2 time units
(unless the button is pushed again ...)

Motivation Timed Automata Semantics Modelling in Uppaal

Zeno

Example
Typical paths: The user presses in infinitely fast:

〈off , 0〉 in−→ 〈on, 0〉 in−→ 〈on, 0〉 in−→ 〈on, 0〉 in−→ 〈on, 0〉 in−→ · · ·

The user presses in faster and faster:

〈off , 0〉 in−→ 〈on, 0〉 0.5−→ 〈on, 0.5〉 in−→ 〈on, 0〉 0.25−→ 〈on, 0.25〉 in−→ 〈on, 0〉 0.125−→ · · ·

How can this be fixed?

Motivation Timed Automata Semantics Modelling in Uppaal

Zeno

Sufficient criterion for nonzenoness
A timed automaton is nonzeno if on any of its control cycles time
advances with at least some constant amount (≥ 0). Formally, if for
every control cycle

l0
g0,a0,U0−→ l1

g1,a1,U1−→ · · · gn,an,Un−→ ln

with l0 = ln, there exists a clock x ∈ C such that

1. x ∈ Ui (for 0 ≤ i ≤ n)

2. for all clock valuations η, there is a c ∈ IN>0 such that

η x < c ⇒ ((η 6|= gj) ∨ Inv(lj)) for some 0 < j ≤ n

Motivation Timed Automata Semantics Modelling in Uppaal

Warning

Both

• timelocks

• zenoness

are modelling flaws and need to be avoided.

Example
In the example above, it is enough to impose a non zero minimal delay
between successive button pushings.

4 Modelling in Uppaal

Motivation Timed Automata Semantics Modelling in Uppaal

Uppaal

... an editor, simulator and model-checker for TA with extensions ...
Editor.

• Templates and instantiations

• Global and local declarations

• System definition

Simulator.

• Viewers: automata animator and message sequence chart

• Control (eg, trace management)

• Variable view: shows values of the integer variables and the clock
constraints defining symbolic states

Verifier.

• (see next session)

Motivation Timed Automata Semantics Modelling in Uppaal

Extensions (modelling view)

• templates with parameters and an instantiation mechanism

• data expressions over bounded integer variables (eg, int[2..45]
x) allowed in guards, assigments and invariants

• rich set of operators over integer and booleans, including bitwise
operations, arrays, initializers ... in general a whole subset of C is
available

• non-standard types of synchronization

• non-standard types of locations

Motivation Timed Automata Semantics Modelling in Uppaal

Extension: broadcast synchronization

• A sender can synchronize with an arbitrary number of receivers

• Any receiver than can synchronize in the current state must do so

• Broadcast sending is never blocking (the send action can occur even
with no receivers).

Motivation Timed Automata Semantics Modelling in Uppaal

Extension: urgent synchronization

Channel a is declared urgent chan a if both edges are to be taken as
soon as they are ready (simultaneously in locations l1 and s1).
Note the problem can not be solved with invariants because locations l1
and s1 can be reached at different moments

• No delay allowed if a synchronization transition on an urgent
channel is enabled

• Edges using urgent channels for synchronization cannot have time
constraints (ie, clock guards)

Motivation Timed Automata Semantics Modelling in Uppaal

Extension: urgent location

• Time does not progress but interleaving with normal location is
allowed

• Both models are equivalent: no delay at an urgent location

• but the use of urgent location reduces the number of clocks in a
model and simplifies analysis

Motivation Timed Automata Semantics Modelling in Uppaal

Extension: committed location

• delay is not allowed and the committed transition must be left in
the next instant (or one of them if there are several), i.e., next
transition must involve an outgoing edge of at least one of the
committed locations

• Our aim is to pass the value k to variable j (via global variable t)

• Location n is committed to ensure that no other automata can
assign j before the assignment j := t

Motivation Timed Automata Semantics Modelling in Uppaal

The train gate example

• Events model approach/leave, order to stop/go

• A train can not be stopped or restart instantly

• After approaching it has 10m to receive a stop.

• After that it takes further 10 time units to reach the bridge

• After restarting takes 7 to 15m to reach the cross and 3-5 to cross

Motivation Timed Automata Semantics Modelling in Uppaal

The train gate example

• Note the use of parameters and the select clause on transitions

• Programming ...

