
Formally Unfolding Interlocking Architectures
MFES Project 13/14

Jorge L. Lopes1 and Paulo R. Silva1

Universidade do Minho pg25285@alunos.uminho.pt pg25332@alunos.uminho.pt

Abstract. The answer to the question “Which is the best architecture for an in-
terlocking system ?” is difficult, since the most common, the geographic and cen-
tralized architectures have both advantages and disadvantages. The system imple-
mented by Efacec follows the geographic design. Thus, the pros and cons of this
architecture are well identified, while regarding the centralized one they are not
so clear. The aim of this project is to model centralized interlocking architectures
for a better understanding and comparison with other variants.

1 Introduction

1.1 The Problem

Railways control system and interlocking. Interlocking is a small part of railways
world, however it is the one that provides safety and allows us to step into a train feel-
ing safe. It works like a function that guarantee that all of the allowed train movements
occur safely. For this reason, and being aware the railway control and signalling is in
fact a great critical system, interlocking comes as a crucial part of it regarding safety.
Therefore, the matter is considered as one of the biggest challenges of Computer Sci-
ence, specially of the formal methods.

In more technical terms, interlocking ensures a set of special safety invariants, and
regarding interlocking systems, safety means, among others, collision-free systems and
no derailment. On the other hand, interlocking system has also to guarantee liveness
properties to prevent deadlock. Following are some basic notions, namely elements,
which will help clarifying better the interlocking policies:

1. Tracks are split into track sections or just sections, provided of some technology
capable of making the controller knows if it is occupied or free.

2. Points are elements that are positioned in tracks and have two configurable states:
Normal and Reverse, being the normal position the one that allows trains to move
straight ahead and the other one to change into another line.

3. A signal is what we would call semaphore, and helps controlling train movements
by either forbidding it or allowing it. In this approach, signals have only two as-
pects: green and red. Usually they are positioned between two sections.

4. A route consists in consecutive track sections which starts and ends at signals. This
is the main element of the interlocking. It both deals with and relates with other
routes to check their availability.

In Fig 1 we can find a brief example of how does interlocking work. For instance, a
train following a route that begins in signal S1 and ends in S3 will have to stop at S1,
because it is its home signal, and when the interlocking ensures that point P1 is set in
normal position - which will allow straight movement - and locked, will then the green
aspect be shown in S1. Moreover, the tracks a TAA, a TAB and a TAC are also locked
for exclusive use of the train, being the latter representing overlap 1.

Fig. 1: Example of Track Layout

These principles are generic among the several types of interlocking systems. Which
means that no matter what kind of interlocking we are referring, they remain valid and
useful in all of them. From the existent architectures of interlocking that are used, those
ones focused in this project were the geographical and centralised ones, in order to
help answering the question Which is the best architecture for an interlocking system?,
proposed by EFACEC’s representatives.

Centralized and Geographic Interlocking Accordingly to the requirements of our in-
dustrial supervisors, the main goal is to explore the difference between the centralized
and geographical architectures, regarding its maintainability and flexibility of imple-
mentation. It is important being aware there are many aspects in which both architec-
tures can differ, and attached to that, those advantages and disadvantages can change.
For this project, however, answers were achieved considering a centralised implemen-
tation and a previous study of geographic architecture.

Geographic Interlocking This architecture, which is widely used for electronic and
relay interlocking, consist in define relations between each element belonging to a route
with its neighbours. When a particular route is to be set , its path is checked through
this topological relations, i.e, the first signal will ask to the next element if it is free
and unlocked, and so on until the last. Then the process is inverted but this time they
will either be set in their correct positions and lock or remain as they were, regarding
their previous condition. An example of its implementation, using the layout presented
in Fig 1 is the following: if route S1 to S2 is requested, the elements being part of it,
namely S1, a TAA, P1 and a TBA will be asked if it is possible to grant the route. Since

1 Safety margin beyond a stop signal

they have built-in that route logic, they know its needs. Then they provide the answer
to the controller.

