
Integrated Project Report:
Extending Prova for Architecture Definition

Traceability

Fabio Fernandes PG26119 & Telma Correia PG25263

University of Minho, Informatics Department
http://www.di.uminho.pt

Abstract. In nowadays the architecture of software is very important
because meets a set of structures needed to reason about the software sys-
tem, which comprises the software elements, the relation between them,
and the properties of both elements. aims at guiding the project imple-
mentation and ensures that future requirements can be understood and
analysable. Therefore the integration of AADL language in PROVA will
be the theme of this project so that it can be a tool with greater capacity
for analysis and correction.



2 Extending Prova for Architecture Definition Traceability

1 Introduction

When we think of architecture, a diverse set of attributes come to mint. At a
general level, the first thing that reminds us is the development of something
big, like buildings. Certainly we immediately think of a physical structure, we
think in something tangible. But in reality, the architecture is much more than
that, is how various components engage each other in order to obtain a structure
as a whole. The architecture is the structure of something, is how something can
be produced. As in the development of buildings, on Software the architecture
is also present, because the global society is increasingly supported by software-
based technology. Wherever we go it exists, from a small register machine in a
coffe, to a large hospital centers, where software is fundamental and can’t fail,
for this reason a good structure,a good architecture is needed.

Citing Pfleeger in 1998, ”A software architecture involves the description
of elements architectural systems of which will be built, interactions between
those elements, patterns that guide their composition, and constraints on these
standards. ”

Being the planning and architecture of a system is as crucial to the software
development role, behold, the PROVA, a tool produced by the company Educed,
which aims to help in modeling and behavioral analysis system emerges. It is
then through this company that arises the purpose of this project, which aims
to develop an extension for PROOF, through the integration of a language of
Architectural and Behavioral Analysis System, the AADL.

The project has target of a long process of research and learning so, the
following report will specify all the work methodology, technologies used and
the respective outcome. To such shall be divided into five main sections:

-In section three, the PROVA is presented.
-In sections four and five the studies concerning the AADL, the whole struc-

ture and syntax will be presented.
-In section six, the translation between AADL and PROVA, also the tech-

nologies that we use and the semantics actions that we gave to our tool to
generate the boilerplates in PROVA.

-Finally section in seven will discuss the final conclusions and future work.
It should also be noted that project was developed within the framework of

the Master of Computer Engineering, in Formal Methods in Software Engineer-
ing, and supervised by engineer Jose Faria co-founder of educed, and Professor
Luis Barbosa.



Exending Prova for Architecture Definition Traceability 3

2 Presentation of Project

2.1 The Proposal

To improve the functionality of PROVA was proposed to make an extension for
the same, in order to support the definition of system architectures.

The reference language that will be used for this purpose will be the AADL.
PROVA already supports the graphical modelling of components. So first

goal of this project is extend the existing graphical components library with the
necessary elements fo AADL Language and implement the back-end support for
the storage and management of the architecture components.

The second goal is the support of traceability between requirements and
architecture.

it should be mentioned that in the middle of the development of the project,
it was discovered that the OSATE (tool support AADL) has been updated and
allowed the user to double standards, in other words, allows user to use the code
and graphics to develop a model, and moved whenever one of the criteria, the
other is automatically updated. So, from there just had to focus on development
of the second goal.

3 The PROVA

”The best in requirements engineer captured in one simple tool: Efficient, En-
abling, Everywhere”.

Prova is an innovative tool for the development of high assurance systems,
and aims to be a complete tool of modeling and Behavior analysis of a system. It
is capable of analyzing textual requirements and 1. identifying possible conflicts
between them, 2. generating simulations of the system behavior 3. Assuring that
given properties are met,or, if not 4. generating visual scenarios ilustrating the
error.

The PROVA, is currently, in a phase of great expansion for it to be a great as-
set in support of high assurance systems. Tended to have the most varied features
to help in systems of high assurance, without errors, ambiguities inconsistencies
and omissions.

3.1 ”Architeture” of Prova

The PROVA is a tool that works via the web, and uses web services for integra-
tion of various components. So, we can say that this will have two layers: The
FrontEnd and the BackEnd.

The Front-End layer is responsible for what is shown to the user. And the
Back-End, where is our work, is the layer responsible for dealing with boiler-
plates, do the translation between the AADL code and PROVA, and then send
the respective model.



4 Extending Prova for Architecture Definition Traceability

3.2 Boilerplates

The boilerplates are known as the standardization of a language in order to
simplify its structure to make it more efficient. In the case of the PROVA boiler-
plates are recipes for making common types of requirements by providing them
the terms involved in each case.

