
Lecture 3: Introduction to Modal Logic

Lúıs Soares Barbosa

Abstract

This lecture offers an introduction to modal logic, as part of the course background. As a tool
to talk about relational or graph-like structures, modal logic is the ‘lingua franca’ to express
and verify properties of transition systems which underly all the semantic models of reactive
architectures discussed in the course. The emphasis is put on propositional modal logic, with
a special focus on modal definability, bisimulation and the corresponding modal equivalence
results. Several examples of modal logics are briefly introduced, as well as extensions also
relevant to the course, namely temporal and hybrid logic.

1 What’s in a logic?

What’s in a logic? Modal Logic Bisimulation and modal equivalence Temporal logic Hybrid logic

A logic

A language
i.e. a collection of well-formed expressions to which meaning can be
assigned.

A semantics
describing how language expressions are interpreted as statements about
something.

A deductive system
i.e. a collection of rules to derive in a purely syntactic way facts and
relationships among semantic objects described in the language.

Note

• a purely syntactic approach (up to the 1940’s; the sacred form)

• a model theoretic approach (A. Tarski legacy)

1. Logic. If, with a certain philosophical flavour, Logic can be defined as the study of the
principles of reasoning, in a Computer Science course we focus on an particular corner of that
landscape. Our concern is the study of logics, i.e. of specific languages able to talk about specific
abstract structures and equipped with rules for deducing one sentence from others and therefore
properties from properties of the structures in which they are interpreted.

By the end of the 19th century such part of the landscape we are interested in, by then coined
as symbolic logic, flourished with the aim to provide a foundation for Mathematics. A century
after, again our programme has stricter limits: we seek for logics able to describe computational
phenomena, state and verify their properties, as well as for computational mechanisms to automate
reasoning within the former about the latter.

Lecture notes for Arquitectura e Cálculo, MEI profile in Formal Methods in Software Engineering, 2014-15.

What’s in a logic? Modal Logic Bisimulation and modal equivalence Temporal logic Hybrid logic

Semantic reasoning: models

• sentences

• models & satisfaction: M |= φ

• validity: |= φ (φ is satisfied in every possible structure)

• logical consequence: Φ |= φ (φ is satisfied in every model of Φ)

• theory: ThΦ (set of logical consequences of a set of sentences Φ)

What’s in a logic? Modal Logic Bisimulation and modal equivalence Temporal logic Hybrid logic

Syntactic reasoning: deductive systems

Deductive systems

• sequents

• Hilbert systems

• natural deduction

• tableaux systems

• resolution

• · · ·

• derivation and proof

• deductive consequence: Φ ` φ
• theorem: ` φ

2. The triangle: Languages, models, proof systems. As van Benthem puts it logical
formalism starts with a language, a system of patterns behind some practice of communication and
reasoning. These patterns are formal and austere, but that is precisely why they highlight basic
features of the phenomenon described, while also suggesting analogies across different situations.
Then, models: algebraic structures; relational structures; topological structures. In each case
satisfaction is a bridge connecting a language to its interpretation by means of models. Finally,
deductive systems as an essentially syntactic way to build reasoning patterns, type them, derive
new from old — proof theory has a major relationship with Computer Science (cf., the Verification
course in this same MIEI profile).

Much can be said on the vertices of this triangle; as undergrads all of us went up and down,
along its edges, at least for propositional logic.

What’s in a logic? Modal Logic Bisimulation and modal equivalence Temporal logic Hybrid logic

Soundness & completeness

• A deductive system ` is sound wrt a semantics |= if for all
sentences φ

` φ =⇒ |= φ

(every theorem is valid)

• · · · complete ...
|= φ =⇒ ` φ

(every valid sentence is a theorem)

What’s in a logic? Modal Logic Bisimulation and modal equivalence Temporal logic Hybrid logic

Consistency & refutability

For logics with negation and a conjunction operator

• A sentence φ is refutable if ¬φ is a theorem (i.e. ` ¬φ)

• A set of sentences Φ is refutable if some finite conjunction of
elements in Φ is refutable

• φ or Φ is consistent if it is not refutable.

What’s in a logic? Modal Logic Bisimulation and modal equivalence Temporal logic Hybrid logic

Examples

• Propositional logic (logic of uninterpreted assertions; models are
truth assignments)

• Equational logic (formalises equational reasoning; models are
algebras)

• First-order logic (logic of predicates and quatification over
structures; models are relational structures)

• Modal logics

• ...

3. Further reading. Although not strictly necessary for this course, students may like to
revisit some introductory textbook on Logic, probably the one they have already studied as under-
graduates. From the plethora of introductory texts, we single out references [?, ?, ?, ?]. The first is
very pleasant introduction to propositional and first-order logic, co-authored by Wilfried Hogdes,
the author of a reference book on model theory in the early nineties [?]. A classical textbook
is van Dalen’s Logic and Structure [?], which also covers other relevant topics from a Computer
Science perspective, e.g., intuitionistic logic and Gödel incompleteness theorem. Hedman book [?]
covers in addition basic notions of complexity and its relation to logic; chapter 9 provides some
motivation and pointers to what lies beyond first-order, in particular second-order and infinitary
logics. The last reference [?], closer to a philosophic perspective, is a lively discussion on the
nature of meaning and logic, relating the model and proof oriented views.

2 Modal logic

4. Motivation (from J. van Benthem [?]) Some truths seem merely contingent, such as the
fact what clothes you are wearing today. But other truths seem necessary, such as the fact that,
like it or not, you are not someone else. Modal notions of necessity, possibility, and contingency
were standard fare in traditional logic up to the 19th century. All these notions went out the
door in the work of the founding fathers of modern logic, like Boole and Frege (...) who claims
that some proposition is necessarily true just means that it is true, plus some autobiographical
information about how strongly you believe in it. (...) The result are the familiar logical systems
like propositional and predicate logic, which describe properties and relations of objects in fixed
situations, represented by models. (...) Even so, while extensional logics might be adequate for
analyzing mathematical proof and truth in an eternal realm of abstraction, modality made a fast
come-back. (...) . And then, one finds that there is a host of notions of a modal character going
far beyond mere truth: necessity, knowledge, belief, obligation, temporal change, action, and so
on. Indeed, it is hard to think of any use of language which is purely informative: every sentence
we utter resonates in a web of communication, expectations, goals, and emotions. Modal logic
tries to analyze this structure with techniques taken from the mathematical turn in modern logic.

What’s in a logic? Modal Logic Bisimulation and modal equivalence Temporal logic Hybrid logic

Modal logic (from P. Blackburn, 2007)

Over the years modal logic has been applied in many different ways. It
has been used as a tool for reasoning about time, beliefs, computational
systems, necessity and possibility, and much else besides.