3. Uppaal Demo. Read the Uppaal tutorial [Behrmann, David & Larsen, 05] available from
the tool web page and run all demos included in the distribution. Explain the problems and
corresponding modelling solution; try out a few variants.

4. Exercise (An elevator). Consider an autonomous elevator which operates between two
floors. The requested behaviour of the elevator is as follows:

• The elevator can stop either at the ground floor or the first floor.

• When the elevator arrives at a certain floor, its door automatically opens. It takes at least
2 seconds from its arrival before the door opens but the door must definitely open within 5
seconds.

• Whenever the elevator’s door is open, passengers can enter. They enter one by one and
we (optimistically) assume that the elevator has a sufficient capacity to accommodate any
number of passengers waiting outside.

• The door can close only 4 seconds after the last passenger entered. After the door closes,
the elevator waits at least 2 seconds and then travels up or down to the other floor.

Suggest a timed automaton model of the elevator. Use the actions up and down to model
the movement of the elevator, open and close to describe the door operation and the action enter
which means that a passenger is entering the elevator.

5. Exercise (QoS of a media stream). Consider the following requirements for a media
stream channel and model a possible representation in Uppaal.

• Source emits a message every 50ms (ie, 20 messages per second)

• Channel latency is between 80ms and 90 ms

• Channel may loose messages (no more than 20%)

• A message is considered lost if it does not arrive within 90 ms

• Sink end receives messages and takes 5ms to process each one

• An error should be generated if less than 15 messages per second arrive at the sink end

5 Behavioural equivalences

Motivation Timed Automata Semantics Modelling in Uppaal

Traces

Definition
A timed trace over a temporal LTS is a (finite or infinite) sequence
〈t1, a1〉, 〈t2, a2〉, · · · in R+ × Act such that there exists a path

〈l0, η0〉 d1−→ 〈l0, η1〉 a1−→ 〈l1, η2〉 d2−→ 〈l1, η3〉 a2−→ · · ·

such that
ti = ti−1 + di

with t0 = 0 and, for all clock x , η0 x = 0.

Intuitively, each ti is an absolute time value acting as a time-stamp.

Warning
All results from now on are given over an arbitrary temporal LTS; they
naturally apply to T (ta) for any timed automata ta.

Motivation Timed Automata Semantics Modelling in Uppaal

Traces
Given a timed trace tc , the corresponding untimed trace is (π2)ω tc .

Definition

• two states s1 and s2 of a timed LTS are timed-language equivalent if
the set of finite timed traces of s1 and s2 coincide;

• ... similar definition for untimed-language equivalent ...

Example

are not timed-language

equivalent: 〈(0, t)〉 is not a trace of the TLTS generated by the second
system.

Motivation Timed Automata Semantics Modelling in Uppaal

Bisimulation

Timed bisimulation
A relation R is a timed simulation iff whenever s1Rs2, for any action a
and delay d ,

s1
a−→ s ′1 ⇒ there is a transition s2

a−→ s ′2 ∧ s ′1Rs ′2

s1
d−→ s ′1 ⇒ there is a transition s2

d−→ s ′2 ∧ s ′1Rs ′2

And a timed bisimulation if its converse is also a bisimulation.

Motivation Timed Automata Semantics Modelling in Uppaal

Bisimulation

Example

〈〈W 1, [x = 0]〉, 〈Z 1, [x = 0]〉〉 ∈ R

where

R = {〈〈W 1, [x = d]〉, 〈Z 1, [x = d]〉〉 | d ∈ R+
0 } ∪

{〈〈W 2, [x = d + 1]〉, 〈Z 2, [x = d]〉〉 | d ∈ R+
0 } ∪

{〈〈W 3, [x = d]〉, 〈Z 3, [x = e]〉〉 | d , e ∈ R+
0 }

Motivation Timed Automata Semantics Modelling in Uppaal

Bisimulation

Untimed bisimulation
A relation R is a untimed simulation iff whenever s1Rs2, for any action a
and delay t,

s1
a−→ s ′1 ⇒ there is a transition s2

a−→ s ′2 ∧ s ′1Rs ′2

s1
d−→ s ′1 ⇒ there is a transition s2

d′
−→ s ′2 ∧ s ′1Rs ′2

And a untimed bisimulation if its converse is also a untimed bisimulation.

Alternatively, it can be defined over a modified LTS in which all delays
are abstracted on a unique, special transition labelled by ε.