In this project we only use the Boilerplates of Entity Model,which describe
the static behavior between the entities and relations.

For definition of AADL boilerplates is only necessary five types of them,
which are:

Mult - Cardinality of an entity/relation, there are m rel
Assoc - relation between entities every A shall have m fixed? r B
Gen - relation between two relations every r1 is a r2
Abstract - an entity is abstract, r is abstract
Extends - inheritance, r extends s

4 The MBE - Model-Based Engineering

The Model-Based Engeering involves the creation and analyse of models of sys-
tems from which can predict and understand its capabilities and operational
qualities, like as Performance, Reliability/Confidence and Safety.

In other words the MBE is a Model who provides increased in predictability
in systems integration through the life-cycle analysis. You can predict failures
at the system level and avoid costly rework in development and maintenance.

Previously, different parts of the system were handled separately, which could
lead to various problems. But with the approach of MBE have an architecture
centered on a single system.

Architecture-centric approaches address system-level issues and maintain a
self-consistent set of analytical views of a system such that individual analyses
retain their validity amidst architectural changes within the set.

5 The AADL - Architecture Analysis & Design Language

The AADL is an language of architecture description santandardized by SAE,
and is a unifying framework for MBE

¯
.

This Language provides formal methods concepts for the analysis and de-
scription of application systems architecture. This is a language textual and
graphical and is used to model Software and Hardware architecture of an em-
bedded, real-time system.

The AADL define a pattern to describe system components, interface, and
relations of components, facilitates the automation of code generation, system
build, and other development activities; and significantly reduces design and
implementation defects.

In developing an AADL model, you represent the architecture of your system
as a hierarchy of interacting components. You organize interface specifications



Exending Prova for Architecture Definition Traceability 5

and implementation blueprints of software,hardware, and physical components
into packages to support large-scale and team-based development.

5.1 AADL Sintax Summary

In AADL, components are defined through type and implementation declara-
tions. A Component Type declaration defines a component interface elements
and externally observable attributes. A Component Implementation declaration
defines a components internal structure in terms of subcomponents, subcom-
ponent connections, subprogram call sequences, modes,flow implementations,
and properties. Components are grouped into application software, execution
platform, and composite categories. Packages enable the organization of AADL
elements into named groups.

Fig. 1. Summary of AADL Elements

Components are the core of modeling vocabulary for the AADL. Components
has a name (unique identity) and are declared as a type and implementation



6 Extending Prova for Architecture Definition Traceability

within a particular component category. A component category defines the run-
time essence of a component. There are three distinct sets of component cate-
gories:

1. application software:
a. thread: a schedulable unit of concurrent execution;
b. thread group: a compositional unit for organizing threads;
c. process: a protected address space;
d. data: data types and static data in source text
e. subprogram: callable sequentially executable code

2. execution platform:
a. processor: components that execute threads
b. memory: components that store data and code
c. device: components that interface with and represent the external envi-

ronment
d. bus: components that provide access among execution platform compo-

nents

3. composite:
a. system: a composite of software, execution platform, or system compo-

nents

Fig. 2. Representation of AADL components



Exending Prova for Architecture Definition Traceability 7

Components Types An AADL component type declaration establishes a com-
ponent externally visible characteristics. This caracteristics can have the content:

. extends

. prototypes

. features

. flows

. modes

. properties

. annex subclauses

Components Implementations specifies an internal structure in terms of
subcomponents, interactions (calls and connections) among the features of those
subcomponents, flows across a sequence of subcomponents, modes that represent
operational states, and properties. May have the following content:

. extends

. prototypes

. subcomponents

. connections

. calls

. flows

. modes

. properties

. annex subclauses

AADL Syntax Examples In this setion we present an example of applying
AADL.

Declaration of Package

package demo

end demo;

Declaration of a Component

system example_system

end example_system;

Declaration of a Component implementation

system implementation example_system.impl

end example_system.impl;

Declaration of a Component implementation with content



8 Extending Prova for Architecture Definition Traceability

system implementation example_system.impl

subcomponents

net : system democomponents::navigation_system_ext;

pp : system democomponents::position_processor;

ui : system democomponents::user_interface.impl;

switch : device democomponents::ethernet_switch;

cbl1 : bus democomponents::ethernet_bus;

cbl2 : bus democomponents::ethernet_bus;

cbl3 : bus democomponents::ethernet_bus;

connections

eth_cbl_cbl1 : bus access net.eth_cbl -> cbl1;

cbl1_switch : bus access cbl1 -> switch.e1;

eth_clb_cbl2 : bus access pp.eth_cbl -> cbl2;

cbl2_switch : bus access cbl2 -> switch.e2;

eth_clb_cbl3 : bus access ui.eth_cbl -> cbl3;

cbl3_switch : bus access cbl3 -> switch.e3;

net_to_pp : feature net.iface -> pp.in_iface;

pp_tp_ui : feature pp.out_iface -> ui.iface;

flows

position_flow : end to end flow net.position_source ->

net_to_pp -> pp.position_flow -> pp_tp_ui

-> ui.position_sink;

end example_system.impl;