Centralized In this architecture, also known as tabular interlocking, all possible routes
are defined in a control table, indicating exactly which elements belong to the respective
route and in which position. This kind of interlocking is provided with all logic and
when a route has to be set, it will check weather the elements are available or not. Using
the same example - route S1 to S2 - the procedure is different. There is a control table
where the elements are up-to-date, and the the ones above-mentioned will have a mark
saying if they can or cannot be set for that respective route. Once they are available, the
interlocking mark them again as locked for the route requested.

1.2 Approaching the problem

Efacec proposal consists in a project to implement an interlocking system based on a
centralised architecture. The goal of this project is to raise the knowledge about this
architecture, in order to obtain a more detailed information concerning its advantages
and disadvantages.

The first steps in this project were given in order to understand the problem. The
research was done towards formal methods approaches [GHMR13], allowing to face the
problem accordingly to the course. The notions of interlocking and safety requirements
were understood based on what is explained in Interlocking Principles from Railway
Signalling & Interlocking [TV09]. The chapter gives full description of interlocking
policies covering every aspect in which safety faults can occur and how to avoid them.
It also provides brief descriptions of interlocking architectures, which is intended to fill
the needs to proceed with the project.

In terms of modelling, unlike the formal concepts of interlocking, the situation dif-
fers. Since Railway’s Safety System is faced as a great challenge of the computer sci-
ence, the subject is an historical target of formal methods. Furthermore, such researches
concern several areas within formal methods, where many techniques and tools are used
and a variety of results is achieved. Hansen [Han98] suggests a formal validation of
models by verification and simulation using VDM. JR Abrial derived a large number of
different requirements for railway system in [Abr10]. Winter model checks interlock-
ing systems using the process algebra CSP [Win02]. However, one of the most interest-
ing approaches is the one made in Swansea University, combining techniques of state-
oriented and event-oriented based approaches. Moreover, one of the implementations
of this project is inherited from that approach, that was widely studied and the authors
were asked to provide what, in our opinion, is a fantastic open source tool to Railway
Verification [JTT+13]. Notwithstanding, for some good reason, that tool was never pro-
vided, but the work continued to proceed. Meanwhile, the external supervisors proposed
an implementation in SCADE, which led to another stage in the research. In [GHMR13]
was founded an article named Verification of solid state interlocking [JLM+14] which
gives links for certain interesting approaches. It is notorious the formal work developed
using this technology, even consider several results studied upon Lustre, which is the

language underlying SCADE Suite tool. Andrew Lawrence’s thesis gives a detailed de-
scription of how to implement and verify railways interlocking in SCADE [LSLS10],
that was of great help.

Although a direct approach in interlocking architectures was highly desirable, it
seems there is no such documentation, neither research concerning the subject. Never-
theless, the implementation was made taking centralised architecture into account, in a
way that makes possible to one relate both designs.

1.3 Outline

Section 1 introduces introduces interlocking context and explains the approach that was
taking, considering another researches. In Sec 2 the technique CSP||B [MNR+12b] is
detailed and is given a full description of the model. Then in Sec 3 is summarized a re-
search made in SCADE language since the attempt to implement it was not completed.
Section 4 concludes the project by telling what was achieved and what was learned
during this project. There is yet a Authors’ Note to explain what could have been done
better.