6. Exercise (Gossip Girls). A number of girls, say G1 to Gn, for n ≥ 2, initially know one
distinct secret each. You can assume that the secrets are subsets of {1, ..., n}, and that initially
girl Gi knows {i}, for each i ∈ {1, ..., n}. Each girl has access to a phone that can be used to call
another girl to share their secrets. Every time two girls talk to each other they always exchange
all of the secrets they know. Thus, after the phone call, they both know all secrets they knew
together before the phone call. The girls can communicate only in pairs (no conference calls are
allowed), but it is possible that different pairs of girls talk concurrently.

• Model the problem as a network of timed automata in Uppaal, and use it to find the smallest
number of phone calls needed for four girls to know all secrets.

• Refine your model so that each phone call lasts exactly 60 seconds (for simplicity this time
duration is independent of the number of exchanged secrets). Find the minimum time needed
to solve the gossiping girls problem for four girls.

• Experiment with the Uppaal search options breath-first and depth-first search and with the
diagnostic trace settings fastest and shortest. Try to solve the problem for five girls.

Hints.

• Design a single template for all girls. For each girl, remember the currently known secrets
in a local integer variable. (Use a binary encoding such that if a girl knows the secrets of,
for instance, girls 1 and 3 but does not know the secrets of girls 2 and 4, the value in the
integer variable will be 0101 in binary; that is, 5 in decimal representation. You might find
the operation |, for a bitwise OR, useful.)

• How to model value passing when two girls make a phone call? (check the Uppaal tutorial)

6 Behavioural properties

Motivation Timed Automata Semantics Modelling in Uppaal

Properties: expression and satisfaction

The satisfaction problem
Given a timed automata, ta, and a property, φ, show that

T (ta) |= φ

• in which logic language shall φ be specified?

• how is |= defined?

Motivation Timed Automata Semantics Modelling in Uppaal

Expressing properties: Uppaal

Uppaal variant of Ctl

• state formulae: describes individual states in T (ta)

• path formulae: describes properties of paths in T (ta)

Motivation Timed Automata Semantics Modelling in Uppaal

Expressing properties: Uppaal

State formulae
Any expression which can be evaluated to a boolean value for a state
(typically involving the clock constraints used for guards and invariants
and similar constraints over integer variables):

x >= 8, i == 8 and x < 2, ...

Additionally,

• ta.l which tests current location: (l , η) |= ta.l
provided (l , η) is a state in T (ta)

• deadlock: (l , η) |= ∀d∈R+
0
. there is no transition from 〈l , η + d〉

Motivation Timed Automata Semantics Modelling in Uppaal

Expressing properties: Uppaal

State formulae
Any expression which can be evaluated to a boolean value for a state
(typically involving the clock constraints used for guards and invariants
and similar constraints over integer variables):

x >= 8, i == 8 and x < 2, ...

Additionally,

• ta.l which tests current location: (l , η) |= ta.l
provided (l , η) is a state in T (ta)

• deadlock: (l , η) |= ∀d∈R+
0
. there is no transition from 〈l , η + d〉

Motivation Timed Automata Semantics Modelling in Uppaal

Expressing properties: Uppaal

A�ϕ and A♦ϕ

E�ϕ and E♦ϕ

Motivation Timed Automata Semantics Modelling in Uppaal

Expressing properties: Uppaal

ϕ ψ

Motivation Timed Automata Semantics Modelling in Uppaal

Reachability properties

E♦φ
Is there a path starting at the initial state, such that a state formula φ is
eventually satisfied?

• Often used to perform sanity checks on a model:

• is it possible for a sender to send a message?
• can a message possibly be received?
• ...

• Do not by themselves guarantee the correctness of the protocol (i.e.
that any message is eventually delivered), but they validate the
basic behavior of the model.

Motivation Timed Automata Semantics Modelling in Uppaal

Safety properties

A�φ and E�φ

Something bad will never happen
or something bad will possibly never happen

Examples

• In a nuclear power plant the temperature of the core is always
(invariantly) under a certain threshold.

• In a game a safe state is one in which we can still win, ie, will
possibly not loose.

In Uppaal these properties are formulated positively: something good is
invariantly true.

Motivation Timed Automata Semantics Modelling in Uppaal

Liveness properties

A♦φ and φ ψ

Something good will eventually happen
or if something good happen, then something else will eventually happen!

Examples

• When pressing the on button, then eventually the television should
turn on.