6 AADL to PROVA

Before attacking the problem, the translation between AADL and PROVA,
it was necessary to take some decisions, such as, in PROVA we have Entities, in
AADL we have components and each component have its own type, so you see the
problem here, it was necessary to find a solution to represent component types in
Prova and find a way to distinguish them, so to do that, our solution was to use
the type of each component and concat it with its own identifier, for instance, we
can declare a system in AADL this way ”system exemple1 ”, and you can guess
the result in terms of its representation in PROVA, that is SYSTEM exemplo1,
we choose capitalize the type of the component, so this way it is more easy to
identify and distinguish component types in requirements of the PROVA. In
Prova we also have relations between Entities, in AADL we have some kind of
connections between the components, like flows, features, connections and more,
so again we have to find a way to represent those connections in Prova, and
distinguish them, for instance if we have ”system exemple1 ” and if the system
that we declare have some features, like this ”features identify : exemple2 ” we can
say that the system example1 have a relation FEATURES identify to example2,
we can notest that again we use the type of the connection, in this case we
declare a feature and concat its with is own identifier, again, doing this way it is



Exending Prova for Architecture Definition Traceability 9

more easy to distinguish in PROVA the many connections that an AADL model
can have, so in resume, we have components in AADL that are Entities in Prova,
and connections in AADL that are relations in PROVA, you can see with more
details, the translation between AADL and PROVA e the next sections.

6.1 Technologies

To do the translation between AADL and PROVA, we need to build a parser
for AADL Language, and add the semantics rules to generate the boilerplates1,
to do that we use ANTLR2, ANother Tool for Language Recognition, is a parser
generator that uses LL(*)3 parsing.

ANTLR takes as input a grammar that specifies a language and generates as
output source code for a recognizer for that language. A language is specified us-
ing a context-free grammar which is expressed using Extended BackusNaur Form
(EBNF4). ANTLR allows generating lexers, parsers, tree parsers, and combined
lexer-parsers.

We build a context-free Grammar, that we will show you in the next section,
and with the semantics rules that we add to our grammar we generate the
boilerplates.

6.2 Antlr Grammar

In this section we will show our Grammar, without semantics rules. we de-
cide do not put all the productions of our grammar here, so we put an excerpt
with just the most important rules, the complete grammar will be added to the
annexes.

aadl : ’package’ IDENTIFICADOR (’public’ | ’private’) components

’end’ IDENTIFICADOR ’;’

;

components : (component_category | component_implementation)*

;

components_category : (component_category)+

;

component_category : component_type IDENTIFICADOR

| component_type IDENTIFICADOR ’extends’ IDENTIFICADOR

(internal_components)* ’end’ IDENTIFICADOR ’;’

;

1 templates to specify requisites in Prova
2 http://www.antlr.org/
3 top-down parser
4 http://en.wikipedia.org/wiki/Extended BackusNaur Form



10 Extending Prova for Architecture Definition Traceability

internal_components : component_features

| component_modes

| component_flows

;

components_implementation : (component_implementation)+

;

component_implementation : component_implementation_type IDENTIFICADOR

(internal_implementation)* ’end’ IDENTIFICADOR ’;’

;

internal_implementation : impl_subcomponents

| impl_flows

| impl_connections

| impl_modes

;

We can observe that our language start with a package that can be public
or private and we can have components, and each component can be a compo-
nent category ,here we refer to the component types like system, bus, process, etc,
or component implementation, here we refer to the implementation of the com-
ponents, its important to say that we can not have components implementation
without have its respective component type defined. Inside component category
we can have component features, component modes, component flows that are
features, modes, flows respectively, and inside component implementation we
can have impl subcomponents, impl flows, impl connections, impl modes that are
subcomponents, flows, connections, modes respectively. With our gram-
mar it is easy to add more rules, for instance, we can easely add calls, proper-
ties to the component implementation declaration.

6.3 Semantics Actions

In this section we will present all the translations between AADL and PROVA
that our semantics actions, that we add in our grammar, do.

