
Extending PROVA for Ontologies Definition and
Exchange

Yoan David Ribeiro1 and Damien da Silva Vaz1

(pg25340,pg25300)@alunos.uminho.pt

1 University of Minho
2 Educed

Abstract. On the modeling world, the Ontology notion can be very
useful, since, we have a humongous number of definitions and relations
at our fingertips.So the main goal of this project is to integrate the
Ontology notion in PROVA, to have all those definitions and relations
available, and thus simplify, in some way, the modeling process.

1 Introduction

When we think of model, what’s the first thing that pops in our minds? The word
abstraction is one of the first words that we can remember when we talk about
model, because a model is an abstraction of the Real World which ultimately
leads, when well executed, to a better understanding of reality. In computer
science, a model is exactly an application of the definition. Thus, when we have
a problem/situation that we want to model, it is normally a mess, so the first
step is to extract the requirements of the problem and after those requirement
going through a modeling process we’ll have our model, which, hopefully, will
be simpler than the problem that we had. PROVA is an emerging modeling
platform which has, as main objective, to model high assurance systems. On
that note, PROVA wants to integrate the concept of Ontology in its system.
And why you may ask? Let’s put it this way, imagine that we could have a bag
of terms and relation about an area of knowledge that could be used to model
complex systems. It would be really helpful for modeling purposes. So our goal
is to make an useful translation between an Ontology language and PROVA’s
Boilerplates. To accomplish the main goal of the project, we explored various
points, them being:

– The study of PROVA application and Boilerplates in section 2.
– The investigation of the concept of Ontology and the Web Ontology Lan-

guage in section 3.
– We built an Haskell Data Type for the OWL Language which is described

in section 4.
– With the help of the HXT libary, we’ve built a parser for a subset of

OWL and also made a useful translation of our OWL Haskell Data Type
to PROVA’s Boilerplates, more in depth in section 5.

2 Extending PROVA for Ontologies Definition and Exchange

There are still a lot of objectives to accomplish in this project, so in section 6 we
wrap this up with what are our thoughts about the overall project and what’s
left to be done.
This report results due to a cohesive project of the Master’s degree in Computer
Engineering’s major of Formal Methods in Software Engineering, which theme
was proposed by Educed under the supervision of Engineer José Faria2 and the
local tutelage of the professor Manuel Alcino Cunha1.

2 PROVA in a nutshell

PROVA is an emerging modeling platform for development of high assurance
systems. And you may say ”Yet another modeling platform? What does it do that
the others don’t?”, well PROVA is capable of analysing textual requirements,
with a well defined syntax. As any modeling tool, PROVA identifies possible
conflicts between requirements, generates simulations of the systems behaviour,
proves that a given property is respected by our model, if not, it will give us a
counterexample. So PROVA’s purpose is to make the modeling process visually
less mathematical, and construct a model which describes the system that we
are modeling, without any redundant requirement, and, basically, help to make
a high assurance systems correct inside.

2.1 Structure of PROVA

PROVA is a webservice, which means that, the platform is divided in three parts:

FronEnd What is seen by the user. Provides a friendly way to model a system
through the use of boilerplates, as seen in figure 1, which are sentences with a
specific syntax.

Extending PROVA for Ontologies Definition and Exchange 3

Fig. 1. FrontEnd as it is now.

MiddleEnd This part will receive the boilerplates and translate them to be
sent to the BackEnd, this is where we focused our attention to do the translation
between OWL and PROVA’s boilerplates (section 5) and it is written in Haskell.

BackEnd Where is located the SMT Solver which will provide us the models
based on the requirement received from the MiddleEnd. (Written in Haskell)

2.2 Boilerplates

A boilerplate is a well known pattern used to describe, represent something. On
the computer science world, a boilerplate is an abstraction to simplify the way
we program/model. In PROVA’s particular case, boilerplates are well defined
sentences used to define a requirement in the analyses of Software Systems, and
there are three distinct types of boilerplates.