2 CSP||B

2.1 CSP||B and ProB

At this point, our interest relies on the analysis and simulation of a centralised ar-
chitecture, developed under the combined technique CSP||B using ProB [MNR+12b,
LB08]. In order to achieve that, the approach followed was a Double Junction Case
Study [MNR+12a] allowing to have a good starting point on modelling, by being a
mathematical language very familiar in this school. Despite mathematical formalism,
the models are of easy-understanding and verification, helping us to successfully model
it, due to our aforesaid background, verifying and demonstrate specifications. The arti-
cle led to others, where was found detailed descriptions of how to model the components
under the technique. Firstly, it was an understanding process of such techniques, which
took its time but was successfully concluded. It describes a representation of a railway
system behaviour very close to reality , consisting in a controller, which is modelled
as a process in CSP [Dav13, Hoa85], requesting operations to interlocking and the
latter communicating with the equipment to provide correct answers for the request,
represented by B-Machines [ST05]. The double behaviour described suggests a mixed
approach, where the events play a role for the behaviour of the system encoded through
CSP processes, whereas the static part consists of data describing all model-specific ele-
ments, namely of a representation of the track plan and of several relations derived from
the control tables, and furthermore, for every state has valid properties regarding safety
that must be verified. Event-Based and State-based approaches applied solely can in
fact allow to model a railway control system. However, combine this mixed technique
is highly desirable [MNR+12a]. Through the literature, it is easy to understand that it is
possible to build a generic modelling architecture, i.e, the CSP process Controller fitting
several layouts, and for some particular cases, the machines fits as well, although for

simulation effects, the latter becomes very concrete when provided with the respective
layout data. Therefore, a generic model of the controller is presented in CSP, although
interlocking is dependent of the layout, being necessary to change the topological data.

Fig. 2: Railways Behaviour

Figure 2 was adopted from
the literature to depicts the ar-
chitecture. The controller, as a
regular and real controller, will
send requests for routes and
control movements of the trains,
regarding authorisations by the
interlocking, since they commu-
nicate directly through channels
- bidirectionally - which means
that a boolean answer is given
when controller sends a request.

I n order to that answer be valid,
interlocking will have to check
and verify the current state of
the railway system, and for that,
it monitors the track equipment,
which in turn will depend on
train movements, and with re-
spect to its defined rules, will
answer either positively or not.
These defined rules can change
regarding the layout. It is a mat-

ter of interest to analyse since the subject Centralised Vs Geographic relies very much
on it, concerning implementation.

The above-mentioned concrete part of a railway leads to a data-rich specification,
that is why the double junction case study was chosen. To achieve such specification, the
track plan is a crucial part for one to model a railway system. Usually it comes provided
with a control table and a track layout, being the layout a design of the combined routes,
and the control table the element that describes the inherent rules.

2.2 Model description

Figure 4 above depicts the layout of the double junction plus the control table and
release table. The layout provides us with a lot of topological information concerning
this specific example. As we may see, it consists in 22 tracks, 9 signals, and 4 points.
Moreover, it tells us which track section follows the previous one, the sections where
points are positioned as well as the signals. The studied approach attached four more
signals in order to guard entry points, but nevertheless they are still home signals of
the respective routes. These entry and exit points allow a train to disappear and appear
again in the model. Otherwise once we travel to a route end the simulation will be over.
Both tables in Fig 4 tells us how to control signals and points, regarding the requested

Fig. 3: Extracted scheme plan of Double Junction

route. As described in 1.1, a route consists in successive neighbours sections and starts
and ends at signals. In addiction, Fig 4 also shows there are 11 routes, although S1, S5,
S8, S17, S19 and S2, are simple routes which do not have any points within it and were
set only to consider overlap and the borders of the layout.
When a route is to be set, interlocking checks the control table for points and tracks
that have to be verified free and unlocked. On the other hand, it will have to consult the
releaseTable to know exactly when to release a lock.

For instance, if route A4 (from S4 to S2) is requested, points p101, p102, p103
and p104 have to be set in normal position, and despite p101 does not affect directly
the train direction, lock it in normal position avoid other trains to come from the track
above. This situation is referred as flank protection and is one of the main principles
regarding interlocking. It is very important being aware that the design of these tables
are safety-critical, hence situations like flank protection have to be taken into account,
in order to avoid collisions.

