~~-
L Bl
' Lecture 6: Coordination of reactive components in Reo
Luis Soares Barbosa
Abstract

This lecture concludes the course with an introduction to the coordination of reactive compo-
nents. For this we resort to the Reo model of exogenous coordination proposed by F. Arbab.
Its methodology, semantics and toolset is presented in detail.

1 Composition as coordination

Composition as coordination Introduction to R Examples Semantics Further examples

Composition in object-orientated software

e In OO the architecture is implicit: source code exposes class
hierarchies but not the run-time interaction and configuration
e Objects are wired at a very low level and the description of
the wiring patterns is distributed among them
e The semantics of method invocation is heavy and non-trivial:
e The caller must know the callee and the method.
e The callee must (pretend) to interpret the message.

e The caller suspends while the callee (pretends to) perform the
method and resumes when the callee returns a result.

Lecture notes for Arquitectura e Cdlculo, MEI profile in Formal Methods in Software Engineering, 2014-15.

Composition as coordination Introduction to R Examples Semantics Further examples

Composition in object-orientated software

The operations/methods provided by a class-interface impose a
tight semantic binding which, at the inter-component level

e Weakens independence of components;

e Contributes to breaking of encapsulation;

e Tightens component inter-dependence.

Composition as coordination Introduction to R Examples Semantics Further examples

Composition in component-based software

e CBD retains the basic encapsulation of data and code
principle to increase modularity

e ... but shifts the emphasis from class inheritance to object
composition

e to avoid interference between inheritance and encapsulation
and pave the way to a development methodology based on
third-party assembly of components

Composition as coordination Introduction to REO Examples Semantics Further

Composition in component-based software

e a palette of computational units (eg robust collections of
objects) treated as black boxes

e and a canvas into which they can be dropped
e connections are established by drawing wires

e inter-component communication is through messages that
invoke remote methods, typically given some suitable
triggering condition on the source.

examples

Composition as coordination Introduction to REO Examples Semantics Further examples

Composition in coordination-based software

e a palette of computational units (eg robust collections of
objects) treated as black boxes

e and a canvas into which they can be dropped

e connections are established by specific devices (with complex
logic, memory, etc)

e inter-component communication becomes anonymous and
externally coordinated

Composition as coordination Introduction to R Examples Semantics Further examples

Composition as coordination

Example scenario

What to do when the user starts scanning bar-codes at a pace that
exceeds the rate at which the LCD can display the product names?

e Do we force the bar-code scanner to wait for when its output
port is not busy to read another bar-code? (forced
synchronisation)

e Do we buffer the excess data and display it on a read first,
display first order?

e Do we disregard bar codes that are input while the LCD is
busy displaying a previous product name?

e Do we combine the approaches 2, and 3 and provide a limited
buffer where a finite amount of bar codes can be buffered
while the LCD is busy displaying a product name?

Composition as coordination Introduction to R Examples Semantics Further examples

Composition as coordination

Lesson learned

Building a system out of independent components does not simply
amount to wiring properly their ports together.

Special glue code is necessary to coordinate their interactions.

Coordination

e Endogenous: provide primitives that must be incorporated
within a computation for its coordination

e Exogenous: ensure that the conceptual separation between
computation and coordination is suitably respected

Composition as coordination Introduction to REO Examples Semantics Further examples

Coordination

Carriero and Gelernter, 1986
Coordination is the process of building programs by gluing together
active pieces
e distinguish computation from interaction
(in massive parallel networks)
e focus on the emergent behaviour

e amenable to external, third-party control

Peter Wegner, 2000

Coordination is constrained interaction

Composition as coordination Introduction to REO Examples Semantics Further examples

Composition in service-oriented software

‘entails the need of managing an open-ended structure of
autonomous components, possibly distributed and highly
heterogeneous.

This means developing software components that are au-
tonomous and can be interconnected with other compo-
nents, software or otherwise, and managing the intercon-
nections themselves as new components may be required
to join in and others to be removed.” (Fiadeiro, 05)

e interaction as a first-class citizen

e composition as exogenous coordination

Composition as coordination Introduction to R Examples Semantics Further examples

Composition in service-oriented software

e interacting components need not know each other.