First we focus only in the AADL declaration types and the respectives boil-
erplates that were generated.

Component category
In the next example you can see an example of a component declaration in

AADL that will give an Entity in PROVA.

component_category name_of_component

end name_of_component ;

As you can see we have a component category that can be, device, process,
processor, memory and etc, and we also have the name of component, as we ex-
plain before this will give us only one entity in PROVA. The name of entity will



Exending Prova for Architecture Definition Traceability 11

be the concatenation between the component category and the name of compo-
nent, as explained before, doing this way it is more easy to an user distinguish
the many components that we can have in PROVA.

Now we will show the boilerplate that is generated by the example:

– there is 1 COMPONENT-CATEGORY name-of-component

Component features
Now we will show you the translation when we have components with fea-

tures, as you can see in the next example and we will describe how to represent
components with features in PROVA. A feature describes a functional interface
of a component through which control and data may be exchanged with other
components [1]

component_category name_of_component

features

feature_name : type_of_feature elements_identifier

end name_of_component ;

In the example you can see that we have declarated a component and inside
of component we can add features, in the example we only added one. Now we
describe how we can represent that in PROVA.

In the example we have a component, so we have to create an entity in
PROVA. The reservated word features tell us that we have features inside the
component, the features can be: list of ports or access to other elements. In Prova
we can say that exists a relation between the component and those elements or
ports. For an easy understanding, in PROVA, the name of the relation will be the
concatenation between the reservated word features and its name feature name,
so this way, when you saw in PROVA a relation FEATURES feature-name you
know that the relation represent a feature of a component.

Now we will show the boilerplates that are generated by the example:

– there are 1 COMPONENT-CATEGORY name-of-component
– every COMPONENT-CATEGORY name-of-component shall have exactly 1

FEATURES feature-name TYPE-OF-FEATURE elements-identifier

Component flows
Now we will show you the translation when we have components with flows,

as you can see in the next example, and we will describe how to represent compo-
nents with flows in PROVA. Flow specifications can represent: flow sources that
are flows originating from within a component; flow sinks that are flows ending
within a component; flow paths that are flows through a component from its
incoming ports to its outgoing ports[1].

component_category name_of_component

flows



12 Extending Prova for Architecture Definition Traceability

flow_name : flow_spec flow_identifier1 ->

flow_identifier2 -> flow_identifier3 ;

end name_of_component ;

The example show that we have flows inside a component, flows convert to
relations between entities and we can assume that the extremities are the entities
and the others are relations. Again to an easy understanding, in PROVA, the
name of the relations will be the concatenation between the reservated word
flows and its name flow name, so this way, when you saw in PROVA a relation
FLOWS flow-name you know that the relation represent a flow of a component.
We use the same algorithm to represent the entities that are flows, but instead
of use FLOWS we use FLOW, so when you see an entitie that the name is
FLOW identifier we know that the identifier is an entitie that are a flow in
AADL.

Now we will show the boilerplates that are generated by the example:

– there are 1 COMPONENT-CATEGORY name-of-component

– every COMPONENT-CATEGORY name-of-component shall have exactly 1
FLOWS flow-name flow-spec flow-identifier1

– every FLOW-SPEC flow-identifier1 shall have exactly 1 FLOWS flow-identifier2
FLOW flow-identifier3

– there are 1 FLOW flow-identifier1

– there are 1 FLOW flow-identifier3

Components that extends other Components

In AADL we can have components that extends other Components, these
should be Abstract components. In the next example you can see an example of
this

component_category name_of_component1

end name_of_component1 ;

component_category name_of_component2 extends name_of_component1

end name_of_component2;

The example show two components, the first(name of component1 ) should
be a component of Abstract type, the second can have other type.

In Prova this can easily been represented, because in PROVA we also have
Abstract Entities.

Now we will show the boilerplates that are generated by the example:

– there are 1 ABSTRACT name-of-component1

– COMPONENT-CATEGORY name-of-component2 extends ABSTRACT name-
of-component1



Exending Prova for Architecture Definition Traceability 13

Component Implementation
When we have component implementations in our model, first we have to

declare a component and next we can or not declare the respective component
implementation, a component implementation specifies an internal structure of
the component, so, in PROVA we have to say that the component implementa-
tion extends the respective component. The next example show an example of a
component implementation, note that the name should be the same, but in the
implemetation we have to add .impl, the AADL community normally uses the
word impl so this way they always know that component.impl represents the
implementation of the component.

component_category name_of_component

end name_of_component1;

component_category implementation name_of_component.impl

end name_of_component.impl;

In the example you can see a component and the respective implementation,
to distinguish a component and a component implementation, in the entity that
represents the component implementation we add the keyword IMPLEMENTA-
TION.