Fig. 4: Architecture

Figure 4 demonstrate the archi-
tecture of the model itself. The real
elements of the track plan are de-
fined in Context.mch, which is the
less generic machine, since contains
all data representing the layout, in-
cluding points, tracks, sections and
signals. In contrast, ReleaseTable as
well as Topology and ControlTable,
has properties about the track plan,
defined through relational proper-
ties, such as injection or Cartesian
product, and just have to be instan-
tiated among layouts. The controller is the entity which models both controller and
trains. Those elements run independently of each other, making use of the process al-
gebra interleaving operator.

RW CTRL =u r : ROUTE • (request!r?b→ RW CTRL)

RW CTRL represents the controller. The operator non-deterministic indicates any
route on the set ROUTE can be requested, being up to interlocking decide whether it is
safe or not to accept.

TRAIN CTRL(t, currp) =

if (s = none ∨ s = green)
then(move.t.currp?newp→

(if (member(newp,EXIT))
then(exit!t!newp− > TRAIN OFF(t))

elseTRAIN CTRL(t, newp))
2

stay.t.currp→ TRAIN CTRL(t, currp))
elsestay.t.currp→ TRAIN CTRL(t, currp)

On the other hand, the trains are modelled to take internal decisions: if it stays or
moves in front of a green signal or even when there is none at all, but it definitely has
to stop in front of one showing the red aspect.

At this point the parallel composition in CSP||B is revealed when the controller
in form of CSP processes performs events offered by Interlocking.mch as operations,
which are defined in CSP as communicating channels between the machines and the
processes. As so, the Interlocking operations only run by reacting to the controller re-
quirements, representing in this way a centralised control logic, since it is all processed
on this machine only.

The ControlTable.mch is very similar to the one in Fig 4, and contains the rules
and relations between the points, routes and track sections, split into normalTable,
reverseTable, and clearTable. Whereas the former ones determine the correct position
for points concerning each one, the latter consists in a injective function that point out

for each route the sections that must be clear and, thus, will be locked. Due to its injec-
tive nature, clearTable ensures that there are not two different routes made of the same
track sections. The Topology.mch encodes the track plan design, helped by assumptions
of the authors, such as a single line can only be travelled in one direction. It describes
which signals are associated with the respective route, where they are, in which track
belongs the points and the successor relation between tracks.

The Interlocking.mch is provided with several operations, hence is a dynamic type
of machine, and the only one in this model. It SEES all the other machines above-
mentioned, and gathers their information. One particular aspect of this machine, which
is determinant, is the relation pos, that models the train location on tracks. Since it is
a partial injective function, it captures one safety requirement: no collisions; because
the nature of an injective function does not allow behaviours such as two trains on the
same track. Moreover, this function remains as invariant along with the evolution of the
system. Therefore, any violation would be of short-notice. Furthermore, the allowed
range in pos is contained in set TRACK, which does not have nullTrack as inhabitant,
so derailments are also prevented. Interlocking also captures the status of each signal
by a total injective function signalStatus, which demands that there are no signals with-
out an aspect. Points are controlled within it using the set variables normalPoints and
reversePoints, providing runtime information whether some point is set normal or re-
verse, and currentLocks, just like the name says, represent the points which are locked
in each state. Also relevant is the nextd function that captures the information about
successor tracks, regarding the position of train and the configuration of points within
it, if there is any.

The model makes use of B − Method [Abr05] feature INITIALISATION to set all
the tracks to being empty, all signals to red, all points in normal position and no locks
made. Operations in this model are within Interlocking.mch resorting to the information
data among the other machines. There are the following 5 operations:

enter operation is a simple entering movement by an existent train which is not po-
sitioned on any track. Then updates the positions and also the set occupiedTracks and
emptyTracks.

exit operation enables movements to pull off the tracks once the line has come to its
end. Likewise enter operation, the same elements are updated.