These applications, though diverse, have something important in
common: the key ideas they employ (flows of time, relations between
epistemic alternatives, transitions between computational states,
networks of possible worlds) can all be represented as simple graph-like
structures.

Modal logics are

• tools to talk about relational, or graph-like structures.

• fragments of classical ones, with restricted forms of quantification ...

• ... which tend to be decidable and described in a pointfree
notations.

What’s in a logic? Modal Logic Bisimulation and modal equivalence Temporal logic Hybrid logic

The language

Syntax

φ ::= p | true | false | ¬φ | φ1 ∧ φ2 | φ1→ φ2 | 〈m〉φ | [m]φ

where p ∈ PROP and m ∈ MOD

Disjunction (∨) and equivalence (↔) are defined by abbreviation. The
signature of the basic modal language is determined by sets PROP of
propositional symbols (typically assumed to be denumerably infinite) and
MOD of modality symbols.

5. Modalities The intuition behind a modality symbol is that is represents a particular pers-
pective over the world, or, more precisely, over the dynamics, the evolution of the universe of
discourse. Modal operators, cf, boxes and diamonds are a sort of quantifiers, but with a local
flavour: they only refer to states accessible (in the evolution map specified by the interpretation
of the relevant modality symbol) from the current one, i.e. the one from where observations are
taking place.

What’s in a logic? Modal Logic Bisimulation and modal equivalence Temporal logic Hybrid logic

The language

Notes

• if there is only one modality in the signature (i.e., MOD is a
singleton), write simply ♦φ and �φ

• the language has some redundancy: in particular modal connectives
are dual (as quantifiers are in first-order logic): [m]φ is equivalent
to ¬〈m〉 ¬φ

• define modal depth in a formula φ, denoted by mdφ as the
maximum level of nesting of modalities in φ

What’s in a logic? Modal Logic Bisimulation and modal equivalence Temporal logic Hybrid logic

Semantics

Semantics
A model for the language is a pair M = 〈F,V 〉, where

• F = 〈W , {Rm}m∈MOD〉
is a Kripke frame, ie, a non empty set W and a family of binary
relations over W , one for each modality symbol m ∈ MOD.
Elements of W are called points, states, worlds or simply vertices in
directed graphs.

• V : PROP −→ P(W) is a valuation.

What’s in a logic? Modal Logic Bisimulation and modal equivalence Temporal logic Hybrid logic

Semantics

Satisfaction: for a model M and a point w

M,w |= true

M,w 6|= false

M,w |= p iff w ∈ V (p)

M,w |= ¬φ iff M,w 6|= φ

M,w |= φ1 ∧ φ2 iff M,w |= φ1 and M,w |= φ2

M,w |= φ1→ φ2 iff M,w 6|= φ1 or M,w |= φ2

M,w |= 〈m〉φ iff there exists v ∈W st vRmw and M, v |= φ

M,w |= [m]φ iff for all v ∈W vRmw implies M, v |= φ

What’s in a logic? Modal Logic Bisimulation and modal equivalence Temporal logic Hybrid logic

Semantics

Satisfaction
A formula φ is

• satisfiable in a model M if it is satisfied at some point of M

• globally satisfied in M (M |= φ) if it is satisfied at all points in M

• valid (|= φ) if it is globally satisfied in all models

• a semantic consequence of a set of formulas Γ (Γ |= φ) if for all
models M and all points w , if M,w |= Γ then M,w |= φ

6. A relational interlude. Recall the relational calculus studied before. Let Rm stand for
the accessibility relation associated to modality m. Then,

w |= 〈m〉ϕ ⇔ ϕ (|=◦ ·Rm)w

w |= [m]ϕ ⇔ ϕ (R◦m/ |=)w

where c(R \ S)a ≡ 〈∀ b :: bRa⇒ bRc〉.
To do. Express relationally, through similar constructions, the remaining clauses of the satisfac-
tion relation.

What’s in a logic? Modal Logic Bisimulation and modal equivalence Temporal logic Hybrid logic

Proof system K

Minimal modal logic

• all formulas with the form of a propositional tautology (including
formulas which contain modalities but are truth-functionally
tautologous)

• all instances of the axiom schema:

�(φ→ ψ)→ (�φ→�ψ)

• two proof rules:

if ` φ and ` φ→ ψ then ` ψ (modus ponens)

if ` φ then ` �φ (generalization)

What’s in a logic? Modal Logic Bisimulation and modal equivalence Temporal logic Hybrid logic

Variants

Normal modal logics are axiomatic extensions to K

• different applications of modal logic typically validate different
modal axioms;

• a normal modal logic is identified with the set of formulas it
generates; it is said to be consistent if it does not contain all
formulas. This identification immediately induces a lattice structure
on the set of all such logics.

What’s in a logic? Modal Logic Bisimulation and modal equivalence Temporal logic Hybrid logic

Variants

Modal axioms reflect properties of accessibility relations:

• transitive frames: �φ→� � φ

• simple frames: ♦φ→�φ
• frames consisting of isolated reflexive points: φ↔�φ
• frames consisting of isolated irreflexive points: �false

But there are classes of frames which are not modally definable,
eg, connected, irreflexive, containing a isolated irreflexive point

7. Frame definability. Richer variants to the minimal modal logic can be characterised at
the level of frames (a frame being the pair formed by a set of states and an accessibility relation).
We say that a formula is valid on a frame F = 〈W,R〉 if it is valid at any point w ∈ W for each
valuation of its propositional symbols. For example, the axiom scheme �φ⇒��φ is valid in any
model whose accessibility relation is transitive, i.e. is valid for all transitive frames, which are the
ones suitable to express, e.g., the flow of time.

8. Exercise. Resorting to the semantics definition, prove the following are valid formulas in
propositional modal logic:

�(ϕ ∧ ψ) ⇔ �ϕ ∧�ψ
♦(ϕ ∨ ψ) ⇔ ♦ϕ ∨ ♦ψ
♦ϕ ∧�ψ ⇒ ♦(ϕ ∧ ψ)

♦(ϕ ∧ ψ) ⇒ ♦ϕ ∧ ♦ψ
�ϕ ∨�ψ ⇒ �(ϕ ∨ ψ)

�(ϕ→ ψ) ⇒ �ϕ→�ψ

9. Exercise. Verify the soundness of the following inference rules for propositional model logic:

ϕ
(GEN)

�ϕ
ϕ→ ψ

(MON1)
♦ϕ→ ♦ψ

ϕ→ ψ
(MON2)

�ϕ→�ψ

What’s in a logic? Modal Logic Bisimulation and modal equivalence Temporal logic Hybrid logic

Examples

An automaton

A = 1
a // 2

a

��
b // 3

b

ZZ

• two modalities 〈a〉 and 〈b〉 to explore the corresponding classes of
transitions

• note that
1 |= 〈a〉 · · · 〈a〉 〈b〉 · · · 〈b〉 t

where t is a proposition valid only at the (terminal) state 3.