(cf traditionally communication is targeted, making the sender
semantically dependent on (the scheme used to identify) the
receiver)

e communication becomes anonymous: components exchange
identifiable sequences of passive messages with the
environment only

e therefore third parties can coordinate interactions between
senders and receivers of their own choice

Composition as coordination Introduction to R Examples Semantics Further examples

Composition as coordination

Components

e loci of computation
e are kept independent of each other and of their environment

e Components communicate with the environment only through
read and write operations on the connector ends (or ports),
possibly according some behavioural interface description.

Composition as coordination Introduction to REO Examples Semantics Further examples

Composition as coordination
Connectors

e act as interaction controllers: the glue code that makes
components interact
i.e., they coordinate the activities of individual components to
ensure their proper interaction with one another to form a
coherent system that behaves according to its requirements

e have no relevant role in the computation carried out by the
overall system: they are component-independent and agnostic
wrt the underlying computation model

e provide systems-independent interaction protocols
(whereas components provide systems-specific functionality)

e ... built compositionally.

e but traditionally, glue code is the most rigid, component
specific, special purpose software in component based
systems!

2 Introduction to Reo

Composition as coordination Introduction to REO Examples Semantics Further examples

REO

‘reo.project.cwi.nl/ ‘

e A compositional, connector-based coordination language for
plugging together components in an exogenous discipline
(from outside and without participants’ knowledge);

e Primitive circuit-like connectors are composed to build
complex coordination patterns

e Key concepts are synchrony ("happens together') and mutual
exclusion;

e Connectors implement interaction protocols (dealing with
aspects of concurrency, buffering, ordering, data flow and
manipulation);

Composition as coordination Introduction to REO Examples Semantics Further examples

REO

‘reo.project.cwi.nl/ ‘

e Several formal semantics:

relations between timed streams (2002)

constraint automata (2004) and several variants
colours (2004) to capture context awareness

reo automata (2009) and intensional automata (2010)

e Eclipse toolset available

Composition as coordination Introduction to REO Examples Semantics Further examples

REO

‘reo.project.cwi.nl/ ‘

e Several formal semantics:
e relations between timed streams (2002)
e constraint automata (2004) and several variants
e colours (2004) to capture context awareness
e reo automata (2009) and intensional automata (2010)

e Eclipse toolset available

Composition as coordination Introduction to REO Examples Semantics Further examples

REO connectors
Characterized by

e a number of ends and a constraint which defines an
interaction protocol through these ends

Ends

e source end: through which data enters the connector

e sink end: through which data comes out of the connector

Examples (channels)

Sync SyncDrain SyncSpout LossySync

>—H— «—H—> —]3— ——
AsyncDrain AsyncSpout FIFO4 FIFO1(x)

Composition as coordination Introduction to REO Examples Semantics Further examples

REO connectors
Characterized by

e a number of ends and a constraint which defines an
interaction protocol through these ends

Ends

e source end: through which data enters the connector

e sink end: through which data comes out of the connector

Examples (channels)

Sync SyncDrain SyncSpout LossySync

——t— —H— —1— —i—
AsyncDrain AsyncSpout FIFO, FIFOq(x)

Composition as coordination Introduction to REO Examples Semantics Further examples

Connector configurations

The configuration of a connector is the (abstract) structure that
describes its global state:

e internal: describes the connector memory

e external: describes the environment in which the connector is
currently being evaluated, i.e. the status of its ports

Introduction to REO

Ports

e are the only medium for interacting with a connector (through
io operations)

e a connector can have at most one component connected at
each of its ports performing io requests

e upon the arrival of an io operation request at one of its ports,
the connector decides whether the io operation can be fired or
has to be delayed (becoming pending) because the interaction
constraints that the connector imposes are not satisfiable in
the present configuration.

requested

pending delayed

fires

Introduction to REO

Connector memory

e Connectors with memory can store data in its buffer cells
o A buffer cell has two configurations: full or empty

e Connectors without memory cannot store data: any datum
either flows through the connector to another port where it is
output or it is lost