nextSignal operation evaluates the signal on the track to either allow or forbid the
train movement. The output is obtained by checking their existence on tracks and their
aspect, and serve as input to the CSP process.

move , as the name suggests, provides updates to model the evolution of the train on
tracks. In case of the destination track has a signal, its aspect is automatically set to red.

request operation is the main operation and the one controlling the interlocking sys-
tem. When the controller sends out a request to the interlocking, it has a route as input

and essentially the operation provides the correct response to the controller, which is
the main goal of an interlocking system. In order to accomplish that, firstly it checks if
the respective tracks belong to set emptyTracks and then it verifies the points unlocked.
In both cases, whether if one point or section fails, the output will be no (or false), but
if points are unlocked and all the tracks clear, then it proceed with the configuration for
the route. In other words, it locks the points in correct position and add them to the cur-
rentLocks set, and also updates the topology since successors may have been changed
by the points re-configuration, and only after check again that tracks cleared, set the sig-
nal to green. In addiction to what is described in the literature, and as demanded by our
industrial partners, some features are added to the original model, namely lockedTracks.
This feature allows the Interlocking not only to lock the points, but also to lock the sec-
tions, and with respect to that, beyond checking whether the tracks cleared or not, it
also checks if they are locked for another route or if they are not.

bb < − − request(route) =

PRE
route : ROUTE THEN

IF((clearTable(route) ⊆ emptyTracks))
THEN
LET

unlockedPointsBE
unlockedPoints = POINTS − ran(currentLocks)

IN
IF((normalTable[route] ⊆ normalPoints ∪ unlockedPoints)

∧(reverseTable[route] ⊆ reversePoints ∪ unlockedPoints))
THEN
LET

np, rpBE
np = (normalPoints ∪ normalTable[route]) − reverseTable[route]
rp = (reversePoints ∪ reverseTable[route]) − normalTable[route]

IN
normalPoints := np ||
reversePoints := rp ||
currentLocks := currentLocks ∪ (route C lockTable) ||
signalStatus(signal(route)) := green ||
bb := true ||
nextd := staticNext ∪ dynamicNext[(np × {normal} ∪ rp × {reverse})]

ELSE
bb := false

ELSE
bb := false

2.3 Safety requirements

In this section we describe the invariants which are used in the model, regarding two
safety requirements: No collision and no derailment. Having these two properties veri-

fied through invariants will ensure that the track plan is well defined allowing only safe
movements to happen during the simulation.

The invariants emptyTracks and occupiedTracks demand that the considered tracks
for train to travel are restricted to set TRACK. This ensures that a train will always travel
within the defined layout topology, preventing derailment.

emptyTracks ⊆ TRACK
occupiedTracks ⊆ TRACK

emptyTracks ∩occupiedTracks = ∅

nextd relation was updated in this project to a set of relations between TRACK. In
the followed approach, this relation is defined as a set of partial injections, but this
restriction does not allow travelling in both directions as it needs to happen in track
BW1 and BW2.

nextd : TRACK ↔ TRACK

pos prevents both collision and derailment..
Variables normalPoints and reversePoints are defined in order that both are re-

stricted to set POINTS. Moreover, through their intersection and reunion being empty
and equal to the whole set, respectively, it prevents a point from being present in both
set normalPoints and reversePoints at the same time, which can cause a malfunction in
model and leading to derailment.

normalPoints ⊆ POINTS
reversePoints ⊆ POINTS

normalPoints ∩reversePoints = ∅

normalPoints ∪reversePoints = POINTS

In order to set currentLocks be valid, it has to be confined to the previously de-
fined lockTable, which is the correct locked points allowed with respect to the layout
topology.

currentLocks : ROUTE↔ POINTS
currentLocks ⊆ lockTable

Property not (collision ⊆ occupiedTracks) ensures that both BW1 and BW2, despite
having double directions, are not allowed to occur simultaneously.