• all modal formulas of this form correspond to the strings accepted
by the automaton, i.e. in language L = {ambn |m, n > 0}

What’s in a logic? Modal Logic Bisimulation and modal equivalence Temporal logic Hybrid logic

Examples

(P , <) a strict partial order with infimum 0

• P, x |= �false if x is a maximal element of P

• P, 0 |= ♦� false iff ...

• P, 0 |= �♦� false iff ...

10. Answer. The second assertion captures the fact that P has a maximal element; the third
that every element is below a maximal element.

What’s in a logic? Modal Logic Bisimulation and modal equivalence Temporal logic Hybrid logic

Examples

Process logic (Hennessy-Milner logic)

• PROP = ∅
• W = P is a set of states, typically process terms, in a labelled

transition system

• each subset K ⊆ Act of actions generates a modality corresponding
to transitions labelled by an element of K

Assuming the underlying LTS F = 〈P, {p K−→ p′ | K ⊆ Act}〉 as the
modal frame, satisfaction is abbreviated as

p |= 〈K 〉φ iff ∃
q∈{p′|p a−→p′ ∧ a∈K} . q |= φ

p |= [K]φ iff ∀
q∈{p′|p a−→p′ ∧ a∈K} . q |= φ

11. Exercise. Hennessy-Milner logic, often in extended, temporal variants, is used to express
properties of processes specified in a process algebra (see e.g. [?] or [?]). Typical properties include:

• inevitability of a: 〈−〉 true ∧ [−a] false
• progress: 〈−〉 true
• deadlock or termination: [−] false

where Act is abbreviated to −, and Act \K to −K.
What does express 〈−〉 false and [−] true ?

12. Exercise Consider the following requirements concerning a management system for a taxi
network, and translate into Hennessy-Milner logic.

• φ0 = In a taxi network, a car can collect a passenger or be allocated by the Central to a
pending service

• φ1 = This applies only to cars already on service
• φ2 = If a car is allocated to a service, it must first collect the passenger and then plan the

route
• φ3 = On detecting an emergence the taxi becomes inactive
• φ4 = A car on service is not inactive

Solution.

• φ0 = 〈rec, alo〉 true
• φ1 = [onservice]φ0
• φ2 = [alo] 〈rec〉 〈plan〉 true
• φ3 = [sos] [−] false
• φ4 = [onservice] 〈−〉 true

What’s in a logic? Modal Logic Bisimulation and modal equivalence Temporal logic Hybrid logic

Examples

Temporal logic

• 〈T , <〉 where T is a set of time points (instants, execution states ,
...) and < is the earlier than relation on T .

• Thus, �ϕ (respectively, ♦ϕ) means that ϕ holds in all (respectively,
some) time points.

• origin: Arthur Prior, an attempt to deal with temporal information
from the inside, capturing the situated nature of our experience and
the context-dependent way we talk about it

What’s in a logic? Modal Logic Bisimulation and modal equivalence Temporal logic Hybrid logic

Examples

〈T , <〉
The structure of time is a strict partial order
(i.e., a transitive and asymmetric relation)

For any such structure, a new modality, ©, can be defined based on the
cover relation l for < (i.e., the smallest relation whose transitive closure
is <). Thus,

t |=©φ iff ∀t′∈{p′|tlt′} . t
′ |= φ

t |= �φ iff ∀t′∈{p′|t<t′} . t
′ |= φ

t |= ♦φ iff ∃t′∈{p′|t<t′} . t
′ |= φ

What’s in a logic? Modal Logic Bisimulation and modal equivalence Temporal logic Hybrid logic

Examples

... but typical structures, however, are

Linear time structures

• linear: 〈∀ x , y : x , y ∈ T : x = y ∧ x < y ∧ y < x〉.
• discrete: for each t ∈ T , i) if there is a u > t there is a first such u;

ii) if there is a u < t there is a last such u.

• dense: if for all t, x ∈ T , if x < t there is a v ∈ T such that
x < v < t.

• Dedekind complete: if for all S ⊆ T non-empty and bounded above,
there is a lest upper bound in T .

• continuous: if it is both dense and Dedekind complete

13. The next instant. For a linear temporal structure ©φ refers to the validity of φ in the
(unique) next time point. Of course in an arbitrary discrete structure, more than one next time
point may exist. In any case, however, the formula ©φ does not imply the existence of a next
instant: the dual operator ¬© ¬ should be used when this is wanted. In a sense, temporal logic
over a discrete structure introduces two modalities: one corresponding to <, upon which ♦ and
� are defined; another to its cover l. In the language of § ?? one should write 〈<〉φ, [<]φ and
[l]φ, for ♦φ, �φ and ©φ, respectively.

What’s in a logic? Modal Logic Bisimulation and modal equivalence Temporal logic Hybrid logic

Examples

Epistemic logic (J. Hintikka, 1962)

• W is a set of agents

• α |= i means i is the current knowledge of agent i

• α |= �j means the agent knows that j (in the sense that at each
alternative epistemic situation information j is known)

• α |= ♦j means the agent knows that knowledge j is consistent with
what the agent knows (is an epistemically acceptable alternative)

What’s in a logic? Modal Logic Bisimulation and modal equivalence Temporal logic Hybrid logic

The first order connection
Boxes and diamonds are essentially a macro notation to encode
quantification over accessible states in a point free way.

The standard translation
... to first-order logic expands these macros:

STx(p) = P x

STx(true) = true

STx(false) = false

STx(¬φ) = ¬STx(φ)

STx(φ1 ∧ φ2) = STx(φ1) ∧ STx(φ1)

STx(φ1→ φ2) = STx(φ1)→ STx(φ1)

STx(〈m〉φ)= 〈∃ y :: (yRmx ∧ STy (φ))〉
STx([m]φ)= 〈∀ y :: (yRmx → STy (φ))〉

What’s in a logic? Modal Logic Bisimulation and modal equivalence Temporal logic Hybrid logic

The first order connection

Lemma
For any φ, M and point w in M,

M,w |= φ iff M |= STx(φ)[x ← w]

Note
Note how the (unique) free variable x in STx mirrors in first-order the
internal perspective: assigning a value to x corresponds to evaluating the
modal formula at a certain state.

What’s in a logic? Modal Logic Bisimulation and modal equivalence Temporal logic Hybrid logic

The first order connection

The standard translation provides a bridge between modal logic and
classical logic which makes possible to transfer results from one side to
the other. For example,

Compactness
If Φ is a set of basic modal formulas and every finite subset of Φ is
satisfiable, then Φ itself is satisfiable.

Löwenheim-Skolem
If Φ is a set of basic modal formulas satisfiable in at least one infinite
model, then it is satisfiable in models of every infinite cardinality.