Boilerplates of the Entity Model These boilerplates are also known as the
structural boilerplates, and they are used to describe the static part of a system,
for instance, the entities of system, the relations between those entities and the
attributes/properties of the entities. These are the boilerplates that are needed
to do the translation.

Definition 1 (Types of Boilerplates).

– MULT: Cardinality of an entity/relation, example: ”There are m A”.
– ASSOC: Relation between entities, example: ”Every A shall have m fixed?

r B”, where A and B are entities, r the name of the relation, and m is the
multiplicity of the relation.

– ATTR: Declaration of an attribute or scalar for an entity, example: ”Every
A shall have a(n) fixed? type?”.

4 Extending PROVA for Ontologies Definition and Exchange

– GEN: The In (contains) relation between two relations/entities, example:
”Every A is a B”.

– DISJOINT: Declaration that two entities are disjoint, example: ”A, B, . . .
, and Z are [pairwise] disjoint”.

– ABSTRACT: Declaration that an entity is abstract (has to be extended),
example: ”A is abstract”.

– EXTENDS: Partial specialization of a relation/entity, in other words, a sim-
ple inheritance, example: ”A extends B”.

– EXTENDSABS: Total Specialization, example: Every A is either a B or C.
– ENUM: Creation of singletons from a class, example: Every A is enumerated

by B, C.
– INV: Declaration of an invariant about an entity, example: ”every x in A

shall satisfy F”, F being a formula.
– INIT: Specify the initial conditions about a set of entities, example: ”every

x in A is initialized such that F”.
– ACYCLIC: Relation cannot contain cycles, example: ”r is acyclic”.

Boilerplates of the Operational Model On this case, these boilerplates
describe the operations that the different agents can do in the systems and the
effects which those operations can cause in the universe. They, also, describe
the condition that will allow an operation to be executed; If it’s a necessary
conditions then it’s a precondition, if it’s a sufficient condition then it’s a trigger.
And they describe the dependencies between operations too.

Boilerplates of the Behavioral Model These are still under development,
but they will describe the dynamics of the system like a state machine. The
operations are seen as messages between objects or internal events, and those
operations can trigger or not an evolution of the system.

3 What is an Ontology?

Definition 2 (Ontology - Etymologicaly).
”Onto” (Being) + ”logia” (Study) = Study of Being

Formally, an Ontology is a representation of knowledge, which is represented
as a set of concepts of a specific domain, with a specific vocabulary to denote
relationships between the concepts, properties and types.
We can also see an Ontology as a way to model the data’s and the relations
between them, giving a semantics to the concepts. To be clear, an Ontology is
not a database schema, in anyway[1].
Thus, we can extract, from the definition, the essential characteristics of an
Ontology.

Definition 3 (Characteristics of an Ontology).

– Interrelation: The relations between the concepts.

Extending PROVA for Ontologies Definition and Exchange 5

– Instantiation: As the name says, the power of making an instance of a general
concept (individual).

– Subsumption: The capacity of defining a concept is more specific than the
other (subclasses of).

– Exclusion: The capacity of defining that a concept is not ,in any way, defined
by an other (disjunction of concepts).

– Axiomatisation: The capacity of expressing a more complex statement about
a concept.

– Attribution: The relation between a concept/instance and a value.

And from the characteristics we can derive the attributes of an ontology:

– Individuals
– Classes
– Attributes
– Relations
– Function terms
– Restrictions
– Rules
– Axioms
– Events

3.1 Web Ontology Language (OWL)

The Web Ontology Language, OWL for shorts, was created by Mike Dean and
Guus Schreiberr, and it was designed to represent rich and complex knowledge
between things, a collection of things and relations between things, basically an
Ontology.
OWL is, also, a very important part of the W3C Semantic Web Stack, as W3C
says: ”The Semantic Web is about two things. It is about common formats for
integration and combination of data drawn from diverse sources, where on the
original Web mainly concentrated on the interchange of documents. It is also
about language for recording how the data relates to real world objects. That
allows a person, or a machine, to start off in one database, and then move
through an unending set of databases which are connected not by wires but by
being about the same thing.”[2].
So the use of an Ontology is extremely important to give the different concepts,
a well defined semantics on the Web. OWL, being a standard, has to be the most
used language to define an ontology, nowadays.
Is also worth mentioning that the Web Ontology Language is a instance of the Set
Theory. This means that the entities, classes/subclasses are Sets. The universe
of those sets is the super-set Thing, the properties are relations between sets or
between a set and a primitive type, and the individuals are a specific habitant
of a set.