Moreover, ProB[MNR+12b, LB08, BCD+13] is capable of prove no invariant vio-
lations and deadlock freedom is also verified [Mor90].

Although there exist additional requirements [Abr10], the aim of the project does
not rely exactly on the railway verification, but instead, as above-mentioned, on the
comparison of interlocking architectures. Therefore, being aware of that, the important
part is that there are some properties which does not instantiate to other track plans.
Consequently, each railway model needs to be verified.

3 SCADE

3.1 Introducing SCADE Suite

SCADE In this section we present a not-so-practical approach to the SCADE Suite
tool. It is a powerful tool widely applied in industry, in which many critical systems
rely on.

SCADE moto - Design, Verify, Generate - characterises its versatility justifying its
industrial use. Moreover, its reliability - Stalmark’s algorithm is very explored and pro-
vide correctness in technique behind SCADE suite - makes the use of the tool very
tempting to approach the embedded and critical systems. Furthermore, the graphical
language tends to increase its user-friendliness.

3.2 Approaching

The intent concerning this approach is verify how well does SCADE Suite perform a
well-formed design of centralised interlocking architecture, therefore it is intended to
capture the maximum of the topology of the railway. Since SCADE is a low level lan-
guage, it is not as easy as the previous approach to formalise about concrete properties
of the railway domain. Nevertheless, the followed research models a railway system
based on modularity, which is an interesting option since modularity allows the re-
use of components, providing a kit from which it is possible to assemble the modules
of well-chosen generic components. Consequently, it is possible to achieve a concrete
level of topology.

In his research, Andy Lawrence models the elements of the railway using state
machines and makes use of Caspi et al [CPHP87] work to model the train movements
by using boolean data flows. These boolean data flows, which is a Lustre [CMSW99]
feature to model synchronous systems, are used not only to represent movements but
also signals and points’ positions. The elements are modelled in a concrete fashion,
otherwise it would be hard to distinguish each type of element.

In order to model a track section, it is used a node2 which produces boolean vari-
ables as outputs, indicating whether the track is occupied or empty and if a crash hap-
pened. This process after the node has received boolean inputs, one of the inputs indi-
cating if is a train entering, and three more to represent the signal aspect. There is two
more track sections nodes: one similar to the above described but allowing a train to
travelling in both ways and the other one to represent junctions on lines, modelled in
such a way that the train changes its direction accordingly to the point’s position.

The points are modelled in a node considering 4 possible states: normal and free,
normal and locked, reverse and free, reverse and locked. The respective variables of the
state machine are updated with respect to the current state. The node receives boolean
inputs reflecting its state and if it is occupied, and then returns 4 boolean inputs indicat-
ing its current state.

On the other hand, the signals and its aspects are modelled separately, because signal
works as a device to control its own aspect. This behaviour suggests that there is a inner
logic in the elements, which in fact it is true.

2 In Lustre a node is equivalent to a function or procedure

Node route, in contrast with the previous elements, provide a specification accord-
ingly to the control table, i.e, to a given route, the elements such as signal aspects and
points positions are set with respect to the control table. The input entries provide in-
formation concerning the state of the system, as points, lights and routes set.

There is a additional node called RouteController which captures the routes that
conflict with each other, completing the implicit information given in the control table.
This node acts like a filter of route requests allowing only the non-conflicting routes.

In order to connect the elements, they must be instantiated to concrete elements in
reference to a concrete layout. For instance, to model a train travelling from one track
to its successor, the variable which represents the train leaving the first track - through
the output of the track - will be the input representing the train entering in the next one.
This is why is called data flow language. Therefore, to achieve a concrete model of a
given track plan, all the elements have to be declared and instantiated in a single node,
provided with all the necessary input to simulate a railway system.