14. A balance. The standard translation discussed here is the tool to formalise the idea that
modal logics correspond to particularly well-behaved fragments of first order logic. This always
entails a balance between computational complexity and expressive power. A similar balance
arise between first and second-order logic, the latter loosing in axiomatizability wrt the former,
but having an increased expressive power.

15. Exercise.

• Explain how propositional symbols and modalities are translated to first-order logic?
• In what sense can modal logic be regarded as a pointfree version of a FOL fragment?
• Compute STx(p⇒ 〈m〉 p)

What’s in a logic? Modal Logic Bisimulation and modal equivalence Temporal logic Hybrid logic

Summing up

• Propositional modal languages are syntactically simple languages
that offer a pointfree notation for talking about relational structures

• They do this from the inside, using the modal operators to look for
information at accessible states

• Regarded as a tool for talking about models, any basic modal
language can be seen as a fragment of first-order language

• The standard translation systematically maps modal formulas to
first-order formulas (in one free variable) and makes the
quantification over accessible states explicit

3 Bisimulation and modal equivalence

What’s in a logic? Modal Logic Bisimulation and modal equivalence Temporal logic Hybrid logic

Bisimulation

Definition
Given two models M = 〈〈W ,R〉,V 〉 and M′ = 〈〈W ′,R ′〉,V ′〉, a
bisimulation is a non-empty binary relation S ⊆W ×W ′ st whenever
wSw ′ one has that

• points w and w ′ satisfy the same propositional symbols

• if vRw , then there is a point v ′ in M′ st v ′Rw ′ and vSv ′ (zig)

• if v ′R ′w ′, then there is a point v in M st vRw and vSv ′ (zag)

What’s in a logic? Modal Logic Bisimulation and modal equivalence Temporal logic Hybrid logic

Bisimulation

Definition

• Bisimulations can be used to expand or contract models (cf via tree
unraveling and contraction)

• Bisimulation vs model constructions (disjoint union, generated
submodels and bounded morphisms)

Note
Note the relation to the notion of bisimulation in transition systems,
independently discovered by Park (1982) in Computer Science.

What’s in a logic? Modal Logic Bisimulation and modal equivalence Temporal logic Hybrid logic

Invariance and definability

Lemma (invariance: bisimulation implies modal equivalence)
Given two models M = 〈〈W ,R〉,V 〉 and M′ = 〈〈W ′,R ′〉,V ′〉, and a
bisimulation S ⊆W ×W ′ , if two points w ,w ′ are related by S , i.e.
wSw ′, then w ,w ′ satisfy the same basic modal formulas.

Applications

• to prove bisimulation failures

• to show the undefinability of some structural notions, e.g.
irreflexivity is modally undefinable

• to show that typical model constructions are satisfaction preserving

• ...

16. Proof (invariance). The proof is by induction on the structure of modal formulas. The
base case, for propositional symbols, is immediate from the the definition of bisimulation. Similarly
the inductive arguments of the Boolean connectives are straightforward. Consider, thus, the case
〈m〉φ. We want to show that if M, w |= 〈m〉φ and wSw′, then M′, w′ |= 〈m〉φ. Clearly,

M, w |= 〈m〉φ
⇔ { satisfaction }

there exists v ∈W st vRmw and M, v |= φ

⇔ { wSw′ (zig condition) }
there exists v′ ∈M′ st v′Rmw

′ and vSv′

⇔ { M′, v′ |= φ because vSv′ and IH }
M′, w′ |= 〈m〉φ

Now, suppose M′, w′ |= 〈m〉φ. To conclude, M, w |= 〈m〉φ the argument is similar to the one
used above, now resorting to the bisimulation (zag) condition.

�

What’s in a logic? Modal Logic Bisimulation and modal equivalence Temporal logic Hybrid logic

Exercise

Bisimilarity and modal equivalence

• Show that irreflexivity is modally undefinable.

• Consider the following transition systems:

5

1
��

// 2 3

OO

��

((
4hh

6

Give a modal formula that can be satisfied at point 1 but not at 3.

17. Answer. For the first question consider states w and w0 in the following transition
systems, with and without a reflexive arrow. Clearly, both states are bisimilar (i.e. relation
S = {〈w,wi〉 | i ≥ 0} is a bisimulation) and then, by the invariance lemma, there is no modal
formula able to distinguish between them.

w
��

w0
// w1

// w2
// · · ·

For the second question, formula �(�false ∨ ♦� false) is satisfied at state 1 but not at state 3.

What’s in a logic? Modal Logic Bisimulation and modal equivalence Temporal logic Hybrid logic

Invariance and definability

To prove the converse of the invariance lemma requires passing to an
infinitary modal language with arbitrary (countable) conjunctions and
disjunctions. Alternatively, and more usefully, it can be shown for finite
models:

Lemma (modal equivalence implies bisimulation)
If two points w ,w ′ from two finite models M = 〈〈W ,R〉,V 〉 and
M′ = 〈〈W ′,R ′〉,V ′〉 satisfy the same modal formulas, then there is a
bisimulation S ⊆W ×W ′ such that wSw ′.

18. Proof. Without loss of generality we shall consider models with a single relation R (and
thus, restrict our attention to a language with a single modality ♦). Define a relation S on the

states of M and M′ as follows

wSw′ ⇔ w and w′ satisfy the same modal formulas.

Clearly, S is modal equivalence. We want to prove that it is also a bisimulation. Let wSw′.
Obviously, they satisfy the same propositions, which is the first condition for S to be a bisimulation.
We shall consider now the (zig) condition. Let vRw and suppose there is no v′ in M′ such that
v′R′w′ and vSv′. Consider the set T = {u | uR′w′} of R′-successors of w′. This set is not
empty because w has a successor v (and therefore, M, w |= ♦true) and wSw′ (and therefore,
M′, w′ |= ♦true as well). Moreover, T is finite and can be enumerated:

T = {u0, u1, u2, · · ·} .

By hypothesis, for each ui ∈ T , there exists a formula φi such that M, v |= φi but M′, u¬ |= φi.
Thus,

M, w |= ♦(φ1 ∧ φ2 ∧ · · · ∧ φn)

but
M′, w′¬ |= ♦(φ1 ∧ φ2 ∧ · · · ∧ φn)

which contradicts the assumption that wSw′. Therefore, relation S satisfies the (zig) condition.
A similar arguments shows it also satisfies the (zag) condition.

�

What’s in a logic? Modal Logic Bisimulation and modal equivalence Temporal logic Hybrid logic

Invariance and definability

Note

• The result can be weakened to image-finite models.

• Combining this result with the invariance lemma one gets the
so-called modal equivalence theorem stating that, for image-finite
models, bisimilarity and modal equivalence coincide. The result is
also known as the Hennessy-Milner theorem who first proved it for
process logics.