OWL Limitations In OWL, there is no way to represent n-ary relation,
however it is well know that any n-ary relation can be reduced to a binary
relation, that being said, this limitation is not a problem.

6 Extending PROVA for Ontologies Definition and Exchange

OWL Syntax The Web Ontology Language is based on Resouce Description
Framework (RDF) and RDFS, and those two are based in XML. Thus a OWL
ontology can be represented in many way, too many ways to be exact, which is a
problem if we want to make a good parser and translate the OWL information.
The syntax of OWL is referenced in [3] So the process focused on a subset of the
OWL language, which simplifies the parsing process.

Class and SubClass Declaration This is how we declare two entities in the
ontology:

<ow l :C la s s rd f : ID=”A”>
<rd f s : subC la s sO f r d f : r e s o u r c e=”#Thing”/>

</ owl :C la s s>

<ow l :C la s s rd f : ID=”B”>
<rd f s : subC la s sO f r d f : r e s o u r c e=”#Thing”/>

</ owl :C la s s>

In this particular case, we are saying that A and B are a subset of the set Thing,
which could be omitted since every set in OWL is a subset of Thing.

Object Property Declaration To define an ObjectProperty which is a property
that relates a set to another.

<owl :ObjectProperty rd f : about=”#R”>
<rd f s :domain r d f : r e s o u r c e=”#A”/>
<r d f s : r a n g e r d f : r e s o u r c e=”#B”/>

</ owl :ObjectProperty>

Data Type Property Declaration We can also define an DataTypeProperty which
is a property that goes from a set to a primitive type (String, Float, Integer, etc.
which will be represented as c).

<owl:DataTypeProperty rd f : about=”#Q”>
<rd f s :domain r d f : r e s o u r c e=”#A”/>
<r d f s : r a n g e r d f : r e s o u r c e=”#c”/>

</ owl:DataTypeProperty>

Individual declaration And finally we can say that there is an habitant of a
specific class:

<owl:NamedIndividual rd f : abou t=”#i ”>
<r d f : t y p e r d f : r e s o u r c e=”#A”/>

</ owl:NamedIndividual>

Extending PROVA for Ontologies Definition and Exchange 7

More Advanced Syntax The OWL language gives use the freedom to declare
more complex thing, for instance that an entity is equivalent to an intersection
of other entities. As we already said, all entities are Sets it is perfectly normal to
declare something around those lines. The Classes as we know can have 3 types
of Axioms:

– SubClassOf - Declaring that a set is subset of another, already seen on the
example of the declaration of a class.

– DisjointWith - Declaring that a set is disjoint from an other.

<ow l :C la s s rd f : ID=”#A”>
<ow l :d i s j o i n tWi th r d f : D e s c r i p t i o n=”#B”>

</ owl :C la s s>

In this declaration we are saying that A is disjoint of B.

8 Extending PROVA for Ontologies Definition and Exchange

– EquivalentClass - Declaring that a set is equivalent to another

<owl : Class rd f : about=”#A”>
<owl : equ iva l entC la s s>

<owl : Class>
<owl : i n t e r s e c t i o n O f rd f : parseType=”C o l l e c t i o n”>

<rd f : De s c r ip t i on rd f : about=”B”/>
<owl : Re s t r i c t i on>

<owl : onProperty rd f : r e s ou r c e=”#R”/>
<owl : c a r d i n a l i t y rd f : datatype=”&xsd ; nonNegat iveInteger”>

0
</owl : c a r d i n a l i t y>

</owl : R e s t r i c t i o n>
</owl : i n t e r s e c t i o n O f>

</owl : Class>
</owl : equ iva l entC la s s>
</owl : Class>

It can be seen that, the code above is more complex, and it says that the
entity A is equivalent to the intersection between B and the elements of A
which applying the property R gives a empty set.
This example, shows the case of an intersection, but we could have other set
operation such as, union or complement.