Introduction to REO

Connector behaviour

e Dataflow behaviour is discrete in time: it can be observed and
snapshots taken at a pace fast enough to obtain (at least) a
snapshot as often as the configuration of the connector
changes

e At each time unit the connector performs an evaluation step:
it evaluates its configuration and according to its interaction
constraints changes to another (possibly different)
configuration

e A connector can fire multiple ports in the same evaluation step

Introduction to REO

Connector behaviour

Synchronous dataflow behaviour

. synchronous means solely that a set of ports fire atomically, in a
single indivisible step

Asynchronous dataflow behaviour

: mutual exclusion means that ports from different sets can never
fire together

Context-dependent behaviour

. allows a connector to propagate information about pending io
operations on its ports: dataflow behaviour may depend on the
presence or absence of pending operations

Composition as coordination Introduction to REO Examples Semantics Further examples

Connector composition

Connectors are composed by conjoining their ends to form nodes
with multiple ends

<o

Composition as coordination Introduction to REO Examples Semantics Further examples

Connector composition

Nodes

e source node: superposes only source ends and atomically
copies incoming data items to all of its outgoing source ends

e sink node: superposes only sink ends and acts as a
non-deterministic merger, randomly choosing a data item
from one of the sink ends for delivery

e mixed node: combines both acting as pumping station by
atomically consuming a data item from one sink end and
replicating it to all source ends (1 : n synchronization)

Note: synchrony propagates through connectors
... because nodes do not perform any buffering

Composition as coordination Introduction to REO Examples Semantics Further examples

Components

e active (computational) entities with a fixed interface that
consists of a number of source and sink ends

e often (but not necessarily) interpreted as black boxes, i.e., no
assumptions about their behavior

e actually, for analysis it is often beneficial to take into account
the behavior of components (e.g. to detect potential
deadlocks or to validate temporal properties) — may be
annotated with a specification that reflects its behaviour

Write and Take operations

I e

3 Examples

Examples

The synchronisation barrier

Examples

Fifo vs LossySync

Composition as coordination

e routes data items synchronously from the source to exactly

Introduction to REO Examples Semantics

The exclusive router

[Reader
L

one of the two sinks;

e if both of them are ready to accept data, the choice of where
the data item goes is made non-deterministically (merge goes

without a priority)

Composition as coordination

e enforces an ordered output of the data items provided by the
two sources

e inputs synchronized through a synchronous drain

e the FIFO1 stores the data item and makes it available in the
next execution step; and guarantees alternation (why?)

Introduction to REO Examples Semantics

The alternator

(Wiiter)

. Reader)
)

(Writer)
—

Composition as coordination Introduction to REO Examples Semantics Further examples

Messenger patterns

Messages exchanged through two buffered channels

j
._.

Composition as coordination Introduction to REO Examples Semantics Further examples

Messenger patterns

Messenger with automatic acknowledgments

(]

Client

Clients get, as an acknowledgment, a copy of their own message
when the other client has successfully received it

4 Semantics

Composition as coordination Introduction to R Examples Semantics

Timed data streams

Time streams

Further examples

constrained streams over (positive) real numbers, representing

moments in time such that
o strictly increasing: a(i) < a(i + 1)
e progressive: V,3y a(n) > N

Timed data stream

pair («, a) consisting of a data stream « and a time stream a, with
the interpretation that for for all i € N, the input/output of data

item «(i) occurs at time a(r)

Composition as coordination Introduction to R Examples Semantics

Timed data streams

Formally,

Further examples

TDS = {{(o,a) € Data”xR}|Vi>o. a(i) < a(i+1) and lim a(i) = oo}
1—00

Notes

e A timed data stream is associated to each connector port

e No distinction between input and output actions

Composition as coordination Introduction to R Examples Semantics Further examples

Timed data streams

Connectors
are relations over timed data streams:

(o, a) [Sync] (8, b)
(o, a) [FIFO] (8, b)
(a;) [FIFO1] (B, b)