Exercise

• Give an example of modally equivalent states in different Kripke
structure which fail to be bisimilar.

19. Answer. Consider state w in the following tree which has ω branches with length 1, 2, 3, · · · .
Clearly, w is modally equivalent to a state in the root of a similar tree which additionally contains
an infinite branch. Such states, however, are not bisimilar.

w

~~ �� !!

· · · · · ·

• •

��

•

""• •

!! •

20. Exercise. Prove that states q0 and p0 are not bisimilar by presenting a formula in the
suitable process logic which holds for one of them but not for the other.

q1
d // q2 p2

q0

a
>>

a

p0
a // p1

d
>>

e

q4 e
// q3 p3

What’s in a logic? Modal Logic Bisimulation and modal equivalence Temporal logic Hybrid logic

Invariance and definability

Lemma (modal logic vs first-order)
The following are equivalent for all first-order formulas φ(x) in one free
variable x :

1. φ(x) is invariant for bisimulation.

2. φ(x) is equivalent to the standard translation of a basic modal
formula.

Therefore:
the basic modal language corresponds to the fragment of their first-order
correspondence language that is invariant for bisimulation

What’s in a logic? Modal Logic Bisimulation and modal equivalence Temporal logic Hybrid logic

Invariance and definability

• the basic modal language (interpreted over the class of all models)
is computationally better behaved than the corresponding first-order
language (interpreted over the same models)

• ... but clearly less expressive

model checking satisfiability
ML PTIME PSPACE-complete
FOL PSPACE-complete undecidable

What are the trade-offs? Can this better computational behaviour be
lifted to more expressive modal logics?

What’s in a logic? Modal Logic Bisimulation and modal equivalence Temporal logic Hybrid logic

Richer modal logics

can be obtained in different ways, e.g.

• axiomatic extensions

• introducing more complex satisfaction relations

• support novel semantic capabilities

• ...

Examples

• richer temporal logics

• hybrid logic

• modal µ-calculus

4 Temporal logic

What’s in a logic? Modal Logic Bisimulation and modal equivalence Temporal logic Hybrid logic

Temporal logics with U and S

Until and Since

M,w |= φU ψ iff there exists v ∈W st vRw and M, v |= ψ,

and for all u st uRw and vRu, one has M, u |= φ

M,w |= φS ψ iff there exists v ∈W st wRv and M, v |= ψ,

and for all u st uRv and wRu, one has M, u |= φ

• note the ∃ ∀ qualification pattern: these operators are neither
diamonds nor boxes.

• more expressive — e.g. helpful to express guarantee properties, e.g.
some event will happen, and a certain condition will hold until then

What’s in a logic? Modal Logic Bisimulation and modal equivalence Temporal logic Hybrid logic

Exercise

Temporal logics

• Show that U is modally undefinable.
Hint Consider the following transition structures and formula
falseU true:

1
��

2
((
3hh

• Would this be the case if we restrict ourselves to transitive,
irreflexive models?

21. Answer. Yes. Consider the two models M and M′ below, and suppose M, s1 |= φ,
M, u0 |= ψ, M, u1 |= ψ, M′, s |= φ, and M′, u |= ψ. Clearly states w and v are bisimilar. However,
M, w |= φ U ψ, which is not the case for v in M′.

u0 u1 u

s1

`` >>

s2

``

s

@@

t

^^

w

aa >>

v

__ @@

What’s in a logic? Modal Logic Bisimulation and modal equivalence Temporal logic Hybrid logic

Linear temporal logic (LTL)

φ := true | p | φ1 ∧ φ2 | ¬φ | ©φ | φ1 U φ2

mutual exclusion �(¬c1 ∨ ¬c2)
liveness �♦c1 ∧�♦c2
starvation freedom (�♦w1→�♦c1) ∧ (�♦w1→�♦c1)
progress �(w1→ ♦c1)
weak fairness ♦� w1 →�♦c1
eventually forever ♦� w1

• First temporal logic to reason about reactive systems [Pnueli, 1977]

• Formulas are interpreted over execution paths

• Express linear-time properties

22. Linear temporal logic. Linear temporal logic (LTL) was introduced in by A. Pnueli [?]
for reasoning about reactive systems. A number of variants have been explored since then, of
which L. Lamport TLA [?] is probably the most used in industry. LTL is a logic for formalising
properties of a program execution path assuming a linear structure for time (each moment has a
single successor): modality ♦ refers to a future point in an execution path, while � captures the
fact that a property holds in the current moment and forever in the future.

As an example of what can be expressed in LTL, the table in the slide concerns the mutual
exclusion problem of two concurrent processes, T1 and T2. It is supposed that propositions ci and
wi are valid when process i is in, or waiting to enter into its critical section, respectively. The
first property is a typical safety requirement, while the second is a liveness property (each process
is infinitely often in its critical section). The third one is a weaker version of the latter: every
waiting process will eventually enter its critical section. The fourth example is typical in specifying
communications (if a request is sent, a message will came). The fairness requirement states that
if the first process is continuously waiting to enter it s critical section, it will be entering infinitely
often. Finally, the latter is an example of a liveness property asserting a (future) invariant. Note
that fairness constraints can be expressed in LTL along with any other properties of transition
systems.

LTL formulas are usually interpreted over an execution path p, i.e. a sequence of states, by
considering a model whose set of sates is formed by all the suffixes of p and the accessibility
relations (cf, § ??) are taken as the suffix order (w′Rw off w′ is a suffix of w) and its cover. For
example, for a propositional symbol p ∈ PROP , we get

l |= p ⇔ hd l ∈ V (l) ,

and

l |=© φ ⇔ tl l

l |=♦φ ⇔ ∃j≥0. l(j..) |= φ

l |= � φ ⇔ ∀
j≥0

. l(j..) |= φ

l |=φ U ψ ⇔ ∃j>0∀0≤i<j . (l(j..) |= ψ ∧ l(i..) |= φ)

where, for an index k > 0, where l(k) denotes the kth element in sequence l, and l(k..) stands for
the suffix of l starting at position k in the original path l. Note that hd l = l(0) and tl l = l(1..).

The interpretation of LTL formulas over p can also be given in terms it individual states as
follows:

l |=p ⇔ l(0) ∈ V (p)

l |=© φ ⇔ l(1)

l |=♦φ ⇔ ∃j≥0. l(j) |= φ

l |= � φ ⇔ ∀j≥0. l(j) |= φ

l |=φ U ψ ⇔ ∃j≥0 . (l(j) |= ψ ∧ (∀0≤i<j l(i) |= φ))

More generally, one may turn attention to all possible execution paths starting at a state s
and define state satisfaction as

s |= φ iff ∀l∈Paths(s) . l |= φ (1)

But this opens the way to a different logic in which modal reasoning explores a branching time
structure.