4 OWL - Haskell Representation

The approach to represent the Web Ontology Language is based in the idea of
doing a homogeneous representation, in Haskell, of the OWL Ontology structure,
knowing that it’s possible to represent the same information with different syntax
in the OWL language. So it’s crucial to find a representation which is generic
enough to support all the information that is extracted from the OWL Ontology.
This information is divided in:

4.1 Ontology

Ontology The Ontology data type represents the structure of the OWL Ontology
in Haskell and it’s the main data type. Each field of the Ontology data type
represents the main components of an OWL Ontology which are a list of entities,
object properties, data properties and individuals as defined below.

data Ontology = Ontology {
e n t i t i e s : : [Ent ity] ,
oPrope r t i e s : : [Property] ,
dProper t i e s : : [Property] ,
i n d i v i d u a l s : : [I n d i v i d u a l]

} deriving (Show, Eq)

Extending PROVA for Ontologies Definition and Exchange 9

4.2 Entities

Axioms As mentioned in Section 3 the classes are composed by axioms and
it’s necessary to add an ErrorAxiom to cover the others axioms which are not
valid in the parser. So the type axioms is defined as:

data Axiom = SubClass {
super : : Ent ity

}
| EquivalentTo {

c l a s sEqu i : : Ent ity
}
| Disjo intWith {

c l a s s e s : : Ent ity
}

| ErrorAxiom
deriving (Show, Eq)

Entity The Entity shows one of the main components of the OWL Ontology.
Them being:

– Class is simply a name and collection of axioms that describe a set of indi-
viduals.

– Anonymous class defines an unnamed class which has basically an operation
and they can be:
• Intersection.
• Union.
• Complement.
• OneOf (which is not being considered)

– A more complex set can be represented as a Restriction.
– Thing is the super-set which as all the entities of the ontology
– OWLNothing represents the empty set.

data Entity = Class {
name : : String ,
axioms : : [Axiom]

}
| AnonClass {

opera t ion : : Ent ity
}
| I n t e r s e c t i o n O f {

s e t I 1 : : Entity ,
s e t I 2 : : Ent ity

}
| UnionOf {

setU1 : : Entity ,

10 Extending PROVA for Ontologies Definition and Exchange

setU2 : : Ent ity
}
| ComplementOf { setC : : Ent ity }
| R e s t r i c t i o n {

onProperty : : String ,
valuesFrom : : ValuesFrom ,
value : : String

}
| Thing
| OWLNothing
deriving (Show, Eq)

ValuesFrom The ValuesFrom is an extra data type which is defined as multiples
choices and correspond to the values where the restriction will be valid. The NIL
option is evaluated as a NULL option which is an empty value. And the other
options defines as it is described by their name. These values were chosen due
to the OWL Ontology format for values options.

data ValuesFrom = AllValuesFrom
| SomeValuesFrom
| HasValue
| Card ina l i t y
| NIL
deriving (Show,Eq)

4.3 Properties

Properties Properties define an object or a data type properties of an OWL
Ontology.

data Property = ObjectProperty {
oPName : : String ,
oPdomain : : String ,
oPrange : : String ,
c h a r a c t e r i s t i c : : [String]

}
| DataTypeProperty {

dTName : : String ,
dTdomain : : String ,
dTrange : : String

} deriving (Show, Eq)

ObjectProperties

Extending PROVA for Ontologies Definition and Exchange 11

ObjectProperties Object properties links a set to a set with the respective domain
and range. The name describes the name of the object properties. And the
characteristics is basically a list of extra information about the relation, if it is
a functional property, etc, which will not be parsed, for now.