(a,a) = (B, b)
a=0Na<b
a=BNa<b<d

e coalgebraic semantics [Arbab, Rutten, 2002; Arbab 2003] with
incipient calculus

e cannot capture context-awareness

Composition as coordination Introduction to R Examples Semantics Further examples

Constraint automata

Automata labelled by
e a data constraint which represents a set of data assignments
to port names

g = true | da=v | @aVe | g

Note: other constraints, as
da=dg 2 Vacpaea(da = d A dg = d) are derived.
e a name set which represents the set of port names at which io
can occur
States represent the configurations of the corresponding connector,
while transitions encode its maximally-parallel stepwise behavior.

Composition as coordination Introduction to REO Examples Semantics Further examples

Constraint automata

Example: Fifol

Composition as coordination Introduction to REO Examples Semantics Further examples

Constraint automata

Definition
A = <57 N’ %7 So)

S is a set of states
So C S is the set of initial states

N is a (finite) set of (port) names

-—>-5x7>NxDstsuchthats"is'iff

P#0
. & € DC(P, Data)
(D (P, Data) is the set of data constraints over Data and P)

Composition as coordination Introduction to REO Examples Semantics Further examples

Constraint automata

Intuition

P,
s 54

means that

in configuration s ports in P can perform io operations which meet
guard g and lead to s’

Conditions
1. P # : transitions fire only if data occurs at a (set of) ports

2. g € DC(P, Data): behaviour depends only on observed data
(not on future evolution)

Composition as coordination Introduction to REO Examples Semantics Further examples

Constraint automata

Intuition
labelled transition system ‘ (model) reactive system
constraint automaton ‘ (model) coordination connector
Moreover

e act as acceptors for timed stream tuples t € TDS"

e ... just as finite (infinite) automata accept finite (infinite)
words

e but ... there are no final states: accepting runs are always
infinite

e the state space may be infinite if modelling a connector with
unbounded memory

e as expected: for any constraint automaton there exists a
language-equivalent deterministic constraint automaton

Composition as coordination Introduction to REO Examples Semantics Further examples

Constraint automata

Acceptors for timed streams

Given A and t € TDSV as its input, find out whether t describes a
possible data flow of A

e A starts in one of its initial states and waits until data items
occur at some of its io ports

e Data occurring at a subset of ports triggers checking the guard
e ... choose a transition with a validated guard

e ... if no data constraint is fulfilled then A rejects t

Accepted language is composed by all input streams that have at
least one non-rejecting run in A

Composition as coordination Introduction to REO Examples Semantics Further examples

Constraint automata as a semantics for Reo

e cannot capture context-awareness [Baier, Sirjani, Arbab,
Rutten 2006], but forms the basis for more elaborated models
(eg, Reo automata)

e captures all behavior alternatives of a connector; useful to
generate a state-machine implementing the connector’s
behavior

e basis for several tools, including the model checker Vereofy
[Kluppelholz, Baier 2007]

Composition as coordination

Introduction to REO Examples Semantics

Further examples

Constraint automata as a semantics for Reo

Examples

synchronous channel

{a,B}
d_A=dB

synchronous drain
or synchronous spout

(A, B}

lossy synchronous channel

asynchronous drain
or asynchronous spout

Composition as coordination Introduction to REO

Examples Semantics

Further examples

Constraint automata as a semantics for Reo

Connector construction

Connector operators are modelled by typical automata

constructions

e join

e hide: hiding a node means that its data flow is no longer

externally observable:

_nisig s
cj (B,C}

d_B = d_

dA=dC

Composition as coordination Introduction to REO Examples Semantics Further examples

Constraint automata as a semantics for Reo

Connector construction
A 2-bounded FIFO obtained from two 1-bounded FIFO channels
via product and hiding (assume Data = {d} for simplicity)

Composition as coordination Introduction to REO Examples Semantics Further examples

Constraint automata as a semantics for Reo

‘ipmu,. autonata ;
\

a
B te
(a5
ar

hiding)

Semantics

Parametrized constraint automata

States are parametric on data values ... therefore capturing
complex constraint automata emerging form data-dependencies