23. Exercise. Consider an elevator servicing N floors. At each floor assume the existence of a
call-button and an indicator light that is on when the elevator has been called. Specify in LTL
the following properties, also defining the atomic propositions you may find necessary for the
specification;

• Every request, from any floor, will be served sometime.
• At each floor the doors are never open unless the elevator is there.
• Only a request is served at a time.
• Whenever an even floor issues a request it is served at once: the elevator does not stop on

the way there.
• The elevator, if not serving a request, always returns to the bottom floor.

24. Exercise. Prove the following are valid formulas in LTL:

♦♦φ ⇔ ♦φ
♦� ♦φ ⇔ �♦φ and � ♦� φ ⇔ ♦� φ

�(φ ∧ ψ) ⇔ �φ ∧�ψ
♦(φ ∨ ψ) ⇔ ♦φ ∨ ♦ψ

�φ ⇔ φ ∧©� φ and ♦φ ⇔ φ ∨©♦φ
φ U (φ U ψ) ⇔ (φ U ψ) U ψ ⇔ φ U ψ

What’s in a logic? Modal Logic Bisimulation and modal equivalence Temporal logic Hybrid logic

Computational tree logic (CTL, CTL*)

state formulas to express properties of a state:

Φ := true | Φ ∧ Φ | ¬Φ | ∃φ | ∀φ

path formulas to express properties of a path:

φ := ©Φ | Φ U Ψ

mutual exclusion ∀� (¬c1 ∨ ¬c2)
liveness ∀� ∀♦c1 ∧ ∀� ∀♦c2
order ∀� (c1 ∨ ∀© c2)

• Branching time structure encode transitive, irreflexive but not
necessarily linear flows of time

• flows are trees: past linear; branching future

25. Branching temporal structures. Equation (??) in § ?? paves the way for a more
general way to look at temporal properties, explicitly introducing in the logic quantification over
execution paths. Clarke & Emerson in a seminal paper [?] introduced CTL, a temporal logic that
is interpreted not over a linear time structure but over a branching one: in other words, replacing
(infinite) sequences of states by (infinite) trees of states. Each traversal of a such a tree, starting
at its root, corresponds to an execution path. To explore such a structure (e.g. to assert that
there exists a computation in which formula ♦φ holds) path (existential and universal) quantifiers
are introduced thus inducing a double formula structure. CTL syntax includes, therefore,

• path formulas, whose main connective is a LTL operator, to express properties of a path,

• state formulas, witch include the above mentioned path quantifiers, to express properties of
a state.

The way both formulas interact is not arbitrary: formally, assuming a set AP of atomic proposi-
tions, state formulas are generated by the following grammar:

Φ := true | Φ1 ∧ Φ2 | ¬Φ | ∃φ | ∀φ

where φ is a path formula built according to

φ := ©Φ | Φ1 U Φ2

where Φ, Ψ are state formulas. Note that the remaining Boolean connectives can be defined by

abbreviation. One may also define ♦Φ
abv
= (true U Φ). However, what corresponds to a box con-

nective cannot be obtained as in LTL by �Φ
abv
= ¬♦¬Φ since the grammar precludes propositional

connectives to be applied to path formulas. What we get, however, is a richer ontology of temporal
expressions:

Φ potentially holds ∃♦Φ
Φ in inevitable ∀♦Φ
Potentially always Φ holds ∃� Φ
Invariantly Φ holds ∀� Φ

Note the dualities: ∃� Φ = ¬∀♦¬Φ and ∀� Φ = ¬∃♦¬Φ.

The satisfaction relation for CTL is given, for state formulas, by

s |=p ⇔ s ∈ V (p)

s |=¬Φ ⇔ s 6|= Φ

s |=Φ ∧Ψ ⇔ s |= Φ and s |= Ψ

s |=∃φ ⇔ p |= φ for some p ∈ Paths(s)

s |=∀φ ⇔ p |= φ for all p ∈ Paths(s)

and, for path formulas, by

l |=© Φ ⇔ l(1) |= Φ

l |= Φ U Ψ ⇔ ∃j≥0 . l(j) |= ψ ∧ (∀0≤i<j . l(i) |= Φ)

26. Exercise. Discuss the meaning of the following CTL formulas:

• ∃(Φ U Ψ)
• ∀� ∀♦Φ
• ∀© Φ

It is not difficult to see that not all valid identities in LTL can be lifted to CTL. As an example,
show that ∀♦(Φ ∨Ψ) 6 ⇒∀♦Φ ∨ ∀♦Ψ (whereas in LTL one has ♦(φ ∨ ψ)⇔ ♦φ ∨ ♦ψ).

27. CTL*. The expressive power of LTL and CTL cannot be compared, both logics being able
to record assertions which cannot be suitably expressed by the other. The reader is referred to
[?] for an extensive, formal discussion. Just as an appetiser for such a discussion consider the
following transition system and assume valuation V such that V (r) = V (t) = {a}, for a an atomic
proposition, V (s) = ∅.

r
�� // s // t

��

Clearly r |= ♦� a but considering path p = rω is enough to falsify s |= ∀♦∀� a.
A CTL extension, called CTL* [?], allows path quantifires to be arbitrarily nested with linear

time operators. For example, ∃ � ♦Φ or ∀ ©©a are valid formulas in CTL* but not allowed in
CTL. Moreover, path quantifier ∀ can be defined as ¬∃¬ which is not the case in CTL. CTL* is
strictly more expressive then both LTL and CTL, and can thus be specialised to both of them.
We give CTL* syntax below and let as an exercise the definition of the corresponding satisfaction
relation.

Φ := true | a | Φ1 ∧ Φ2 | ¬Φ | ∃φ
where φ is a path formula built according to

φ := Φ | φ1 ∧ φ2 | ©φ | φ1 U φ2

where, as before, capital Greek letters stand for path formulas. Note that ♦φ abv
= true U φ, as in

both CTL and LTL, and �φ abv
= ¬♦¬φ, as in LTL.

5 Hybrid logic and applications to architectural design

What’s in a logic? Modal Logic Bisimulation and modal equivalence Temporal logic Hybrid logic

Hybrid logic

Motivation
Add the possibility of naming points and reason about their identity

Compare:
♦(r ∧ p) ∧ ♦(r ∧ q) → ♦(p ∧ q)

with
♦(i ∧ p) ∧ ♦(i ∧ q) → ♦(p ∧ q)

for i ∈ NOM (a nominal)

What’s in a logic? Modal Logic Bisimulation and modal equivalence Temporal logic Hybrid logic

Hybrid logic

Nominals i

• Are special propositional symbols that hold exactly on one state
(the state they name)

• In a model the valuation V is extended from

V : PROP −→ P(W)

to
V : PROP −→ P(W) and V : NOM −→W

where NOM is the set of nominals in the model

• Satisfaction:

M,w |= i iff w = V (i)

What’s in a logic? Modal Logic Bisimulation and modal equivalence Temporal logic Hybrid logic

Hybrid logic

The @i operator

M,w |= @iφ iff M, u |= φ and u is the state denoted by i

Standard translation to first-order

STx(i) = (x = i)

STx(@iφ) = STi (φ)(x = i)

i.e., hybrid logic corresponds to a first-order language enriched with
constants and equality.