Now we will show the boilerplates that are generated by the example:

– there are 1 COMPONENT-CATEGORY name-of-component
– there are 1 COMPONENT-CATEGORY-IMPLEMENTATION name-of-component.impl
– COMPONENT-CATEGORY-IMPLEMENTATION name-of-component.impl

extends COMPONENT-CATEGORY name-of-component

In component implementation we can have subcomponents, modes, connec-
tions and flows. The boilerplates that represents Flows are generated in the same
way that we were generated when we had flows inside a component.

Component implementation with SubComponents
In AADL we can have internal components in component implementation, in

other words, subcomponents. In Prova we can say that exists a relation between
the component implementation and subcomponents. In the next example show
how to declare subcomponents inside a component implementation.

component_category implementation name_of_component.impl

subcomponents

subcomponent_name : component_category identifier ;

end name_of_component.impl;

As you can see, we have a reservated word subcomponents, that means the
existence of subcomponents inside a component implementation. And we have
to say that exists a relation between the component implementation and the
subcomponent, again the name of the relation will be the concatenation between



14 Extending Prova for Architecture Definition Traceability

the reservated word subcomponents and its name, so, this way when you have
a relation that starts with SUBCOMPONENTS you know that is a relation
between a component implementation and a subcomponent.

No we will show the boilerplates that are generated by the example:

– there are 1 COMPONENT-CATEGORY-IMPLEMENTATION name-of-component.impl

– every COMPONENT-CATEGORY-IMPLEMENTATION name-of-component.impl
shall have exactly 1 SUBCOMPONENTS subcomponent-name COMPONENT-
CATEGORY identifier

Component implementation with Modes

In AADL we can have modes inside a component implementation, that rep-
resents operation states of software, execution platform and compositional com-
ponents in the model physical system. The next example show how to declare
modes inside a component implementation[1].

component_category implementation name_of_component.impl

modes

mode_name : mode_type identifier ;

end name_of_component.impl;

As you can see, we have a reservated word modes, that means the existence of
modes inside a component implementation. In Prova we need to say that exists a
relation between the component and the mode, again to represent this relation,
the name will be the concatenation between the reservated word modes and its
name, again, in PROVA when you see a relation that starts with MODES you
know that is a relation between a component implementation and a subcompo-
nent.

No we will show the boilerplates that are generated by the example:

– there are 1 COMPONENT-CATEGORY-IMPLEMENTATION name-of-component.impl

– every COMPONENT-CATEGORY-IMPLEMENTATION name-of-component.impl
shall have exactly 1 MODES mode-name MODE-TYPE identifier

Component implementation with Connections

In AADL we can have connections inside a component implementation, that
specify patterns of control and data flow between individual components at run-
time[1]. In the next example show how to declare connections inside a component
implementation.

component_category implementation name_of_component.impl

connections

connection_name : source -> destination ;

end name_of_component.impl;



Exending Prova for Architecture Definition Traceability 15

In AADL the connections are directional, and have a source and a destination,
as you can notest, there is a ternary relation, but in PROVA we only have binary
relations, in prova we represent a ternary relation in two binary relations, for
instace if we have A-¿B-¿C in PROVA we will have A-¿B and B-¿C.

Now we will show the boilerplates that are generated by the example:

– there are 1 COMPONENT-CATEGORY-IMPLEMENTATION name-of-component.impl
– every COMPONENT-CATEGORY-IMPLEMENTATION name-of-component.impl

shall have exactly 1 CONNECTIONS connection-name CONNECTION source
– every CONNECTION source shall have exactly 1 CONNECTIONS connection-name1

CONNECTION source

Notest that in the second relation we add the number 1 to the name of the
relation, becase we can not have relations with same name.



16 Extending Prova for Architecture Definition Traceability

7 Conclusion and Future Work

As future work we can improve our tool to support all the static parts of
AADL and we also can implement a possible implementation of behaviour annex
in PROVA.

In conclusion AADL is a very powerful language to describe architectures.
Like Alloy, PROVA allow us to predict behaviour and early identification of er-
rors, we had some difficulties in the analyse of the boilerplates syntax but thanks
to our external supervisor, that help us when we needed, we could understood
the boilerplates syntax and use them in our tool.



Exending Prova for Architecture Definition Traceability 17

References

1. The SAE Architecture Analysis and Design Language Standard : A Language Sum-
mary, http://www.aadl.info/aadl/downloads/papers/AADLLanguageSummary.pdf