DataTypeProperties

DataTypeProperties . Datatype properties links a set to data values. And also
the name describes the name of the data type properties.

4.4 Individuals

Individuals In addition to classes, we want to be able to describe their members.
We normally think of these as individuals in our universe of things. An individual
is minimally introduced by declaring it to be a member of a class.

data I n d i v i d u a l = I n d i v i d u a l {
nameI : : String ,
parentClass : : Ent ity

}deriving (Show,Eq)

5 OWL parser

To build a parser for the Web Ontology language, which is basically XML, and
knowing that the PROVA’s middle-End, which is the part of PROVA we are
interested in, is Haskell, the approach is fairly simple. To find a complete and
simple library to help the parsing process of XML, and this library is HTX.

5.1 Haskell Toolkit XML (HTX)

As already seen, the Web Ontology Language syntax is purely XML, we’ve
searched for a good Library that could provide an easy way to translate the
OWL to our OWL representation in Haskell. So we used the Haskell Toolkit
XML, also known as, HTX. HTX provides us a collection of tools for processing
XML, and those tools are based on the concept of Arrows.

5.2 Arrows

An Arrow is an abstraction of computation introduced by John Hughes[4]. With
arrows we can describe a computation in a pure and declarative way.

Definition 4 (Arrow a => a b c). This means that there is an arrow a from
b to c

The basic Arrow data type is defined as follow:

12 Extending PROVA for Ontologies Definition and Exchange

class Arrow a where

arr:: (b -> c) -> a b c

(>>>):: a b c -> a c d -> a b d

With these definitions we can construct arrows from functions and we can
compose arrows giving us a new arrow.

5.3 Parsing of OWL

Approach The main idea for our parser was to create the same effect of a tree
structure (level by level) considering our data structure from Haskell (which is
designed, by the way, with the idea of the OWL Ontology structure).

5.4 Main function - parser

The main function is the heart of the program. Basically, it is responsible of
the parsing process, the scanning of the error in the OWL file, the creation of
boilerplates for PROVA’s System from the parsed OWL, and the specification of
the last to be sent to the solver and valided them. Also the main function output
the error list for a given OWL Ontology file and the boilerplates generated.
Finally, it checkup the extension of the OWL Ontology.

5.5 An example of a function of the parser

g e t E n t i t i e s : : ArrowXml cat => cat (XmlTree) Entity
g e t E n t i t i e s = atTag ”owl : Class ” >>>

proc l −> do
className <− par seC la s s −< l
lAxioms <− procAxioms −< l
returnA −< Class { name = (sp l i t className) ,

axioms = lAxioms }

This is an example of the HXT library used on a function named getEntities.
The atTag function do a search on the OWL Ontology for a tag named<owl:Class>
and will be the starting point for the parsing process of the class’s axioms, re-
turning the XmlTree (representing the Xml Tree of that class) which will be
used by the proc instruction. The proc (λ-function for Arrows) instruction have
the following syntax:
– l will have the initial XmlTree
– Each line below the proc instruction receives an Arrow to be executed by

the parse function or the proc function and returns a type.
– The last line of proc is always the returnA which returns all the information

that was parsed.

In this case, we can understand that the function getEntities process the
Classes by getting the name of the class and the respective list of axioms. The
others functions of the parser has the same strategy.

Extending PROVA for Ontologies Definition and Exchange 13

5.6 Parsing and Error Handling

The Error system analyses syntactically every tag as the parser does. The flow
of the error system is to check every tag and every attribute associated with the
tag (if available). If the attribute of a tag isn’t as it was supposed to be, it will
output in an error file and will explain which attribute isn’t valid and which line
of the ontology (not the line number but the line with the attribute associated).

data Error = Error {
type : : String

} deriving (Show,Eq)

The Error data type as mentioned above, has a type property and collects the
error as a string.

getOwlClass : : ArrowXml cat => cat XmlTree Error
getOwlClass = atTagE ”owl : Class ”