What’s in a logic? Modal Logic Bisimulation and modal equivalence Temporal logic Hybrid logic

Hybrid logic

Increased frame definability

• irreflexivity: i →¬♦i
• asymmetry: i →¬♦♦i
• antisymmetry: i →�(♦i → i)

• trichotomy: @j♦i ∨ @ij ∨ @i♦j

28. Hybrid logic. Standard modal logic is unable to explicitly mention specific states in
a model, i.e. to ‘name’ them. Therefore, there is no way to assert the equality between two
particular states or the existence of a transition between them. Clearly, this can be done in a first
order language, resorting to constants to identify whatever one wants to name, and equality. In
modal logic, however, there is a number of properties, for example irreflexivity of the underlying
accessibility relation, that can not be axiomatised by the same reason. Hybrid logic [?, ?, ?]
overcomes this limitation by introducing a new kind of symbols NOM , called nominals, to make
explicitly reference to states in models. Sentences are then enriched in two directions. On the one
hand, each nominal is used as a simple sentence holding exclusively in the state it names; on the
other hand, sentences @i ρ, for i ∈ NOM , state the validity of ρ at the state named by i.

What’s in a logic? Modal Logic Bisimulation and modal equivalence Temporal logic Hybrid logic

Bisimulation with nominals

Definition
Given two models M = 〈〈W ,R〉,V 〉 and M′ = 〈〈W ′,R ′〉,V ′〉, a
bisimulation is a non-empty binary relation S ⊆W ×W ′ st whenever
wSw ′ one has that

• points w and w ′ satisfy the same propositional symbols and
nominals

• if vRw , then there is a point v ′ in M′ st v ′Rw ′ and vSv ′ (zig)

• if v ′R ′w ′, then there is a point v in M st vRw and vSv ′ (zag)

• V (i)R V ′(i) for all nominal i (name consistency)

An invariance theorem and its dual (for image finite models) can also be
proved

29. Exercise. A result relating bisimulation and modal equivalence for hybrid logic (along the
same lines of §§?? and ??) also holds here. Prove it. Actually, hybrid logic, captures exactly the
first-order fragment with constants and equality.

What’s in a logic? Modal Logic Bisimulation and modal equivalence Temporal logic Hybrid logic

Hybrid logic

Summing up

• basic hybrid logic is a simple notation for capturing the
bisimulation-invariant fragment of first-order logic with constants
and equality, i.e., a mechanism for equality reasoning in
propositional modal logic.

• comes cheap: up to a polynomial, the complexity of the resulting
decision problem is no worse than for the basic modal language

30. Further reading and applications. For the interested reader, C.Areces & D. ten Cate
chapter in the Handbook of Modal Logic [?] or T. Brauner book [?] provide a comprehensive
survey of hybrid logic, its semantics, variants, applications and history. In the context of this
course, however, it is worth to mention a number of recent applications of hybrid logic to modelling
architectural problems. This is done in the sequel taking two examples of recent PhD theses at
HASLab INESC TEC.

What’s in a logic? Modal Logic Bisimulation and modal equivalence Temporal logic Hybrid logic

Hybrid logic

Applications to architectural design

• layout of coordination circuits (e.g. in Reo)

• reconfigurable architectures (parametric on a specification logic)

• hierarchical architectures (e.g. UML statecharts)

• ...

[recent research at HASLab: projects Mondrian and Nasoni]

What’s in a logic? Modal Logic Bisimulation and modal equivalence Temporal logic Hybrid logic

Applications to architectural design

Structural reasoning over Reo circuits

φ :== p | i | ¬φ | φ1 ∧ φ2 | [K]φ | [[K]]φ | @iφ

• modalities are indexed by regular expressions over channel types;

• 〈K 〉 and [K] (reps., 〈〈K 〉〉 and [[K]]) express properties of outgoing
(resp., incoming) connections from the node in which they are
evaluated.

[Nuno Oliveira PhD thesis (MAP-i, 2015)]

What’s in a logic? Modal Logic Bisimulation and modal equivalence Temporal logic Hybrid logic

Applications to architectural design

Structural reasoning over Reo circuits

i

hoj
a

esi
e

yi y1

y2

w MAs

xi

x1

x2

Es

1. φ1 , @to 〈−∗〉 true ∧ [−∗] [−MAs] false
(there is a path from triage input port (to) to a MAs edge)

2. φ2 , [[−]]false→ [−∗] ho
(all paths from input ports, lead to the billing service (ho) port)

What’s in a logic? Modal Logic Bisimulation and modal equivalence Temporal logic Hybrid logic

Applications to architectural design

Reconfiguration of Reo circuits
a

b cde fgh

i

j

a

b

c

d

e

fgh

i

j

a

b
cdmi

moe fgh

i

j

Invariant Φ = 〈sync〉 (〈−〉 true ∧ [−lossy] false) is displaced along a
reconfiguration:

@cde Φ @moe Φ

31. Applications: Structural reasoning over Reo architectural reconfigurations.
Reo [?] is a coordination model used later in this course for representing architectural configura-
tions and interaction. In his PhD thesis [?], Nuno Oliveira introduced a hybrid language, called
HpE , interpreted over the graph-like structure of Reo circuits, to express structural, or ‘syntactic’
properties such as

i) every fifoe channel from a node n is connected to at least a lossy channel or
ii) node i is a connector’s output node.

φ :== p | i | ¬φ | φ1 ∧ φ2 | [K]φ | [[K]]φ | @iφ

Modalities are indexed by regular expressions over channel types. Operator [K] quantifies uni-
versally over the edges of G(ρ) labelled by channel types in K; its dual 〈K〉 , ¬[K]¬ provides
an existential quantification. Modalities 〈K〉 and [K] express properties of outgoing connections

from the node in which they are evaluated in a Reo circuit. Dually, modalities 〈〈K〉〉 and [[K]] ex-
press properties of incoming connections. Finally, the satisfaction operator @ redirects the formula
evaluation to the context of a specific node. Nominals make possible to express proprieties local
to a specific node. The two properties above are expressed as @n[fifoe] 〈lossy〉 true, and @i[−] false,
respectively. Other typical examples, include:

• Absence of a loop formed by a sync followed by a lossy channel at i:

i→¬〈sync〉 〈lossy〉 i.