This section presented summary of an external approach, as aforesaid, that served
to acquire knowledge in this field using SCADE Suite. With respect to the problem
itself, there is one point noteworthy: the design of the described model does not repre-
sent a geographic interlocking design, since the route logic is not embedded in all the
elements. Moreover, each element has within it solely the necessary conditions to be
updated correctly. However, it is not considered a centralised design also, because there
is no such entity controlling the railways safety movements, but instead, the properties
are verified within the nodes and in particular nodes serving that purpose as the Route-
Controller node. Henceforth, there is no conclusion taken from this section regarding
the comparison between both architectures.

4 Conclusion

This project has proved to be a challenge since the beginning. The question Which is the
best architecture for an interlocking system? it is indeed difficult to answer and there
are plenty of reasons to find it hard respond. Perhaps because there is none. The best
design solution depends on the needs of the implementation and also on of the available
technology. Moreover, the lack of definitions of what an interlocking architecture is
makes it difficult to assess the effectiveness of which is the best architecture.

In our CSP||B approach, a centralised interlocking implementation is intuitive be-
cause the technique relies on a high level language. Moreover, the simulation in ProB
allow to verify the system state in runtime. Thereby it is possible to check the train and
interlocking behaviour in all states.

In this first approach, the centralised design is almost mandatory and it is also well
ahead of the geographic architecture, since this technique was applied to other small ex-
amples of track plans changing only the data and topology of the track plans, which was
possible to achieve by keeping the same assumptions and for the same requirements.
This constitutes an advantage over the geographic interlocking. Another advantage was
noticed when there was a change in the layout and all that was done was changing a
particular property in invariants, without compromising the validity of the model.

On the other hand, there is not much to say regarding the SCADE approach. Despite
learning the concepts and the language which supports the tool, the implementation is
not completed. Despite this, the followed research shows that it is possible to implement
an architecture very close to a centralised one, although there is not sufficient experience
to make a comparison between both interlocking designs.

4.1 Authors’ Note

This project contemplates a real world problem which is the railways control sys-
tem. The subject gives rise to numerous papers and thesis, indicating its diversity and
grandiosity. For the approach, this was an extra motivation. It is a regret that, in the last
months, a more completed approach was not possible. The major cause of this sense of
incompleteness dues to the limitation in the use of the SCADE Suite tool, since eduroam
does not allow the connections needed to use it, and a lot of time was lost in order to
understand that. Another issue is that it can only be used by one at the same time.

Despite these adversities, the feeling is that a lot was learned and allowed to brought
together all that was lectured in MFES’ modules.

5 Future Work

Definitely, a complete implementation of an interlocking control system in SCADE
following a centralised design would be the next step that we should be looking forward
to do, although it would not be easy since it is difficult to find sufficient conditions to
work with SCADE Suite, as it was until now. Furthermore, an implementation regarding
a geographic design could be helpful to unveil more details concerning the differences
between both interlocking architectures.

In spite of these aspects being more outstanding , during the project a lot of ideas
had come to our mind while the development was on process. Abstractions of models
in CSP||B would be other feature to add, in order to optimize the system verification.
A technique to translate CSP||B models to SCADE [Ber97, BGGL92] it would also be
useful, and in spite of not being in the scoop of the proposal, would indeed improve the
modelling as well as defining interlocking requirements.

6 Acknowledgement

The project’s authors would like to thank to the following: João Martins and Hélder
Azevedo, for being available to discuss and help whenever they were asked for; Prof.
Luís Barbosa, who provided guidance and support since the first day, and for his pa-
tience.

References

[Abr05] Jean-Raymond Abrial. The B-book - assigning programs to meanings. Cambridge
University Press, 2005.

[Abr10] Jean-Raymond Abrial. Modeling in Event-B - System and Software Engineering.
Cambridge University Press, 2010.

[BCD+13] Jens Bendisposto, Joy Clark, Ivaylo Dobrikov, Philipp Körner, Sebastian Krings,
Lukas Ladenberger, Michael Leuschel, and Daniel Plagge. Prob 2.0 tutorial.
In Proceedings of the 4th Rodin User and Developer Workshop, TUCS Lecture
Notes. TUCS, 2013.