>>>
proc c l −>
do

a t t r i b u t e <− (ge tAtt r l>>>getAttrName) −< c l
l i n e <− xshow (t h i s >>>

changeChi ldren (take 1)) −< c l
returnA −< Error { type = errorOwlClass

(qual i f iedName a t t r i b u t e) l i n e }

errorOwlClass : : String −> String −> String
errorOwlClass ” rd f : about” = []
errorOwlClass ” rd f : ID” = []
errorOwlClass [] = []
errorOwlClass a t t r i b u t e l i n e = ” I n v a l i d a t t r i b u t e type : ”

++ a t t r i b u t e
++ ” , l i n e : ”
++ (rmvExtraTag l i n e)

The Error system use a basic strategy which is :

– Find the tag which we want to check the errors, in this example it’s<owl:Class>
– Get the attributes of that tag and check if the tags are correctly mentioned

on errorOwlClass.
– If the tag isn’t there, it means that the tag doesn’t exist and generate a

string as mentioned on the last option of the function errorOwlClass with
the atribute on the node and the line where he find.

And basically, every functions available for the error system uses the same strat-
egy as the one mentioned above which is: find the tag, get the attribute of that

14 Extending PROVA for Ontologies Definition and Exchange

tag and match it with the error function available to the function. If there is no
match, it will generate an error string.

5.7 Translation to PROVA’s Boilerplates

The translation of OWL Haskell for PROVA’s Boilerplates begins with this func-
tion:

mainBPlateGen : : [Ontology] −> [B o i l e r p l a t e Name]
mainBPlateGen [(Ontology {

e n t i t i e s = e ,
oPrope r t i e s = op ,
dProper t i e s = dp ,
i n d i v i d u a l s = ind })] =
[Mult mSome (s e t (B o i l e r p l a t e s . Id .mkName ”Thing”) [])]

++ (bp la teGenEnt i t i e s e)
++ (bplateGenObjectPropert i e s op)
++ (bplateGenDataTypeProperties dp)
++ (bp lateGenInd iv idua l s ind)

To sum it up, the function will transform each part of the ontology, individ-
ually and will return a list of Boilerplates. It’s important to notice that the
first boilerplate which is introduced in the list is the Mult mSome (set (Boiler-
plates.Id.mkName ”Thing”) []) The mind set for each of this function responsable
for the translation is to individualize the OWL Statement, to simplify the trans-
lation process. To be explicit here is a table which shows the relation between
the OWL Haskell and the PROVA’s Boilerplate:

Entities Table 1 presents examples of the translation based in the semantic
of OWL [5] [6]. Our translation only considers, in the EquivalentTo axiom, the
operation IntersectionOf, but it can be switched to UnionOf, and the Comple-
mentOf, with all the modifications necessary. However for this two operations,
the translation, in the case of one of the set being a Restriction, the Cardinality
of a property is not defined.

Extending PROVA for Ontologies Definition and Exchange 15

OWL Haskell PROVA’s
Boilerplates

Class { name = "A", axioms = [] } Gen ”A” idenP
”Thing” idenP

Class { name = "A", axioms = [SubClass{ super

= Class { name = "B", axioms = []}}] }
Gen ”A” idenP ”B”

idenP

Class { name = "A", axioms = [SubClass{ super

= Restriction { onProperty = "R", valuesFrom

=AllValuesFrom, value = B }] }

Gen name idenP B
[” R”]

Class { name = "A", axioms = [DisjointWith{
classes = Class { name = "B", axioms = [] }]

}

Disj [”A”,”B”]

Class {name = "A", axioms=[EquivalentTo{
classEqui = Class { name = "B", axioms =

[]}}] }

Gen ”B” idenP ”A”
idenP, Gen ”A” idenP

”B” idenP

Class {name = "A", axioms=[EquivalentTo{
classEqui = AnonClass { operation =

IntersectionOf { setI1 = Class {name= "B",

axioms = [] }, setI2 = Class {name = "C",

axioms = []} }}] }

Inv ”A” (SCmpF Is
(Intersect (set ”B” [])
(set ”C” [])) (set ”A”