• In a communication protocol, any message that has been sent
should eventually be received.

7 Case-study: proving mutual exclusion

Motivation Timed Automata Semantics Modelling in Uppaal

The train gate example

• E<> Train(0).Cross

(Train 0 can reach the cross)

• E<> Train(0).Cross and Train(1).Stop

(Train 0 can be crossing bridge while Train 1 is waiting to cross)

• E<> Train(0).Cross and (forall (i:id-t) i != 0 imply

Train(i).Stop)

(Train 0 can cross bridge while the other trains are waiting to cross)

Motivation Timed Automata Semantics Modelling in Uppaal

The train gate example

• A[] Gate.list[N] == 0

There can never be N elements in the queue

• A[] forall (i:id-t) forall (j:id-t) Train(i).Cross &&

Train(j).Cross imply i == j

There is never more than one train crossing the bridge

• Train(1).Appr --> Train(1).Cross

Whenever a train approaches the bridge, it will eventually cross

• A[] not deadlock

The system is deadlock-free

Motivation Timed Automata Semantics Modelling in Uppaal

Mutual exclusion

Properties

• mutual exclusion: no two processes are in their critical sections at
the same time

• deadlock freedom: if some process is trying to access its critical
section, then eventually some process (not necessarily the same) will
be in its critical section; similarly for exiting the critical section

Motivation Timed Automata Semantics Modelling in Uppaal

Mutual exclusion

The Problem

• Dijkstra’s original asynchronous algorithm (1965) requires, for n
processes to be controlled, O(n) read-write registers and O(n)
operations.

• This result is a theoretical limit (proved by Lynch and Shavit in
1992) which compromises scalability.

but it can be overcome by introducing specific timing constraints

Two timed algorithms:

• Fisher’s protocol (included in the Uppaal distribution)

• Lamport’s protocol

Motivation Timed Automata Semantics Modelling in Uppaal

Fisher’s algorithm

The algorithm

repeat

repeat

await id = 0

id := i

delay(k)

until id = i

(critical section)

id := 0

forever

Motivation Timed Automata Semantics Modelling in Uppaal

Fisher’s algorithm

Comments

• One shared read/write register (the variable id)

• Behaviour depends crucially on the value for k — the time delay

• Constant k should be larger than the longest time that a process
may take to perform a step while trying to get access to its critical
section

• This choice guarantees that whenever process i finds id = i on
testing the loop guard it can enter safely ist critical section: all
other processes are out of the loop or with their index in id
overwritten by i .

Motivation Timed Automata Semantics Modelling in Uppaal

Fisher’s algorithm in Uppaal

• Each process uses a local clock x to guarantee that the upper
bound between between its successive steps, while trying to access
the critical section, is k (cf. invariant in state req).

• Invariant in state req establishes k as such an upper bound

• Guard in transition from wait to cs ensures the correct delay before
entering the critical section

Motivation Timed Automata Semantics Modelling in Uppaal

Fisher’s algorithm in Uppaal

Properties

• The algorithm is deadlock-free

• It ensures mutual exclusion if the correct timing constraints.

• ... but it is critically sensible to small violations of such constraints:
for example, replacing x > k by x ≥ k in the transition leading to
cs compromises both mutual exclusion and liveness.

Motivation Timed Automata Semantics Modelling in Uppaal

Lamport’s algorithm

The algorithm

start : a := i

if b 6= 0 then goto start

b := i

if a 6= i then delay(k)

else if b 6= i then goto start

(critical section)

b := 0

Motivation Timed Automata Semantics Modelling in Uppaal

Lamport’s algorithm

Comments

• Two shared read/write registers (variables a and b)

• Avoids forced waiting when no other processes are requiring access
to their critical sections

Motivation Timed Automata Semantics Modelling in Uppaal

Lamport’s algorithm in Uppaal

Motivation Timed Automata Semantics Modelling in Uppaal

Lamport’s algorithm

Model time constants:

k — time delay

kvr — max bound for register access

kcs — max bound for permanence in critical section

Typically

k ≥ kvr + kcs

Experiments
k kvr kcs verified?

Mutual Exclusion 4 1 1 Yes
Mutual Exclusion 2 1 1 Yes
Mutual Exclusion 1 1 1 No
No deadlock 4 1 1 Yes
No deadlock 2 1 1 Yes
No deadlock 1 1 1 Yes