[Ber97] Didier Bert. Building lustre control systems from b abstract machines: A case
study, 1997.

[BGGL92] Gerard Berry, Georges Gonthier, Ard Berry Georges Gonthier, and Place Sophie
Laltte. The esterel synchronous programming language: Design, semantics, im-
plementation, 1992.

[CMSW99] Paul Caspi, Christine Mazuet, Rym Salem, and Daniel Weber. Formal design of
distributed control systems with lustre. In in Proc. Safecomp’99, pages 396–409.
Springer-Verlag, 1999.

[CPHP87] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. Lustre: A declarative language
for real-time programming. In Proceedings of the 14th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, POPL ’87, pages 178–188,
New York, NY, USA, 1987. ACM.

[Dav13] Tom Davies. CSP Implementation Techniques – A Critical Analysis. Swansea
University, 2013.

[GHMR13] Stefan Gruner, Anne Elisabeth Haxthausen, Tom Maibaum, and Markus Roggen-
bach. Towards a Formal Methods Body of Knowledge for Railway Control
and Safety Systems: FM-RAIL-BOK Workshop 2013. DTU Compute-Technical
Report-2013. Technical University of Denmark, 2013.

[Han98] Kirsten Mark Hansen. Formalising railway interlocking systems. In Department
of Computer Science, Technical University of Denmark, pages 83–94, 1998.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
[JLM+14] Phillip James, Andy Lawrence, Faron Moller, Markus Roggenbach, Monika

Seisenberger, Anton Setzer, Karim Kanso, and Simon Chadwick. Verification of
solid state interlocking programs. In Steve Counsell and Manuel Núñez, editors,
Software Engineering and Formal Methods, Lecture Notes in Computer Science,
pages 253–268. Springer International Publishing, 2014.

[JTT+13] Phillip James, Matthew Trumble, Helen Treharne, Markus Roggenbach, and Steve
Schneider. Ontrack: An open tooling environment for railway verification. In
NASA Formal Methods, Lecture Notes in Computer Science. Springer, 2013.

[LB08] Michael Leuschel and Michael Butler. Prob: an automated analysis toolset for
the b method. International Journal on Software Tools for Technology Transfer,
10(2):185–203, 2008.

[LSLS10] Andrew Lawrence, Monika Seisenberger, Andrew Lawrence, and Monika Seisen-
berger. Verification of railway interlockings in scade. In AVOCS’10, Proceedings
of the 10th International Workshop on Automated Verification of Critical Systems
and the Rodin User and Develop Workshop, pages 112–114. Springer, 2010.

[MNR+12a] Faron Moller, Hoang Nga Nguyen, Markus Roggenbach, Steve Schneider, and
Helen Treharne. Csp||b modelling for railway verification: The double junction
case study. In AVOCS’12, 2012.

[MNR+12b] Faron Moller, Hoang Nga Nguyen, Markus Roggenbach, Steve Schneider, and
Helen Treharne. Using prob and csp||b for railway modelling. In Proceedings of
the Posters & Tool demos Session, iFM 2012 & ABZ 2012, 2012.

[Mor90] Carroll Morgan. Of wp and csp. In W.H.J. Feijen, A.J.M. van Gasteren, D. Gries,
and J. Misra, editors, Beauty Is Our Business, Texts and Monographs in Computer
Science, pages 319–326. Springer New York, 1990.

[ST05] Steve Schneider and Helen Treharne. Csp theorems for communicating b ma-
chines. Formal Asp. Comput., 17(4):390–422, 2005.

[TV09] Gregor Theeg and Sergej Vlasenko. Railway Signalling and Interlocking. Eurail-
press, 2009.

[Win02] Kirsten Winter. Model checking railway interlocking systems. Aust. Comput. Sci.
Commun., 24(1):303–310, January 2002.