[]))

Class {name = "A", axioms=[EquivalentTo{
classEqui = AnonClass { operation =

IntersectionOf { setI1 = Class {name= "B",

axioms = [] }, setI2 = Restriction

{onProperty = "R", valuesFrom =

AllValuesFrom, value = "C"} }}] }

Inv ”A” (SCmpF Is
(Intersect (set ”R”

([”C”])) (set ”B” []))
(set ”A” []))

Class {name = "A", axioms=[EquivalentTo{
classEqui = AnonClass { operation =

IntersectionOf { setI1 = Class {name= "B",

axioms = [] }, setI2 = Restriction

{onProperty = "R", valuesFrom =

SomeValuesFrom, value = "C"} }}] }

Inv ”A” (MultF
mSome (Intersect (set
”R” ([”C”])) (set ”B”

[])))

Class {name = "A", axioms=[EquivalentTo{
classEqui = AnonClass { operation =

IntersectionOf { setI1 = Class {name= "B",

axioms = [] }, setI2 = Restriction

{onProperty = "R", valuesFrom =

SomeValuesFrom, value = "C"} }}] }

Gen ”A” idenP ”B”
idenP, (Inv ”A”

(MultF (mJust (v))
(the ”A” [”R”])))

Table 1. Examples of the translation of entities

16 Extending PROVA for Ontologies Definition and Exchange

Properties Table 2 shows the translation of properties. To notice, the trans-
lation of the DataTypeProperties is not complete. As it was already stated the
DataTypeProperties are atributtes, and it was also said that PROVA has a
Boilerplate named ATTR, however it only supports atributtes of type Integer,
so it was decide that the translation of DataTypeProperties is the same as the
ObjectProperties.

OWL Haskell PROVA’s
Boilerplates

ObjectProperty { oPName = "R", oPdomain =

"A", oPrange = "B", characteristic = [] }
has ”A” (From 0)
NotFixed ”R” ”B”

DataTypeProperty { oPName = "R", oPdomain =

"A", oPrange = a, characteristic = [] }
has ”A” (From 0)

NotFixed ”R” a (Not
Correct)

Table 2. Examples of the translation of Properties

Individuals Table 3 shows the translation of individuals, which is pretty
straight forward.

OWL Haskell PROVA’s Boilerplates

Individual { nameI = "a", parentClass =

Class { name = "A", axioms = []} }
Mult (mOne) (set (”a”) []),
Gen ”b” idenP ”A” idenP

Table 3. Examples of the translation of Individuals

Extending PROVA for Ontologies Definition and Exchange 17

6 Conclusions and Future Works

The Haskell OWL parser will be open-source, however it only parses a little
subset of OWL, the next step would be to parse the remaining statements, and
try to cover the majority of the Web Ontology Language, even though OWL can
be written in many ways. Also another work would be to complete the translation
of OWL to PROVA’s Boilerplates and basically make the PROVA front-end able
to import the OWL file which is simple, since the parser is already made and it’s
just to import the file and inject the content in the parser. PROVA’s concept is
innovative, but it lacks documentation to build a strong code based in the core of
the application. It’s an new modelling platform however documentation has to be
done one day or another. To conclude, this work is not finished. We’ve learnt a lot
about Web Ontology Language and we deepened our Haskell knowledge, but it
would requires further investigation of the OWL semantics to build a strong and
correct parser, and much better understanding about PROVA’s functionalities.

References

1. Coral Calero, Francisco Ruiz, M.P.: Ontologies for Software Engineering and Soft-
ware Technology. Springer (2006)

2. : W3c semantic web activity. http://www.w3.org/2001/sw/
3. : Owl web ontology language guide. http://www.w3.org/TR/owl-guide/
4. Hughes, J.: Generalising monads to arrows. (1998)
5. : Owl web ontology language semantics and abstract syntax.

http://www.w3.org/TR/owl-semantics/
6. : Owl dl semantics. http://www.obitko.com/tutorials/ontologies-semantic-web/owl-

dl-semantics.html