Example: 1 bounded FIFO

{B}
d_B=x

Semantics

Parametrized constraint automata

Example: Fibonacci generator

Lo} |

Sum

=

Composition as coordination Introduction to REO Examples Semantics

Parametrized constraint automata

Example: Fibonacci generator (Sum)

{A,B}
x := d_A
y = d_B

S

{C}
d_C=x+y

Further examples

Composition as coordination Introduction to REO Examples Semantics

Parametrized constraint automata

Example: Fibonacci generator (complete)

\2 il
BT

{C}
d_C=x+y
y = d_C

Further examples

Composition as coordination Introduction to REO Examples Semantics Further examples

Constraint automata: bisimulation

Definition
A bisimulation on a constraint automata A = (S, N, —,Sp) is an

equivalence relation R on S such that for all pairs (s, s’), all
R-induced equivalence classes P € S/R and every Ns C N,

dc(s, Ns, P) = dc(s', Ns, P)
where
dc(s, Ns, P) = \/{g |'s 58 o for some s’ € P }

i.e., the weakest data constraint ensuring a Ns-transition from s to

a state in P.

Composition as coordination Introduction to REO Examples Semantics Further examples

Constraint automata: bisimulation

Example

The equivalence R induced by partition
S/R = {{q17 Q2}7 {Q’3}7 {PL P2, P/2}7 {r17 r2}7 {U3}}

is a bisimulation. Why?

Composition as coordination Introduction to REO Examples Semantics Further examples

Constraint automata: bisimulation

Bisimilarity
As usual, two sates are bisimilar if contained in a bisimulation.

Theorem
Bisimilarity is strictly finer than language equivalence (TDS
acceptance), but for deterministic automata for which they
coincide.

Composition as coordination Introduction to REO Examples Semantics Further examples

Coulorings

Based on the set of all of dataflow alternatives of the connector,
represented by different colours meaning data flowing and no data
flowing

5 Further examples

Semantics

Further examples

Composition as coordination

Reo circuit

Semantics

Introduction to R Examples

Merger

Comp dinatio Introduction to REO Examples Further examples
Replicator
Reo circuit
Semantics

(<(Y, >7</37 >7<7>) = a=f8=

;

Composition as coordination

Reo circuit

Semantics

Introduction to REO Examples Semantics

Feedback loop

Further examples

Composition as coordination

Reo circuit

Semantics

EzR({a

Introduction to REO Examples Semantics

Exclusive router

Further examples

Further examples

Ordering
Reo circuit
B 4>KC
A]
Semantics
0C({a,), (B,)i(,)=
a0)= (0) A BO)= () A 0= (0= 0 A)= 1)> (1) A
0C(al, (8 (")
Further examples
Sequencer
Reo circuit
A B C
A A A

Semantics

Further examples

Sequencer with reset

Reo circuit

Exclusive
Router

Exclusive

Router

Exclusive
Router

% ¥
)

Reset
Semantics

Further examples

Inhibitor
Reo circuit
A > e g
1
A >

Semantics

{ 0) Xg) A a(0)=B(0) A (e,)8) i (0)< ()

r= it (0)< (0)

;A B

q

Composition as coordination Introduction to R Examples Semantics Further examples

Concluding

e tools ... & case studies
e several semantic models ... & incipient calculus

e extensions: timed, stochastic, QoS annotated

1. EXERCISE (THE COORDINATION LAYER). Consider the two problems proposed in the Lecture
4 (elevators and media stream). Design for each of them the corresponding coordination layer in
Reo. Analyse them using the available Reo tools.

Based on this experience comment (suggest ways) on how to combine the specification of
software coordination layer (as in Reo) with automata subjected to specific constraints (as in
UPPAAL).

2. EXERCISE. Select an architectural style among the following Client € Server, Publish & Sub-
scribe, Peer2Peer, FEvent-bus, Table-driven and create an architectural scenario around the chosen
style with time critical requirements. Develop a model in Reo for its coordination component.
Discuss its design and try out a few variants.