• All output nodes are accessible through a sync channel but never through a fifoe channel:

[−] false → (〈〈sync〉〉 true ∧ [[fifoe]]false)

• A channel of type t is accessible from a node referred to by i

@i〈−∗.t〉 true

• All input ports lead to an output port via, at least, one fifoe channel

[[−]]false→ 〈−∗.fifoe.−∗〉 [−] false

The first example in the slides is part of a case study in architectural design in the e-Health
domain. It is concerned with the structural counterpart of two, essential behavioural requirements
to keep the system consistent with the main workflow: 1. a patient always meets a doctor in a
medical appointment after triage; 2. the patient is always routed to a billing service at the end
of the procedure. From a structural point of view the question becomes to know if such a data
flow is possible, i.e.if there exist in the graph the necessary connections to make the intended flow
possible. The requirements are then rephrased as: 1. there is a path from triage input port (to)
to a MAs edge; 2. all paths from input ports, lead to the billing service (ho) output port, which
can be expressed in HpE as follows:

• φ1 , @to〈−∗〉 true ∧ [−∗] [−MAs] false
• φ2 , [[−]]false→ [−∗]ho
As illustrated in the slides, a main use of this logic is to analyse structural properties of Reo

circuits under reconfiguration processes, expressing, for example, the displacement of an invariant
along a reconfiguration or the preservation of some structural patterns. A typical objective is to
check whether both reconfigurations are structurally equivalent for a given set of hybrid properties.
Further details in [?, ?].

What’s in a logic? Modal Logic Bisimulation and modal equivalence Temporal logic Hybrid logic

Applications to architectural design

Specifying reconfigurable architectures

• Reconfigurable architectures are represented as structured transition
systems whose

• states are endowed with local specifications and

• the global transition structure models system’s evolution through
possible configurations.

• The hybrid language is developed on top whichever logic is taken for
the local configurations (e.g., equational, first-order, fuzzy, etc.)
— by hybridisation.

[Alexandre Madeira PhD thesis (MAP-i, 2013)]

What’s in a logic? Modal Logic Bisimulation and modal equivalence Temporal logic Hybrid logic

Applications to architectural design

�0

�1

�0

�0

�0

�1

�1

• H: pure hybrid formulas

• H2: hierarchical structures, e.g.

@j1k
0 ∧1 [λ1](ρ1, . . . , ρn)

32. Hybrid logic as a lingua franca for reconfigurability. An architecture is qual-
ified as reconfigurable if the emerging system behaves differently in different modes of operation
(configurations) and commutes between them along its lifetime. Alexandre Madeira’s PhD thesis
[?] introduced an approach to the specification of reconfigurable architectures as structured transi-
tion systems whose states are endowed with local specifications and the global transition structure
models system’s evolution through possible configurations.

At present, such systems the norm rather than the exception. A typical, everyday example is
provided by cloud based applications that elastically react to client demand levels, for example by
allocating new server units to meet higher rates of service requests. Modern cars offer a second
example: inside hundreds of electronic control units must operate in different modes, depending on
the current situation — such as driving on a highway or in town, where different speed regulations
apply. Switching between these modes is a typical example of a dynamic reconfiguration.

Specifications of this sort of systems are supposed to make assertions both about the transition
dynamics and, locally, about each particular configuration. This leads to the adoption of hybrid
logic, which adds to the modal description of transition structures the ability to refer to specific
states, as the specification lingua franca for reconfigurable systems.

However, because specific problems may require specific logics to describe their configurations
(e.g., equational, first-order, fuzzy, etc.), instead of choosing a particular version of hybrid logic,
a hybrid language is developed on top of whatever logic is chosen for specifying the system con-
figurations. This process is called hybridisation, and constitutes a main contribution of [?], where
it is framed in the very general setting of the theory of institutions of J. Goguen and R. Burstall
[?, ?]. The interested reader is referred to [?, ?].

What’s in a logic? Modal Logic Bisimulation and modal equivalence Temporal logic Hybrid logic

Applications to architectural design

Hierarchical architectures

• Hierarchical architectures are represented as hierarchical transition
systems whose states are transition systems themselves

• and (intrusive) transitions between designated states in different
local transition systems at different levels of abstraction are allowed.

• Hybrid logic captures this principle which is inherent to well known
design formalisms such as statecharts and UML.

get access openclosed

timeout

stopwatch

time init

authorization

identification

blocked

idle

w1
0

w2
0 w3

0

w1
1

w2
1

w3
1

w4
1

w6
1

w5
1

w7
1

33. Hierarchical architectures. Hierarchical transition systems, inherent to well known
design formalisms such as David Harel’s statecharts [?] and the UML hierarchical state-machines,
can be described in a multi-layer hybrid logic: one for capturing each hierarchical level. The slide
shows a description of a strongbox controller resulting from the decomposition of the following
more abstract description:

get access openclosed

w1
0 w2

0 w3
0

At this level one may express the dynamics depicted in the diagram above, e.g.,

• that the state get access is accessible from the state closed, with @closed♦get access, or
• that the state open is not directly accessible from closed, with ♦open→ ¬closed.

In the refined version shown in the slide each ‘high-level’ state gives rise to a new, local transi-
tion system, and each ‘high-level’-transition is decomposed into a number of ‘intrusive’ transitions
from sub-states of the ‘down level’-transition system corresponding to the refinement of the original
source state, to sub-states of the corresponding refinements of original target states. For instance,

the (upper) close state can be refined into a (inner) transition system with two (sub) states, one,
idle, representing the system waiting for the order to proceed for the get access state and, an-
other one, blocked, capturing a system which is unable to proceed with the opening process (e.g.
when authorised access for a given user was definitively denied). In this scenario, the upper level
transition from closed to get access can be realised by, at least, one intrusive transition between
the closed sub-state idle and the get access sub-state identification where e user identification
to proceed is supposed to be checked.

Still the architect may go even further. For example, he may like to refine the get access
sub-state authorisation into the following more fine-grained transition structure:

att1

att2

att3

authorization

w4
1

w1
2

w3
2

w4
2w2

2

This third-level view includes a sub-state corresponding to each one of the possible three attempts
of password validation, as well as an auxiliary state to represent the authentication success.

This application of hybrid logic to architectural design is also a ‘side product’ of A. Madeira
PhD thesis in which a ‘controlled’, well-behaved version of the logic was proposed coming out of
the successive hybridisation of hybrid logic [?]. A less strict, but rather more expressive version [?]
captures truly intrusive transitions. For example, one may express inner-outer relations between
named states (e.g. @idle1closed0 or @att12

open0) as well as a variety of transitions. Those include,
for example, the layered transition @get access0 �0 open0, the 0-internal transition @identification1

�1
authorisation1 or the 0-intrusive transitions @idle1 �1 authorisation1 and get access0 → �1open0.
Both logics come equipped with suitable notions of bisimulation, and corresponding invariance
results, as well as layered and hierarchical refinement results.

